3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-27 19:05:51 +00:00

adding deps

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-08-04 14:02:32 -07:00
parent 91ac15d716
commit be9f172cc0
7 changed files with 268 additions and 194 deletions

View file

@ -70,12 +70,8 @@ inline std::ostream& operator<<(std::ostream& out, u256 const& u) {
inline bool operator<(uint64_t n, u256 const& y) { return y > n; }
inline bool operator<=(uint64_t n, u256 const& y) { return y >= n; }
inline bool operator>(uint64_t n, u256 const& y) { return y < n; }
inline unsigned trailing_zeros(u256 const& n) {
NOT_IMPLEMENTED_YET();
return 0;
}
inline u256 operator-(uint64_t n, u256 const& y) {
u256 x(n);
return x - y;
}
inline unsigned trailing_zeros(u256 const& n) { return n.trailing_zeros(); }
inline u256 operator-(uint64_t n, u256 const& y) { return u256(n) - y; }
inline bool operator>=(uint64_t n, u256 const& y) { return y <= n; }
inline rational to_rational(u256 const& x) { return x.to_rational(); }

View file

@ -27,6 +27,8 @@ Author:
#include "util/lbool.h"
#include "util/uint_set.h"
inline rational to_rational(uint64_t n) { return rational(n, rational::ui64()); }
namespace polysat {
typedef unsigned var_t;
@ -38,12 +40,14 @@ namespace polysat {
virtual void del_row(var_t base_var) = 0;
virtual std::ostream& display(std::ostream& out) const = 0;
virtual void collect_statistics(::statistics & st) const = 0;
virtual void set_bounds(var_t v, rational const& lo, rational const& hi) = 0;
virtual void set_value(var_t v, rational const& val) = 0;
virtual void set_bounds(var_t v, rational const& lo, rational const& hi, unsigned dep) = 0;
virtual void set_value(var_t v, rational const& val, unsigned dep) = 0;
virtual rational get_value(var_t v) = 0;
virtual void restore_bound() = 0;
virtual void add_le(var_t v, var_t w) = 0;
virtual void add_lt(var_t v, var_t w) = 0;
virtual void add_le(var_t v, var_t w, unsigned dep) = 0;
virtual void add_lt(var_t v, var_t w, unsigned dep) = 0;
virtual void restore_ineq() = 0;
virtual void get_infeasible_deps(unsigned_vector& deps) = 0;
};
@ -92,7 +96,9 @@ namespace polysat {
struct var_info : public mod_interval<numeral> {
unsigned m_base2row:29;
unsigned m_is_base:1;
numeral m_value { 0 };
numeral m_value = 0;
unsigned m_lo_dep = UINT_MAX;
unsigned m_hi_dep = UINT_MAX;
var_info():
m_base2row(0),
m_is_base(false)
@ -115,10 +121,10 @@ namespace polysat {
numeral m_base_coeff;
};
struct stashed_bound : mod_interval<numeral> {
struct stashed_bound : var_info {
var_t m_var;
stashed_bound(var_t v, mod_interval<numeral> const& i):
mod_interval<numeral>(i),
stashed_bound(var_t v, var_info const& i):
var_info(i),
m_var(v)
{}
};
@ -131,12 +137,13 @@ namespace polysat {
};
struct ineq {
var_t v { null_var };
var_t w { null_var };
bool strict { false };
bool is_active { true };
ineq(var_t v, var_t w, bool s):
v(v), w(w), strict(s) {}
var_t v = null_var;
var_t w = null_var;
bool strict = false;
bool is_active = true;
unsigned dep = UINT_MAX;
ineq(var_t v, var_t w, unsigned dep, bool s):
v(v), w(w), strict(s), dep(dep) {}
};
static const var_t null_var = UINT_MAX;
@ -179,14 +186,15 @@ namespace polysat {
std::ostream& display(std::ostream& out) const override;
void collect_statistics(::statistics & st) const override;
void del_row(var_t base_var) override;
void set_bounds(var_t v, rational const& lo, rational const& hi) override;
void set_value(var_t v, rational const& val) override;
void set_bounds(var_t v, rational const& lo, rational const& hi, unsigned dep) override;
void set_value(var_t v, rational const& val, unsigned dep) override;
rational get_value(var_t v) override;
void restore_bound() override;
void add_le(var_t v, var_t w) override { add_ineq(v, w, false); }
void add_lt(var_t v, var_t w) override { add_ineq(v, w, true); }
void add_le(var_t v, var_t w, unsigned dep) override { add_ineq(v, w, dep, false); }
void add_lt(var_t v, var_t w, unsigned dep) override { add_ineq(v, w, dep, true); }
virtual void restore_ineq() override;
void set_bounds(var_t v, numeral const& lo, numeral const& hi);
void set_bounds(var_t v, numeral const& lo, numeral const& hi, unsigned dep);
void unset_bounds(var_t v) { m_vars[v].set_free(); }
@ -202,10 +210,13 @@ namespace polysat {
void reset_eqs() { m_var_eqs.reset(); }
void add_row(var_t base, unsigned num_vars, var_t const* vars, numeral const* coeffs);
row get_infeasible_row();
void get_infeasible_deps(unsigned_vector& deps) override;
private:
row get_infeasible_row();
std::ostream& display_row(std::ostream& out, row const& r, bool values = true);
var_t get_base_var(row const& r) const { return m_rows[r.id()].m_base; }
@ -258,7 +269,7 @@ namespace polysat {
var_t select_error_var(bool least);
// facilities for handling inequalities
void add_ineq(var_t v, var_t w, bool strict);
void add_ineq(var_t v, var_t w, unsigned dep, bool strict);
void touch_var(var_t x);
lbool check_ineqs();
@ -284,7 +295,6 @@ namespace polysat {
numeral const& old_value_y);
};
template<typename uint_type>
struct generic_uint_ext {
typedef uint_type numeral;
@ -302,6 +312,7 @@ namespace polysat {
}
};
numeral from_rational(rational const& n) { return static_cast<uint_type>(n.get_uint64()); }
rational to_rational(numeral const& n) const { return ::to_rational(n); }
void reset() {}
void reset(numeral& n) { n = 0; }
void del(numeral const& n) {}

