3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-01-25 03:24:01 +00:00

Add RCF (Real Closed Field) bindings to C++, Java, C#, and TypeScript (#8171)

* Initial plan

* Add RCF (Real Closed Field) bindings to C++ API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add RCF (Real Closed Field) bindings to Java API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add RCF (Real Closed Field) bindings to C# (.NET) API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add RCF (Real Closed Field) example for TypeScript/JavaScript API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add comprehensive RCF implementation summary documentation

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
Copilot 2026-01-12 16:34:42 -08:00 committed by GitHub
parent cfd40d2588
commit bd0eba812d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 1874 additions and 0 deletions

374
src/api/java/RCFNum.java Normal file
View file

@ -0,0 +1,374 @@
/**
Copyright (c) 2024 Microsoft Corporation
Module Name:
RCFNum.java
Abstract:
Real Closed Field (RCF) numerals
Author:
GitHub Copilot 2024-01-12
Notes:
**/
package com.microsoft.z3;
/**
* Real Closed Field (RCF) numerals.
*
* RCF numerals can represent:
* - Rational numbers
* - Algebraic numbers (roots of polynomials)
* - Transcendental extensions (e.g., pi, e)
* - Infinitesimal extensions
**/
public class RCFNum extends Z3Object {
/**
* Create an RCF numeral from a rational string.
* @param ctx Z3 context
* @param value String representation of a rational number (e.g., "3/2", "0.5", "42")
* @throws Z3Exception on error
**/
public RCFNum(Context ctx, String value) {
super(ctx, Native.rcfMkRational(ctx.nCtx(), value));
}
/**
* Create an RCF numeral from a small integer.
* @param ctx Z3 context
* @param value Integer value
* @throws Z3Exception on error
**/
public RCFNum(Context ctx, int value) {
super(ctx, Native.rcfMkSmallInt(ctx.nCtx(), value));
}
/**
* Internal constructor for wrapping native RCF numeral pointers.
**/
RCFNum(Context ctx, long obj) {
super(ctx, obj);
}
/**
* Create an RCF numeral representing pi.
* @param ctx Z3 context
* @return RCF numeral for pi
* @throws Z3Exception on error
**/
public static RCFNum mkPi(Context ctx) {
return new RCFNum(ctx, Native.rcfMkPi(ctx.nCtx()));
}
/**
* Create an RCF numeral representing e (Euler's constant).
* @param ctx Z3 context
* @return RCF numeral for e
* @throws Z3Exception on error
**/
public static RCFNum mkE(Context ctx) {
return new RCFNum(ctx, Native.rcfMkE(ctx.nCtx()));
}
/**
* Create an RCF numeral representing an infinitesimal.
* @param ctx Z3 context
* @return RCF numeral for an infinitesimal
* @throws Z3Exception on error
**/
public static RCFNum mkInfinitesimal(Context ctx) {
return new RCFNum(ctx, Native.rcfMkInfinitesimal(ctx.nCtx()));
}
/**
* Find roots of a polynomial.
*
* The polynomial is a[n-1]*x^(n-1) + ... + a[1]*x + a[0].
*
* @param ctx Z3 context
* @param coefficients Polynomial coefficients (constant term first)
* @return Array of RCF numerals representing the roots
* @throws Z3Exception on error
**/
public static RCFNum[] mkRoots(Context ctx, RCFNum[] coefficients) {
if (coefficients == null || coefficients.length == 0) {
throw new Z3Exception("Polynomial coefficients cannot be empty");
}
int n = coefficients.length;
long[] a = new long[n];
long[] roots = new long[n];
for (int i = 0; i < n; i++) {
a[i] = coefficients[i].getNativeObject();
}
int numRoots = Native.rcfMkRoots(ctx.nCtx(), n, a, roots);
RCFNum[] result = new RCFNum[numRoots];
for (int i = 0; i < numRoots; i++) {
result[i] = new RCFNum(ctx, roots[i]);
}
return result;
}
/**
* Add two RCF numerals.
* @param other The RCF numeral to add
* @return this + other
* @throws Z3Exception on error
**/
public RCFNum add(RCFNum other) {
checkContext(other);
return new RCFNum(getContext(), Native.rcfAdd(getContext().nCtx(),
getNativeObject(),
other.getNativeObject()));
}
/**
* Subtract two RCF numerals.
* @param other The RCF numeral to subtract
* @return this - other
* @throws Z3Exception on error
**/
public RCFNum sub(RCFNum other) {
checkContext(other);
return new RCFNum(getContext(), Native.rcfSub(getContext().nCtx(),
getNativeObject(),
other.getNativeObject()));
}
/**
* Multiply two RCF numerals.
* @param other The RCF numeral to multiply
* @return this * other
* @throws Z3Exception on error
**/
public RCFNum mul(RCFNum other) {
checkContext(other);
return new RCFNum(getContext(), Native.rcfMul(getContext().nCtx(),
getNativeObject(),
other.getNativeObject()));
}
/**
* Divide two RCF numerals.
* @param other The RCF numeral to divide by
* @return this / other
* @throws Z3Exception on error
**/
public RCFNum div(RCFNum other) {
checkContext(other);
return new RCFNum(getContext(), Native.rcfDiv(getContext().nCtx(),
getNativeObject(),
other.getNativeObject()));
}
/**
* Negate this RCF numeral.
* @return -this
