3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 01:24:08 +00:00

exposing algebraic numbers in the API (working in progress)

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2012-12-07 17:48:57 -08:00
parent c350943c78
commit c011b05b61
8 changed files with 440 additions and 3 deletions

View file

@ -59,10 +59,10 @@ def init_project_def():
add_lib('portfolio', ['smtlogic_tactics', 'ufbv_tactic', 'fpa', 'aig_tactic', 'muz_qe', 'sls_tactic', 'subpaving_tactic'], 'tactic/portfolio')
add_lib('smtparser', ['portfolio'], 'parsers/smt')
add_lib('api', ['portfolio', 'user_plugin', 'smtparser'],
includes2install=['z3.h', 'z3_api.h', 'z3_v1.h', 'z3_macros.h'])
includes2install=['z3.h', 'z3_api.h', 'z3_v1.h', 'z3_macros.h', 'z3_algebraic.h'])
add_exe('shell', ['api', 'sat', 'extra_cmds'], exe_name='z3')
add_exe('test', ['api', 'fuzzing'], exe_name='test-z3', install=False)
API_files = ['z3_api.h']
API_files = ['z3_api.h', 'z3_algebraic.h']
add_dll('api_dll', ['api', 'sat', 'extra_cmds'], 'api/dll',
reexports=['api'],
dll_name='libz3',

198
src/api/api_algebraic.cpp Normal file
View file

@ -0,0 +1,198 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
api_algebraic.cpp
Abstract:
Additional APIs for handling Z3 algebraic numbers encoded as
Z3_ASTs
Author:
Leonardo de Moura (leonardo) 2012-12-07
Notes:
--*/
#include<iostream>
#include"z3.h"
#include"api_log_macros.h"
#include"api_context.h"
extern "C" {
Z3_bool Z3_API Z3_algebraic_is_value(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_algebraic_is_value(c, a);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_bool Z3_API Z3_algebraic_is_pos(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_algebraic_is_pos(c, a);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_bool Z3_API Z3_algebraic_is_neg(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_algebraic_is_neg(c, a);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_bool Z3_API Z3_algebraic_is_zero(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_algebraic_is_zero(c, a);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
int Z3_API Z3_algebraic_sign(Z3_context c, Z3_ast a) {
Z3_TRY;
LOG_Z3_algebraic_sign(c, a);
RESET_ERROR_CODE();
// TODO
return 0;
Z3_CATCH_RETURN(0);
}
Z3_ast Z3_API Z3_algebraic_add(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_add(c, a, b);
RESET_ERROR_CODE();
// TODO
return 0;
Z3_CATCH_RETURN(0);
}
Z3_ast Z3_API Z3_algebraic_sub(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_sub(c, a, b);
RESET_ERROR_CODE();
// TODO
return 0;
Z3_CATCH_RETURN(0);
}
Z3_ast Z3_API Z3_algebraic_mul(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_mul(c, a, b);
RESET_ERROR_CODE();
// TODO
return 0;
Z3_CATCH_RETURN(0);
}
Z3_ast Z3_API Z3_algebraic_div(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_div(c, a, b);
RESET_ERROR_CODE();
// TODO
return 0;
Z3_CATCH_RETURN(0);
}
Z3_ast Z3_API Z3_algebraic_root(Z3_context c, Z3_ast a, unsigned k) {
Z3_TRY;
LOG_Z3_algebraic_root(c, a, k);
RESET_ERROR_CODE();
// TODO
return 0;
Z3_CATCH_RETURN(0);
}
Z3_ast Z3_API Z3_algebraic_power(Z3_context c, Z3_ast a, unsigned k) {
Z3_TRY;
LOG_Z3_algebraic_power(c, a, k);
RESET_ERROR_CODE();
// TODO
return 0;
Z3_CATCH_RETURN(0);
}
Z3_bool Z3_API Z3_algebraic_lt(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_lt(c, a, b);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_bool Z3_API Z3_algebraic_gt(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_gt(c, a, b);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_bool Z3_API Z3_algebraic_le(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_le(c, a, b);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(Z3_FALSE);
}
Z3_bool Z3_API Z3_algebraic_ge(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_ge(c, a, b);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(0);
}
Z3_bool Z3_API Z3_algebraic_eq(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_eq(c, a, b);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(0);
}
Z3_bool Z3_API Z3_algebraic_neq(Z3_context c, Z3_ast a, Z3_ast b) {
Z3_TRY;
LOG_Z3_algebraic_neq(c, a, b);
RESET_ERROR_CODE();
// TODO
return Z3_FALSE;
Z3_CATCH_RETURN(0);
}
Z3_ast_vector Z3_API Z3_algebraic_roots(Z3_context c, Z3_ast p, unsigned n, Z3_ast a[]) {
Z3_TRY;
LOG_Z3_algebraic_roots(c, p, n, a);
RESET_ERROR_CODE();
// TODO
return 0;
Z3_CATCH_RETURN(0);
}
int Z3_API Z3_algebraic_eval(Z3_context c, Z3_ast p, unsigned n, Z3_ast a[]) {
Z3_TRY;
LOG_Z3_algebraic_eval(c, p, n, a);
RESET_ERROR_CODE();
// TODO
return 0;
Z3_CATCH_RETURN(0);
}
};