View file

@ -70,16 +70,16 @@ namespace polysat {
template<typename Ext>
fixplex<Ext>::~fixplex() {
reset();
}
}
template<typename Ext>
void fixplex<Ext>::ensure_var(var_t v) {
while (v >= m_vars.size()) {
M.ensure_var(m_vars.size());
m_vars.push_back(var_info());
m_vars.push_back(var_info());
}
if (m_to_patch.get_bounds() <= v)
m_to_patch.set_bounds(2*v+1);
if (m_to_patch.get_bounds() <= v)
m_to_patch.set_bounds(2 * v + 1);
}
template<typename Ext>
@ -105,7 +105,7 @@ namespace polysat {
SASSERT(well_formed());
while ((v = select_var_to_fix()) != null_var) {
TRACE("polysat", display(tout << "v" << v << "\n"););
if (!m_limit.inc() || num_iterations > m_max_iterations)
if (!m_limit.inc() || num_iterations > m_max_iterations)
return l_undef;
check_blands_rule(v, num_repeated);
switch (make_var_feasible(v)) {
@ -138,20 +138,20 @@ namespace polysat {
template<typename Ext>
void fixplex<Ext>::add_row(var_t base_var, unsigned num_vars, var_t const* vars, numeral const* coeffs) {
for (unsigned i = 0; i < num_vars; ++i)
for (unsigned i = 0; i < num_vars; ++i)
ensure_var(vars[i]);
m_base_vars.reset();
row r = M.mk_row();
for (unsigned i = 0; i < num_vars; ++i)
if (coeffs[i] != 0)
for (unsigned i = 0; i < num_vars; ++i)
if (coeffs[i] != 0)
M.add_var(r, coeffs[i], vars[i]);
numeral base_coeff = 0;
numeral value = 0;
for (auto const& e : M.row_entries(r)) {
var_t v = e.var();
if (v == base_var)
if (v == base_var)
base_coeff = e.coeff();
else {
if (is_base(v))
@ -161,7 +161,7 @@ namespace polysat {
}
SASSERT(base_coeff != 0);
SASSERT(!is_base(base_var));
while (m_rows.size() <= r.id())
while (m_rows.size() <= r.id())
m_rows.push_back(row_info());
m_rows[r.id()].m_base = base_var;
m_rows[r.id()].m_base_coeff = base_coeff;
@ -189,9 +189,9 @@ namespace polysat {
/**
* Eliminate base variable v from all rows except where v is basic.
* Return false if elimination required to multiply a non-basic row with an even number.
* This happens when the parity in the non-basic row is smaller than the parity of v in
* the basic row. It is expected to be a corner case and we don't try to solve this
* inside of fixplex. Instead to deal with the corner case we assume the layer around
* This happens when the parity in the non-basic row is smaller than the parity of v in
* the basic row. It is expected to be a corner case and we don't try to solve this
* inside of fixplex. Instead to deal with the corner case we assume the layer around
* fixplex uses a solution from fixplex as a starting point for a complete search (in polysat).
*/
template<typename Ext>
@ -248,14 +248,14 @@ namespace polysat {
var_t old_base = row2base(r);
numeral new_value;
var_info& vi = m_vars[old_base];
if (!vi.contains(value(old_base)))
if (!vi.contains(value(old_base)))
new_value = vi.lo;
else
else
new_value = value(old_base);
// need to move var such that old_base comes in bound.
pivot(old_base, var, coeff, new_value);
pivot(old_base, var, coeff, new_value);
SASSERT(is_base(var));
SASSERT(base2row(var).id() == r.id());
SASSERT(base2row(var).id() == r.id());
SASSERT(vi.contains(value(old_base)));
}
del_row(r);
@ -288,17 +288,17 @@ namespace polysat {
ri.m_value += delta * c.get_row_entry().coeff();
set_base_value(s);
add_patch(s);
}
}
}
}
/**
* Attempt to improve assigment to make x feasible.
*
*
* return l_false if x is base variable of infeasible row
* return l_true if it is possible to find an assignment that improves
* return l_undef if the row could not be used for an improvement
*
*
* delta - improvement over previous gap to feasible bound.
