3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-01-18 16:28:56 +00:00

Add RCF (Real Closed Field) bindings to C++, Java, C#, and TypeScript (#8171)

* Initial plan

* Add RCF (Real Closed Field) bindings to C++ API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add RCF (Real Closed Field) bindings to Java API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add RCF (Real Closed Field) bindings to C# (.NET) API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add RCF (Real Closed Field) example for TypeScript/JavaScript API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add comprehensive RCF implementation summary documentation

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
Copilot 2026-01-12 16:34:42 -08:00 committed by GitHub
parent cfd40d2588
commit bd0eba812d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 1874 additions and 0 deletions

View file

@ -0,0 +1,119 @@
/**
Example demonstrating the RCF (Real Closed Field) API in Java.
This example shows how to use RCF numerals to work with:
- Transcendental numbers (pi, e)
- Algebraic numbers (roots of polynomials)
- Infinitesimals
- Exact real arithmetic
*/
package com.microsoft.z3;
public class RCFExample {
public static void rcfBasicExample() {
System.out.println("RCF Basic Example");
System.out.println("=================");
try (Context ctx = new Context()) {
// Create pi and e
RCFNum pi = RCFNum.mkPi(ctx);
RCFNum e = RCFNum.mkE(ctx);
System.out.println("pi = " + pi);
System.out.println("e = " + e);
// Arithmetic operations
RCFNum sum = pi.add(e);
RCFNum prod = pi.mul(e);
System.out.println("pi + e = " + sum);
System.out.println("pi * e = " + prod);
// Decimal approximations
System.out.println("pi (10 decimals) = " + pi.toDecimal(10));
System.out.println("e (10 decimals) = " + e.toDecimal(10));
// Comparisons
System.out.println("pi < e? " + (pi.lt(e) ? "yes" : "no"));
System.out.println("pi > e? " + (pi.gt(e) ? "yes" : "no"));
}
}
public static void rcfRationalExample() {
System.out.println("\nRCF Rational Example");
System.out.println("====================");
try (Context ctx = new Context()) {
// Create rational numbers
RCFNum half = new RCFNum(ctx, "1/2");
RCFNum third = new RCFNum(ctx, "1/3");
System.out.println("1/2 = " + half);
System.out.println("1/3 = " + third);
// Arithmetic
RCFNum sum = half.add(third);
System.out.println("1/2 + 1/3 = " + sum);
// Type queries
System.out.println("Is 1/2 rational? " + (half.isRational() ? "yes" : "no"));
System.out.println("Is 1/2 algebraic? " + (half.isAlgebraic() ? "yes" : "no"));
}
}
public static void rcfRootsExample() {
System.out.println("\nRCF Roots Example");
System.out.println("=================");
try (Context ctx = new Context()) {
// Find roots of x^2 - 2 = 0
// Polynomial: -2 + 0*x + 1*x^2
RCFNum[] coeffs = new RCFNum[] {
new RCFNum(ctx, -2), // constant term
new RCFNum(ctx, 0), // x coefficient
new RCFNum(ctx, 1) // x^2 coefficient
};
RCFNum[] roots = RCFNum.mkRoots(ctx, coeffs);
System.out.println("Roots of x^2 - 2 = 0:");
for (int i = 0; i < roots.length; i++) {
System.out.println(" root[" + i + "] = " + roots[i]);
System.out.println(" decimal = " + roots[i].toDecimal(15));
System.out.println(" is_algebraic = " + (roots[i].isAlgebraic() ? "yes" : "no"));
}
}
}
public static void rcfInfinitesimalExample() {
System.out.println("\nRCF Infinitesimal Example");
System.out.println("=========================");
try (Context ctx = new Context()) {
// Create an infinitesimal
RCFNum eps = RCFNum.mkInfinitesimal(ctx);
System.out.println("eps = " + eps);
System.out.println("Is eps infinitesimal? " + (eps.isInfinitesimal() ? "yes" : "no"));
// Infinitesimals are smaller than any positive real number
RCFNum tiny = new RCFNum(ctx, "1/1000000000");
System.out.println("eps < 1/1000000000? " + (eps.lt(tiny) ? "yes" : "no"));
}
}
public static void main(String[] args) {
try {
rcfBasicExample();
rcfRationalExample();
rcfRootsExample();
rcfInfinitesimalExample();
System.out.println("\nAll RCF examples completed successfully!");
} catch (Exception e) {
System.err.println("Error: " + e.getMessage());
e.printStackTrace();
}
}
}