View file

@ -143,6 +143,7 @@ namespace api {
{
if (m_interruptable)
(*m_interruptable)();
m_manager.set_cancel(true);
}
}

View file

@ -24,6 +24,7 @@ Notes:
#include<stdio.h>
#include"z3_macros.h"
#include"z3_api.h"
#include"z3_algebraic.h"
#undef __in
#undef __out

226
src/api/z3_algebraic.h Normal file
View file

@ -0,0 +1,226 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
z3_algebraic.h
Abstract:
Additional APIs for handling Z3 algebraic numbers encoded as
Z3_ASTs
Author:
Leonardo de Moura (leonardo) 2012-12-07
Notes:
--*/
#ifndef _Z3_ALGEBRAIC_H_
#define _Z3_ALGEBRAIC_H_
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
/**
\brief Return Z3_TRUE if \c can be used as value in the Z3 real algebraic
number package.
def_API('Z3_algebraic_is_value', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_is_value(__in Z3_context c, __in Z3_ast a);
/**
\brief Return the Z3_TRUE if \c a is positive, and Z3_FALSE otherwise.
\pre Z3_algebraic_is_value(c, a)
def_API('Z3_algebraic_is_pos', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_is_pos(__in Z3_context c, __in Z3_ast a);
/**
\brief Return the Z3_TRUE if \c a is negative, and Z3_FALSE otherwise.
\pre Z3_algebraic_is_value(c, a)
def_API('Z3_algebraic_is_neg', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_is_neg(__in Z3_context c, __in Z3_ast a);
/**
\brief Return the Z3_TRUE if \c a is zero, and Z3_FALSE otherwise.
\pre Z3_algebraic_is_value(c, a)
def_API('Z3_algebraic_is_zero', BOOL, (_in(CONTEXT), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_is_zero(__in Z3_context c, __in Z3_ast a);
/**
\brief Return 1 if \c a is positive, 0 if \c a is zero, and -1 if \c a is negative.
\pre Z3_algebraic_is_value(c, a)
def_API('Z3_algebraic_sign', INT, (_in(CONTEXT), _in(AST)))
*/
int Z3_API Z3_algebraic_sign(__in Z3_context c, __in Z3_ast a);
/**
\brief Return the value a + b.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
\post Z3_algebraic_is_value(c, result)
def_API('Z3_algebraic_add', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_algebraic_add(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Return the value a - b.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
\post Z3_algebraic_is_value(c, result)
def_API('Z3_algebraic_sub', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_algebraic_sub(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Return the value a * b.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
\post Z3_algebraic_is_value(c, result)
def_API('Z3_algebraic_mul', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_algebraic_mul(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Return the value a / b.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
\pre !Z3_algebraic_is_zero(c, b)
\post Z3_algebraic_is_value(c, result)
def_API('Z3_algebraic_div', AST, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_ast Z3_API Z3_algebraic_div(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Return the a^(1/k)
\pre Z3_algebraic_is_value(c, a)
\pre k is even => !Z3_algebraic_is_neg(c, a)
\post Z3_algebraic_is_value(c, result)
def_API('Z3_algebraic_root', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
Z3_ast Z3_API Z3_algebraic_root(__in Z3_context c, __in Z3_ast a, __in unsigned k);
/**
\brief Return the a^k
\pre Z3_algebraic_is_value(c, a)
\post Z3_algebraic_is_value(c, result)
def_API('Z3_algebraic_power', AST, (_in(CONTEXT), _in(AST), _in(UINT)))
*/
Z3_ast Z3_API Z3_algebraic_power(__in Z3_context c, __in Z3_ast a, __in unsigned k);