* new_value - the new value to assign to x within its bounds.
*/
@ -320,37 +320,37 @@ namespace polysat {
return l_undef;
}
pivot(x, y, b, new_value);
return l_true;
}
template<typename Ext>
var_t fixplex<Ext>::select_pivot(var_t x, numeral const& new_value, numeral & out_b) {
var_t fixplex<Ext>::select_pivot(var_t x, numeral const& new_value, numeral& out_b) {
if (m_bland)
return select_pivot_blands(x, new_value, out_b);
return select_pivot_core(x, new_value, out_b);
}
/**
\brief Select a variable y in the row r defining the base var x,
\brief Select a variable y in the row r defining the base var x,
s.t. y can be used to patch the error in x_i. Return null_var
if there is no y. Otherwise, return y and store its coefficient
in out_b.
The routine gives up if the coefficients of all free variables do not have the minimal
number of trailing zeros.
number of trailing zeros.
*/
template<typename Ext>
var_t fixplex<Ext>::select_pivot_core(var_t x, numeral const& new_value, numeral & out_b) {
var_t fixplex<Ext>::select_pivot_core(var_t x, numeral const& new_value, numeral& out_b) {
SASSERT(is_base(x));
var_t max = get_num_vars();
var_t max = get_num_vars();
var_t result = max;
row r = base2row(x);
int n = 0;
unsigned best_col_sz = UINT_MAX;
int best_so_far = INT_MAX;
int best_so_far = INT_MAX;
numeral a = row2base_coeff(r);
numeral row_value = row2value(r) + a * new_value;
numeral delta_y = 0;
@ -358,13 +358,13 @@ namespace polysat {
bool best_in_bounds = false;
for (auto const& r : M.row_entries(r)) {
var_t y = r.var();
numeral const & b = r.coeff();
if (x == y)
var_t y = r.var();
numeral const& b = r.coeff();
if (x == y)
continue;
if (!has_minimal_trailing_zeros(y, b))
continue;
numeral new_y_value = solve_for(row_value - b*value(y), b);
numeral new_y_value = solve_for(row_value - b * value(y), b);
bool _in_bounds = in_bounds(y, new_y_value);
if (!_in_bounds) {
if (lo(y) - new_y_value < new_y_value - hi(y))
@ -372,7 +372,7 @@ namespace polysat {
else
delta_y = new_y_value - hi(y) - 1;
}
int num = get_num_non_free_dep_vars(y, best_so_far);
int num = get_num_non_free_dep_vars(y, best_so_far);
unsigned col_sz = M.column_size(y);
bool is_improvement = false, is_plateau = false;
@ -391,23 +391,23 @@ namespace polysat {
is_plateau = true;
else if (best_in_bounds && _in_bounds && best_so_far == num && col_sz == best_col_sz)
is_plateau = true;
if (is_improvement) {
result = y;
out_b = b;
best_so_far = num;
best_col_sz = col_sz;
result = y;
out_b = b;
best_so_far = num;
best_col_sz = col_sz;
best_in_bounds = _in_bounds;
delta_best = delta_y;
n = 1;
}
delta_best = delta_y;
n = 1;
}
else if (is_plateau) {
n++;
if (m_random() % n == 0) {
result = y;
out_b = b;
result = y;
out_b = b;
}
}
}
}
if (result == max)
return null_var;
@ -417,18 +417,18 @@ namespace polysat {
}
template<typename Ext>
var_t fixplex<Ext>::select_pivot_blands(var_t x, numeral const& new_value, numeral & out_b) {
var_t fixplex<Ext>::select_pivot_blands(var_t x, numeral const& new_value, numeral& out_b) {
SASSERT(is_base(x));
unsigned max = get_num_vars();
var_t result = max;
row r = base2row(x);
for (auto const& c : M.col_entries(r)) {
var_t y = c.var();
var_t y = c.var();
if (x == y || y >= result)
continue;
numeral const & b = c.coeff();
numeral const& b = c.coeff();
if (can_improve(y, b)) {
out_b = b;
out_b = b;
result = y;
}
}
@ -436,8 +436,8 @@ namespace polysat {
}
/**
* determine whether setting x := new_value
* allows to change the value of y in a direction
* determine whether setting x := new_value
* allows to change the value of y in a direction