* @throws Z3Exception on error
**/
public RCFNum neg() {
return new RCFNum(getContext(), Native.rcfNeg(getContext().nCtx(),
getNativeObject()));
}
/**
* Compute the multiplicative inverse.
* @return 1/this
* @throws Z3Exception on error
**/
public RCFNum inv() {
return new RCFNum(getContext(), Native.rcfInv(getContext().nCtx(),
getNativeObject()));
}
/**
* Raise this RCF numeral to a power.
* @param k The exponent
* @return this^k
* @throws Z3Exception on error
**/
public RCFNum power(int k) {
return new RCFNum(getContext(), Native.rcfPower(getContext().nCtx(),
getNativeObject(), k));
}
/**
* Check if this RCF numeral is less than another.
* @param other The RCF numeral to compare with
* @return true if this < other
* @throws Z3Exception on error
**/
public boolean lt(RCFNum other) {
checkContext(other);
return Native.rcfLt(getContext().nCtx(), getNativeObject(),
other.getNativeObject());
}
/**
* Check if this RCF numeral is greater than another.
* @param other The RCF numeral to compare with
* @return true if this > other
* @throws Z3Exception on error
**/
public boolean gt(RCFNum other) {
checkContext(other);
return Native.rcfGt(getContext().nCtx(), getNativeObject(),
other.getNativeObject());
}
/**
* Check if this RCF numeral is less than or equal to another.
* @param other The RCF numeral to compare with
* @return true if this <= other
* @throws Z3Exception on error
**/
public boolean le(RCFNum other) {
checkContext(other);
return Native.rcfLe(getContext().nCtx(), getNativeObject(),
other.getNativeObject());
}
/**
* Check if this RCF numeral is greater than or equal to another.
* @param other The RCF numeral to compare with
* @return true if this >= other
* @throws Z3Exception on error
**/
public boolean ge(RCFNum other) {
checkContext(other);
return Native.rcfGe(getContext().nCtx(), getNativeObject(),
other.getNativeObject());
}
/**
* Check if this RCF numeral is equal to another.
* @param other The RCF numeral to compare with
* @return true if this == other
* @throws Z3Exception on error
**/
public boolean eq(RCFNum other) {
checkContext(other);
return Native.rcfEq(getContext().nCtx(), getNativeObject(),
other.getNativeObject());
}
/**
* Check if this RCF numeral is not equal to another.
* @param other The RCF numeral to compare with
* @return true if this != other
* @throws Z3Exception on error
**/
public boolean neq(RCFNum other) {
checkContext(other);
return Native.rcfNeq(getContext().nCtx(), getNativeObject(),
other.getNativeObject());
}
/**
* Check if this RCF numeral is a rational number.
* @return true if this is rational
* @throws Z3Exception on error
**/
public boolean isRational() {
return Native.rcfIsRational(getContext().nCtx(), getNativeObject());
}
/**
* Check if this RCF numeral is an algebraic number.
* @return true if this is algebraic
* @throws Z3Exception on error
**/
public boolean isAlgebraic() {
return Native.rcfIsAlgebraic(getContext().nCtx(), getNativeObject());
}
/**
* Check if this RCF numeral is an infinitesimal.
* @return true if this is infinitesimal
* @throws Z3Exception on error
**/
public boolean isInfinitesimal() {
return Native.rcfIsInfinitesimal(getContext().nCtx(), getNativeObject());
}
/**
* Check if this RCF numeral is a transcendental number.
* @return true if this is transcendental
* @throws Z3Exception on error
**/
public boolean isTranscendental() {
return Native.rcfIsTranscendental(getContext().nCtx(), getNativeObject());
}
/**
* Convert this RCF numeral to a string.
* @param compact If true, use compact representation
* @return String representation
* @throws Z3Exception on error
**/
public String toString(boolean compact) {
return Native.rcfNumToString(getContext().nCtx(), getNativeObject(),
compact, false);
}
/**
* Convert this RCF numeral to a string (non-compact).
* @return String representation
* @throws Z3Exception on error
**/
@Override
public String toString() {
return toString(false);
}
/**
* Convert this RCF numeral to a decimal string.
* @param precision Number of decimal places
* @return Decimal string representation
* @throws Z3Exception on error
**/
public String toDecimal(int precision) {
return Native.rcfNumToDecimalString(getContext().nCtx(),
getNativeObject(), precision);
}
@Override
void incRef() {
// RCF numerals don't use standard reference counting
// They are managed through Z3_rcf_del
}
@Override
void addToReferenceQueue() {
getContext().getReferenceQueue().storeReference(this, RCFNumRef::new);
}
private static class RCFNumRef extends Z3ReferenceQueue.Reference<RCFNum> {
private RCFNumRef(RCFNum referent, java.lang.ref.ReferenceQueue<Z3Object> q) {
super(referent, q);
}
@Override
void decRef(Context ctx, long z3Obj) {
Native.rcfDel(ctx.nCtx(), z3Obj);
}
}
private void checkContext(RCFNum other) {
if (getContext() != other.getContext()) {
throw new Z3Exception("RCF numerals from different contexts");
}
}
}