/**
\brief Return Z3_TRUE if a < b, and Z3_FALSE otherwise.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
def_API('Z3_algebraic_lt', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_lt(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Return Z3_TRUE if a > b, and Z3_FALSE otherwise.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
def_API('Z3_algebraic_gt', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_gt(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Return Z3_TRUE if a <= b, and Z3_FALSE otherwise.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
def_API('Z3_algebraic_le', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_le(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Return Z3_TRUE if a >= b, and Z3_FALSE otherwise.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
def_API('Z3_algebraic_ge', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_ge(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Return Z3_TRUE if a == b, and Z3_FALSE otherwise.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
def_API('Z3_algebraic_eq', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_eq(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Return Z3_TRUE if a != b, and Z3_FALSE otherwise.
\pre Z3_algebraic_is_value(c, a)
\pre Z3_algebraic_is_value(c, b)
def_API('Z3_algebraic_neq', BOOL, (_in(CONTEXT), _in(AST), _in(AST)))
*/
Z3_bool Z3_API Z3_algebraic_neq(__in Z3_context c, __in Z3_ast a, __in Z3_ast b);
/**
\brief Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the
roots of the univariate polynomial p(a[0], ..., a[n-1], x_n).
\pre p is a Z3 expression that contains only arithmetic terms and free variables.
\pre forall i in [0, n) Z3_algebraic_is_value(c, a[i])
\post forall r in result Z3_algebraic_is_value(c, result)
def_API('Z3_algebraic_roots', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
*/
Z3_ast_vector Z3_API Z3_algebraic_roots(__in Z3_context c, __in Z3_ast p, __in unsigned n, __in Z3_ast a[]);
/**
\brief Given a multivariate polynomial p(x_0, ..., x_{n-1}), return the
sign of p(a[0], ..., a[n-1]).
\pre p is a Z3 expression that contains only arithmetic terms and free variables.
\pre forall i in [0, n) Z3_algebraic_is_value(c, a[i])
def_API('Z3_algebraic_eval', INT, (_in(CONTEXT), _in(AST), _in(UINT), _in_array(2, AST)))
*/
int Z3_API Z3_algebraic_eval(__in Z3_context c, __in Z3_ast p, __in unsigned n, __in Z3_ast a[]);
#ifdef __cplusplus
};
#endif // __cplusplus
#endif

View file

@ -184,7 +184,7 @@ public:
virtual expr * get_some_value(sort * s);
void set_cancel(bool f);
virtual void set_cancel(bool f);
};
class arith_util {

View file

@ -1336,6 +1336,12 @@ ast_manager::~ast_manager() {
}
}
void ast_manager::set_cancel(bool f) {
for (unsigned i = 0; i < m_plugins.size(); i++) {
m_plugins[i]->set_cancel(f);
}
}
void ast_manager::compact_memory() {
m_alloc.consolidate();
unsigned capacity = m_ast_table.capacity();

View file

@ -921,6 +921,8 @@ public:
virtual ~decl_plugin() {}
virtual void finalize() {}
virtual void set_cancel(bool f) {}
virtual decl_plugin * mk_fresh() = 0;
family_id get_family_id() const { return m_family_id; }
@ -1400,6 +1402,9 @@ public:
ast_manager(ast_manager const & src, bool disable_proofs = false);
~ast_manager();
// propagate cancellation signal to decl_plugins
void set_cancel(bool f);
bool has_trace_stream() const { return m_trace_stream != 0; }
std::ostream & trace_stream() { SASSERT(has_trace_stream()); return *m_trace_stream; }