* that reduces or maintains the overall error.
*/
template<typename Ext>
@ -452,30 +452,30 @@ namespace polysat {
/**
* Compute delta to add to the value, such that value + delta is either lo(v), or hi(v) - 1
* A pre-condition is that value is not in the interval [lo(v),hi(v)[,
* A pre-condition is that value is not in the interval [lo(v),hi(v)[,
* and therefore as a consequence lo(v) != hi(v).
*/
template<typename Ext>
typename fixplex<Ext>::numeral
fixplex<Ext>::value2delta(var_t v, numeral const& value) const {
typename fixplex<Ext>::numeral
fixplex<Ext>::value2delta(var_t v, numeral const& value) const {
SASSERT(!in_bounds(v));
SASSERT(lo(v) != hi(v));
if (lo(v) - value < value - hi(v))
return lo(v) - value;
else
return hi(v) - value - 1;
return hi(v) - value - 1;
}
template<typename Ext>
typename fixplex<Ext>::numeral
fixplex<Ext>::value2error(var_t v, numeral const& value) const {
typename fixplex<Ext>::numeral
fixplex<Ext>::value2error(var_t v, numeral const& value) const {
if (in_bounds(v))
return 0;
SASSERT(lo(v) != hi(v));
if (lo(v) - value < value - hi(v))
return lo(v) - value;
else
return value - hi(v) - 1;
return value - hi(v) - 1;
}
/**
@ -486,46 +486,60 @@ namespace polysat {
* - the variable v is queued to patch if v is basic.
*/
template<typename Ext>
void fixplex<Ext>::set_bounds(var_t v, numeral const& l, numeral const& h) {
m_vars[v] = mod_interval(l, h);
void fixplex<Ext>::set_bounds(var_t v, numeral const& l, numeral const& h, unsigned dep) {
auto lo0 = m_vars[v].lo;
auto hi0 = m_vars[v].hi;
m_vars[v] &= mod_interval(l, h);
if (lo0 != m_vars[v].lo)
m_vars[v].m_lo_dep = dep;
if (hi0 != m_vars[v].hi)
m_vars[v].m_hi_dep = dep;
if (in_bounds(v))
return;
if (is_base(v))
if (is_base(v))
add_patch(v);
else
update_value(v, value2delta(v, value(v)));
}
template<typename Ext>
void fixplex<Ext>::set_bounds(var_t v, rational const& _lo, rational const& _hi) {
void fixplex<Ext>::set_bounds(var_t v, rational const& _lo, rational const& _hi, unsigned dep) {
numeral lo = m.from_rational(_lo);
numeral hi = m.from_rational(_hi);
m_stashed_bounds.push_back(stashed_bound(v, m_vars[v]));
set_bounds(v, lo, hi);
set_bounds(v, lo, hi, dep);
}
template<typename Ext>
void fixplex<Ext>::set_value(var_t v, rational const& _val) {
void fixplex<Ext>::set_value(var_t v, rational const& _val, unsigned dep) {
numeral val = m.from_rational(_val);
m_stashed_bounds.push_back(stashed_bound(v, m_vars[v]));
set_bounds(v, val, val + 1);
set_bounds(v, val, val + 1, dep);
}
template<typename Ext>
rational fixplex<Ext>::get_value(var_t v) {
return m.to_rational(m_vars[v].m_value);
}
template<typename Ext>
void fixplex<Ext>::restore_bound() {
auto const& b = m_stashed_bounds.back();
set_bounds(b.m_var, b.lo, b.hi);
m_vars[b.m_var].lo = b.lo;
m_vars[b.m_var].hi = b.hi;
m_vars[b.m_var].m_lo_dep = b.m_lo_dep;
m_vars[b.m_var].m_hi_dep = b.m_hi_dep;
m_stashed_bounds.pop_back();
}
template<typename Ext>
void fixplex<Ext>::add_ineq(var_t v, var_t w, bool strict) {
void fixplex<Ext>::add_ineq(var_t v, var_t w, unsigned dep, bool strict) {
unsigned idx = m_ineqs.size();
m_var2ineqs.reserve(std::max(v, w) + 1);
m_var2ineqs[v].push_back(idx);
m_var2ineqs[w].push_back(idx);
m_ineqs_to_check.push_back(idx);
m_ineqs.push_back(ineq(v, w, strict));
m_ineqs.push_back(ineq(v, w, dep, strict));
}
template<typename Ext>
@ -577,7 +591,7 @@ namespace polysat {
m_ineqs_to_check.reset();
m_vars_to_untouch.reset();
return l_true;
}
}
/**
@ -603,15 +617,15 @@ namespace polysat {
* A row is linear infeasible if it can be established
* that none of the available assignments within current
