3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-01-21 17:44:43 +00:00

Add RCF (Real Closed Field) bindings to C++, Java, C#, and TypeScript (#8171)

* Initial plan

* Add RCF (Real Closed Field) bindings to C++ API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add RCF (Real Closed Field) bindings to Java API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add RCF (Real Closed Field) bindings to C# (.NET) API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add RCF (Real Closed Field) example for TypeScript/JavaScript API

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

* Add comprehensive RCF implementation summary documentation

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
Copilot 2026-01-12 16:34:42 -08:00 committed by GitHub
parent cfd40d2588
commit bd0eba812d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 1874 additions and 0 deletions

View file

@ -0,0 +1,119 @@
/**
\brief Example demonstrating the RCF (Real Closed Field) API in C++.
This example shows how to use RCF numerals to work with:
- Transcendental numbers (pi, e)
- Algebraic numbers (roots of polynomials)
- Infinitesimals
- Exact real arithmetic
*/
#include <iostream>
#include "z3++.h"
using namespace z3;
void rcf_basic_example() {
std::cout << "RCF Basic Example\n";
std::cout << "=================\n";
context c;
// Create pi and e
rcf_num pi = rcf_pi(c);
rcf_num e = rcf_e(c);
std::cout << "pi = " << pi << "\n";
std::cout << "e = " << e << "\n";
// Arithmetic operations
rcf_num sum = pi + e;
rcf_num prod = pi * e;
std::cout << "pi + e = " << sum << "\n";
std::cout << "pi * e = " << prod << "\n";
// Decimal approximations
std::cout << "pi (10 decimals) = " << pi.to_decimal(10) << "\n";
std::cout << "e (10 decimals) = " << e.to_decimal(10) << "\n";
// Comparisons
std::cout << "pi < e? " << (pi < e ? "yes" : "no") << "\n";
std::cout << "pi > e? " << (pi > e ? "yes" : "no") << "\n";
}
void rcf_rational_example() {
std::cout << "\nRCF Rational Example\n";
std::cout << "====================\n";
context c;
// Create rational numbers
rcf_num half(c, "1/2");
rcf_num third(c, "1/3");
std::cout << "1/2 = " << half << "\n";
std::cout << "1/3 = " << third << "\n";
// Arithmetic
rcf_num sum = half + third;
std::cout << "1/2 + 1/3 = " << sum << "\n";
// Type queries
std::cout << "Is 1/2 rational? " << (half.is_rational() ? "yes" : "no") << "\n";
std::cout << "Is 1/2 algebraic? " << (half.is_algebraic() ? "yes" : "no") << "\n";
}
void rcf_roots_example() {
std::cout << "\nRCF Roots Example\n";
std::cout << "=================\n";
context c;
// Find roots of x^2 - 2 = 0
// Polynomial: -2 + 0*x + 1*x^2
std::vector<rcf_num> coeffs;
coeffs.push_back(rcf_num(c, -2)); // constant term
coeffs.push_back(rcf_num(c, 0)); // x coefficient
coeffs.push_back(rcf_num(c, 1)); // x^2 coefficient
std::vector<rcf_num> roots = rcf_roots(c, coeffs);
std::cout << "Roots of x^2 - 2 = 0:\n";
for (size_t i = 0; i < roots.size(); i++) {
std::cout << " root[" << i << "] = " << roots[i] << "\n";
std::cout << " decimal = " << roots[i].to_decimal(15) << "\n";
std::cout << " is_algebraic = " << (roots[i].is_algebraic() ? "yes" : "no") << "\n";
}
}
void rcf_infinitesimal_example() {
std::cout << "\nRCF Infinitesimal Example\n";
std::cout << "=========================\n";
context c;
// Create an infinitesimal
rcf_num eps = rcf_infinitesimal(c);
std::cout << "eps = " << eps << "\n";
std::cout << "Is eps infinitesimal? " << (eps.is_infinitesimal() ? "yes" : "no") << "\n";
// Infinitesimals are smaller than any positive real number
rcf_num tiny(c, "1/1000000000");
std::cout << "eps < 1/1000000000? " << (eps < tiny ? "yes" : "no") << "\n";
}
int main() {
try {
rcf_basic_example();
rcf_rational_example();
rcf_roots_example();
rcf_infinitesimal_example();
std::cout << "\nAll RCF examples completed successfully!\n";
return 0;
}
catch (exception& e) {
std::cerr << "Z3 exception: " << e << "\n";
return 1;
}
}