* bounds let the row add up to 0.
*
*
* Assume the row is of the form:
* ax + by + cz = 0
* with bounds
* x : [lo_x, hi_x[, y : [lo_y, hi_y[, z : [lo_z : hi_z[
*
*
* Let range = [lo_x, hi_x[ + [lo_y, hi_y[ + [lo_z : hi_z[
* Claim. If range does not contain 0, then the row is infeasible.
*
*
*/
template<typename Ext>
bool fixplex<Ext>::is_infeasible_row(var_t x) {
@ -624,7 +638,7 @@ namespace polysat {
range += m_vars[v] * c;
if (range.is_free())
return false;
}
}
return !range.contains(0);
}
@ -650,14 +664,14 @@ namespace polysat {
var_t v = e.var();
auto c = e.coeff();
if (is_fixed(v))
fixed += value(v)*c;
else
fixed += value(v) * c;
else
parity = std::min(m.trailing_zeros(c), parity);
}
if (m.trailing_zeros(fixed) < parity)
return true;
return false;
}
@ -676,23 +690,23 @@ namespace polysat {
Effect:
base(r_x) := y
value(x) := new_value
value(x) := new_value
value(r_x) := value(r_x) - b*value(y) + a*new_value
value(y) := -value(r_x) / b
base_coeff(r_x) := b
Let r be a row where y has coefficient c != 0.
Assume: trailing_zeros(c) >= trailing_zeros(b)
z = base(r)
d = base_coeff(r)
b1 = (b >> tz(b))
c1 = (c >> (tz(c) - tz(b)))
c1 = (c >> (tz(c) - tz(b)))
r <- b1 * r - c1 * r_x
value(r) := b1 * value(r) - b1 * old_value(y) - c1 * value(r_x)
value(z) := - value(r) / d
base_coeff(r) := b1 * base_coeff(r)
*/
*/
template<typename Ext>
void fixplex<Ext>::pivot(var_t x, var_t y, numeral const& b, numeral const& new_value) {
++m_stats.m_num_pivots;
@ -705,7 +719,7 @@ namespace polysat {
numeral const& a = row_x.m_base_coeff;
numeral old_value_y = yI.m_value;
row_x.m_base = y;
row_x.m_value = row_x.m_value - b*old_value_y + a*new_value;
row_x.m_value = row_x.m_value - b * old_value_y + a * new_value;
row_x.m_base_coeff = b;
yI.m_base2row = rx;
yI.m_is_base = true;
@ -718,7 +732,7 @@ namespace polysat {
SASSERT(well_formed_row(r_x));
unsigned tz_b = m.trailing_zeros(b);
for (auto col : M.col_entries(y)) {
row r_z = col.get_row();
unsigned rz = r_z.id();
@ -740,12 +754,12 @@ namespace polysat {
*
* returns true if elimination preserves equivalence (is lossless).
*/
template<typename Ext>
template<typename Ext>
bool fixplex<Ext>::eliminate_var(
row const& r_y,
row const& r_z,
numeral const& c,
unsigned tz_b,
row const& r_y,
row const& r_z,
numeral const& c,
unsigned tz_b,
numeral const& old_value_y) {
numeral b = row2base_coeff(r_y);
@ -770,7 +784,7 @@ namespace polysat {
return tz_b <= tz_c;
}
template<typename Ext>
template<typename Ext>
bool fixplex<Ext>::is_feasible() const {
for (unsigned i = m_vars.size(); i-- > 0; )
if (!in_bounds(i))
@ -779,12 +793,34 @@ namespace polysat {
}
template<typename Ext>
typename fixplex<Ext>::row
fixplex<Ext>::get_infeasible_row() {
typename fixplex<Ext>::row
fixplex<Ext>::get_infeasible_row() {
SASSERT(is_base(m_infeasible_var));
return base2row(m_infeasible_var);
}
/***
* Extract dependencies for infeasible row.
* A safe approximation is to extract dependencies for all bounds.
*
* Different modes of infeasibility may not be based on a row:
* - inequalities
* - parity constraints between two rows.
*/
template<typename Ext>
void fixplex<Ext>::get_infeasible_deps(unsigned_vector& deps) {
auto row = get_infeasible_row();
for (auto const& e : M.row_entries(row)) {
var_t v = e.var();
auto lo = m_vars[v].m_lo_dep;
auto hi = m_vars[v].m_hi_dep;
if (lo != UINT_MAX)
deps.push_back(lo);
if (hi != UINT_MAX)
deps.push_back(hi);
}
}
/**
\brief Return the number of base variables that are non free and are v dependent.
The function adds 1 to the result if v is non free.

View file

@ -60,11 +60,16 @@ namespace polysat {
m_rows.pop_back();
break;
}
case trail_i::set_active_i:
m_active.pop_back();
break;
default:
UNREACHABLE();
}
m_trail.pop_back();
}
m_unsat_f = nullptr;
}
fixplex_base& linear_solver::sz2fixplex(unsigned sz) {
@ -78,10 +83,10 @@ namespace polysat {
b = alloc(fixplex<uint64_ext>, s.m_lim);
break;
case 128:
NOT_IMPLEMENTED_YET();
NOT_IMPLEMENTED_YET();
break;
case 256:
b = alloc(fixplex<generic_uint_ext<u256>>, s.m_lim);
b = alloc(fixplex<generic_uint_ext<u256>>, s.m_lim);
break;
default:
NOT_IMPLEMENTED_YET();
@ -117,8 +122,16 @@ namespace polysat {
auto pr = std::make_pair(v, v);
m_bool_var2row.setx(c.bvar(), pr, pr);
}
void linear_solver::new_le(ule_constraint& c) {
var_t v = internalize_pdd(c.lhs());
var_t w = internalize_pdd(c.rhs());
auto pr = std::make_pair(v, w);
m_bool_var2row.setx(c.bvar(), pr, pr);
}
void linear_solver::assert_eq(eq_constraint& c) {
void linear_solver::assert_eq(bool is_positive, eq_constraint& c) {
unsigned c_dep = constraint_idx2dep(m_active.size() - 1);
var_t v = m_bool_var2row[c.bvar()].first;
unsigned sz = c.p().power_of_2();
auto& fp = sz2fixplex(sz);
@ -126,17 +139,10 @@ namespace polysat {
m_rows.push_back(std::make_pair(v, sz));
rational z(0), o(1);
SASSERT(!c.is_undef());
if (c.is_positive())
fp.set_bounds(v, z, z);
if (is_positive)
fp.set_bounds(v, z, z, c_dep);
else
fp.set_bounds(v, o, z);
}
void linear_solver::new_le(ule_constraint& c) {
var_t v = internalize_pdd(c.lhs());
var_t w = internalize_pdd(c.rhs());
auto pr = std::make_pair(v, w);
m_bool_var2row.setx(c.bvar(), pr, pr);
fp.set_bounds(v, o, z, c_dep);
}
//
@ -152,44 +158,45 @@ namespace polysat {
// inequality graph (with offsets)
//
void linear_solver::assert_le(ule_constraint& c) {
void linear_solver::assert_le(bool is_positive, ule_constraint& c) {
auto [v, w] = m_bool_var2row[c.bvar()];
unsigned sz = c.lhs().power_of_2();
auto& fp = sz2fixplex(sz);
unsigned c_dep = constraint_idx2dep(m_active.size() - 1);
rational z(0);
if (c.rhs().is_val()) {
bool is_max_value = false;
if (c.is_positive())
if (is_positive)
// v <= rhs
fp.set_bounds(v, z, c.rhs().val());
fp.set_bounds(v, z, c.rhs().val(), c_dep);
else if (is_max_value)
throw default_exception("conflict not implemented");
else
// rhs < v
fp.set_bounds(v, c.rhs().val() + 1, z);
fp.set_bounds(v, c.rhs().val() + 1, z, c_dep);
m_trail.push_back(trail_i::set_bound_i);
m_rows.push_back(std::make_pair(v, sz));
return;
}
if (c.lhs().is_val()) {
if (c.is_positive())
if (is_positive)
// w >= lhs
fp.set_bounds(w, c.lhs().val(), z);
fp.set_bounds(w, c.lhs().val(), z, c_dep);
else if (c.lhs().val() == 0)
throw default_exception("conflict not implemented");
else
// w < lhs
fp.set_bounds(w, z, c.lhs().val() - 1);
fp.set_bounds(w, z, c.lhs().val() - 1, c_dep);
m_trail.push_back(trail_i::set_bound_i);
m_rows.push_back(std::make_pair(w, sz));
return;
}
if (c.is_positive())
fp.add_le(v, w);
if (is_positive)
fp.add_le(v, w, c_dep);
else
fp.add_lt(w, v);
fp.add_lt(w, v, c_dep);
m_trail.push_back(trail_i::add_ineq_i);
m_rows.push_back(std::make_pair(v, sz));
}
@ -209,14 +216,16 @@ namespace polysat {
}
}
void linear_solver::activate_constraint(constraint& c) {
void linear_solver::activate_constraint(bool is_positive, constraint& c) {
m_active.push_back(&c);
m_trail.push_back(trail_i::set_active_i);
SASSERT(!c.is_undef());
switch (c.kind()) {
case ckind_t::eq_t:
assert_eq(c.to_eq());
assert_eq(is_positive, c.to_eq());
break;
case ckind_t::ule_t:
assert_le(c.to_ule());
assert_le(is_positive, c.to_ule());
break;
default:
UNREACHABLE();
@ -261,34 +270,37 @@ namespace polysat {
return m_sz2num_vars[sz]++;
}
void linear_solver::set_value(pvar v, rational const& value) {
void linear_solver::set_value(pvar v, rational const& value, unsigned dep) {
unsigned sz = s.size(v);
auto& fp = sz2fixplex(sz);
var_t w = pvar2var(sz, v);
m_trail.push_back(trail_i::set_bound_i);
m_rows.push_back(std::make_pair(w, sz));
fp.set_value(w, value);
fp.set_value(w, value, external_dep2dep(dep));
}
void linear_solver::set_bound(pvar v, rational const& lo, rational const& hi) {
void linear_solver::set_bound(pvar v, rational const& lo, rational const& hi, unsigned dep) {
unsigned sz = s.size(v);
auto& fp = sz2fixplex(sz);
var_t w = pvar2var(sz, v);
m_trail.push_back(trail_i::set_bound_i);
m_rows.push_back(std::make_pair(w, sz));
fp.set_bounds(w, lo, hi);
fp.set_bounds(w, lo, hi, external_dep2dep(dep));
}
// check integer modular feasibility under current bounds.
// and inequalities
/**
* check integer modular feasibility under current bounds.
* and inequalities
*/
lbool linear_solver::check() {
lbool res = l_true;
m_unsat_f = nullptr;
for (auto* f : m_fix) {
if (!f)
continue;
lbool r = f->make_feasible();
if (r == l_false) {
// m_unsat_f = f;
m_unsat_f = f;
return r;
}
if (r == l_undef)
@ -297,13 +309,25 @@ namespace polysat {
return res;
}
void linear_solver::unsat_core(unsigned_vector& deps) {
NOT_IMPLEMENTED_YET();
void linear_solver::unsat_core(ptr_vector<constraint>& cs, unsigned_vector& deps) {
SASSERT(m_unsat_f);
deps.reset();
cs.reset();
m_unsat_f->get_infeasible_deps(deps);
unsigned j = 0;
for (unsigned dep : deps) {
if (is_constraint_dep(dep))
cs.push_back(m_active[dep2constraint_idx(dep)]);
else
deps[j++] = dep2external_dep(dep);
}
deps.shrink(j);
}
// current value assigned to (linear) variable according to tableau.
rational linear_solver::value(pvar v) {
return rational(0);
unsigned sz = s.size(v);
return sz2fixplex(sz).get_value(pvar2var(sz, v));
}
};

View file

@ -43,7 +43,8 @@ namespace polysat {
add_mono_i,
set_bound_i,
add_ineq_i,
add_row_i
add_row_i,
set_active_i
};
struct mono_info {
@ -81,6 +82,7 @@ namespace polysat {
svector<std::pair<var_t, unsigned>> m_rows;
unsigned_vector m_var2ext;
unsigned_vector m_ext2var;
ptr_vector<constraint> m_active;
svector<var_t> m_vars;
vector<rational> m_coeffs;
@ -90,29 +92,31 @@ namespace polysat {
unsigned_vector m_sz2num_vars;
small_object_allocator m_alloc;
svector<mono_info> m_monomials;
fixplex_base* m_unsat_f = nullptr;
fixplex_base& sz2fixplex(unsigned sz);
void linearize(pdd const& p);
var_t fresh_var(unsigned sz);
var_t internalize_pdd(pdd const& p);
void new_eq(eq_constraint& eq);
void new_le(ule_constraint& le);
void assert_eq(eq_constraint& eq);
void assert_le(ule_constraint& le);
void assert_eq(bool is_positive, eq_constraint& eq);
void assert_le(bool is_positive, ule_constraint& le);
// bind monomial to variable.
var_t mono2var(unsigned sz, unsigned_vector const& m);
var_t pvar2var(unsigned sz, pvar v);
unsigned_vector var2mono(unsigned sz, var_t v) { throw default_exception("nyi"); }
//
// TBD trail object for
// removing variables
// undoing variable bounds bounds
// removing rows from fixplex
//
// unsigned_vector var2mono(unsigned sz, var_t v) { throw default_exception("nyi"); }
// distinguish constraint and justification dependencies
unsigned external_dep2dep(unsigned dep) const { return UINT_MAX - dep; }
unsigned constraint_idx2dep(unsigned idx) const { return idx; }
bool is_constraint_dep(unsigned dep) const { return dep < UINT_MAX / 2; }
unsigned dep2constraint_idx(unsigned dep) const { return dep; }
unsigned dep2external_dep(unsigned dep) const { return UINT_MAX - dep; }
public:
linear_solver(solver& s):
s(s),
@ -122,13 +126,13 @@ namespace polysat {
void push();
void pop(unsigned n);
void new_constraint(constraint& c);
void set_value(pvar v, rational const& value);
void set_bound(pvar v, rational const& lo, rational const& hi);
void activate_constraint(constraint& c);
void set_value(pvar v, rational const& value, unsigned dep);
void set_bound(pvar v, rational const& lo, rational const& hi, unsigned dep);
void activate_constraint(bool is_positive, constraint& c);
// check integer modular feasibility under current bounds.
lbool check();
void unsat_core(unsigned_vector& deps);
void unsat_core(ptr_vector<constraint>& constraints, unsigned_vector& deps);
// current value assigned to (linear) variable according to tableau.
rational value(pvar v);

View file

@ -383,7 +383,8 @@ namespace polysat {
m_trail.push_back(trail_instr_t::assign_i);
m_justification[v] = j;
#if ENABLE_LINEAR_SOLVER
m_linear_solver.set_value(v, val);
// TODO: convert justification into a format that can be tracked in a depdendency core.
m_linear_solver.set_value(v, val, UINT_MAX);
#endif
}
@ -942,7 +943,12 @@ namespace polysat {
m_bvars.assign(lit, m_level, reason, lemma);
}
/// Activate constraint immediately
/**
* Activate constraint immediately
* Activation and de-activation of constraints follows the scope controlled by push/pop.
* constraints activated within the linear solver are de-activated when the linear
* solver is popped.
*/
void solver::activate_constraint(constraint& c, bool is_true) {
LOG("Activating constraint: " << c << " ; is_true = " << is_true);
SASSERT(m_bvars.value(c.bvar()) == to_lbool(is_true));
@ -950,18 +956,15 @@ namespace polysat {
add_watch(c);
c.narrow(*this);
#if ENABLE_LINEAR_SOLVER
m_linear_solver.activate_constraint(c);
m_linear_solver.activate_constraint(c.is_positive(), c);
#endif
}
/// Deactivate constraint immediately
/// Deactivate constraint
void solver::deactivate_constraint(constraint& c) {
LOG("Deactivating constraint: " << c);
erase_watch(c);
c.unassign();
#if ENABLE_LINEAR_SOLVER
m_linear_solver.deactivate_constraint(c); // TODO add this method to linear solver?
#endif
}
void solver::backjump(unsigned new_level) {

View file

@ -28,7 +28,7 @@ namespace polysat {
var_t ys[3] = { x, y, z };
numeral coeffs[3] = { 2, 1, 4 };
fp.add_row(x, 3, ys, coeffs);
fp.set_bounds(x, 1, 2);
fp.set_bounds(x, 1, 2, 0);
fp.run();
}
@ -38,7 +38,7 @@ namespace polysat {
var_t ys[3] = { x, y, z };
numeral coeffs[3] = { 1, 2, 4 };
fp.add_row(x, 3, ys, coeffs);
fp.set_bounds(x, 3, 4);
fp.set_bounds(x, 3, 4, 1);
fp.run();
}
@ -48,9 +48,9 @@ namespace polysat {
var_t ys[3] = { x, y, z };
numeral coeffs[3] = { 1, 1, 1 };
fp.add_row(x, 3, ys, coeffs);
fp.set_bounds(x, 3, 4);
fp.set_bounds(y, 3, 4);
fp.set_bounds(z, 3, 4);
fp.set_bounds(x, 3, 4, 1);
fp.set_bounds(y, 3, 4, 2);
fp.set_bounds(z, 3, 4, 3);
fp.run();
}
@ -60,22 +60,22 @@ namespace polysat {
var_t ys[3] = { x, y, z };
numeral coeffs[3] = { 1, 1, 1 };
fp.add_row(x, 3, ys, coeffs);
fp.set_bounds(x, 3, 4);
fp.set_bounds(y, 3, 6);
fp.set_bounds(x, 3, 4, 1);
fp.set_bounds(y, 3, 6, 2);
fp.run();
fp.propagate_bounds();
fp.reset();
coeffs[2] = 0ull - 1;
fp.add_row(x, 3, ys, coeffs);
fp.set_bounds(x, 3, 4);
fp.set_bounds(y, 3, 6);
fp.set_bounds(x, 3, 4, 1);
fp.set_bounds(y, 3, 6, 2);
fp.run();
fp.propagate_bounds();
fp.reset();
fp.add_row(x, 3, ys, coeffs);
fp.set_bounds(x, 3, 4);
fp.set_bounds(y, 3, 6);
fp.set_bounds(z, 1, 8);
fp.set_bounds(x, 3, 4, 1);
fp.set_bounds(y, 3, 6, 2);
fp.set_bounds(z, 1, 8, 3);
fp.run();
fp.propagate_bounds();
fp.reset();
@ -88,8 +88,8 @@ namespace polysat {
var_t ys[3] = { x, y, z };
numeral coeffs[3] = { 1, 1, 1 };
fp.add_row(x, 3, ys, coeffs);
fp.set_bounds(x, 3, 4);
fp.set_bounds(y, 3, 6);
fp.set_bounds(x, 3, 4, 1);
fp.set_bounds(y, 3, 6, 2);
var_t ys2[3] = { u, y, z };
fp.add_row(u, 3, ys2, coeffs);
fp.run();
@ -107,7 +107,7 @@ namespace polysat {
numeral coeffs2[3] = { 1, m1, 1 };
fp.add_row(x, 3, ys1, coeffs1);
fp.add_row(z, 3, ys2, coeffs2);
fp.set_bounds(u, 1, 2);
fp.set_bounds(u, 1, 2, 1);
fp.run();
fp.propagate_eqs();
for (auto e : fp.var_eqs())