View file

@ -0,0 +1,133 @@
/**
Example demonstrating the RCF (Real Closed Field) API in C#.
This example shows how to use RCF numerals to work with:
- Transcendental numbers (pi, e)
- Algebraic numbers (roots of polynomials)
- Infinitesimals
- Exact real arithmetic
*/
using Microsoft.Z3;
using System;
class RCFExample
{
static void RcfBasicExample()
{
Console.WriteLine("RCF Basic Example");
Console.WriteLine("=================");
using (Context ctx = new Context())
{
// Create pi and e
RCFNum pi = RCFNum.MkPi(ctx);
RCFNum e = RCFNum.MkE(ctx);
Console.WriteLine("pi = " + pi);
Console.WriteLine("e = " + e);
// Arithmetic operations
RCFNum sum = pi + e;
RCFNum prod = pi * e;
Console.WriteLine("pi + e = " + sum);
Console.WriteLine("pi * e = " + prod);
// Decimal approximations
Console.WriteLine("pi (10 decimals) = " + pi.ToDecimal(10));
Console.WriteLine("e (10 decimals) = " + e.ToDecimal(10));
// Comparisons
Console.WriteLine("pi < e? " + (pi < e ? "yes" : "no"));
Console.WriteLine("pi > e? " + (pi > e ? "yes" : "no"));
}
}
static void RcfRationalExample()
{
Console.WriteLine("\nRCF Rational Example");
Console.WriteLine("====================");
using (Context ctx = new Context())
{
// Create rational numbers
RCFNum half = new RCFNum(ctx, "1/2");
RCFNum third = new RCFNum(ctx, "1/3");
Console.WriteLine("1/2 = " + half);
Console.WriteLine("1/3 = " + third);
// Arithmetic
RCFNum sum = half + third;
Console.WriteLine("1/2 + 1/3 = " + sum);
// Type queries
Console.WriteLine("Is 1/2 rational? " + (half.IsRational() ? "yes" : "no"));
Console.WriteLine("Is 1/2 algebraic? " + (half.IsAlgebraic() ? "yes" : "no"));
}
}
static void RcfRootsExample()
{
Console.WriteLine("\nRCF Roots Example");
Console.WriteLine("=================");
using (Context ctx = new Context())
{
// Find roots of x^2 - 2 = 0
// Polynomial: -2 + 0*x + 1*x^2
RCFNum[] coeffs = new RCFNum[] {
new RCFNum(ctx, -2), // constant term
new RCFNum(ctx, 0), // x coefficient
new RCFNum(ctx, 1) // x^2 coefficient
};
RCFNum[] roots = RCFNum.MkRoots(ctx, coeffs);
Console.WriteLine("Roots of x^2 - 2 = 0:");
for (int i = 0; i < roots.Length; i++)
{
Console.WriteLine(" root[" + i + "] = " + roots[i]);
Console.WriteLine(" decimal = " + roots[i].ToDecimal(15));
Console.WriteLine(" is_algebraic = " + (roots[i].IsAlgebraic() ? "yes" : "no"));
}
}
}
static void RcfInfinitesimalExample()
{
Console.WriteLine("\nRCF Infinitesimal Example");
Console.WriteLine("=========================");
using (Context ctx = new Context())
{
// Create an infinitesimal
RCFNum eps = RCFNum.MkInfinitesimal(ctx);
Console.WriteLine("eps = " + eps);
Console.WriteLine("Is eps infinitesimal? " + (eps.IsInfinitesimal() ? "yes" : "no"));
// Infinitesimals are smaller than any positive real number
RCFNum tiny = new RCFNum(ctx, "1/1000000000");
Console.WriteLine("eps < 1/1000000000? " + (eps < tiny ? "yes" : "no"));
}
}
static void Main(string[] args)
{
try
{
RcfBasicExample();
RcfRationalExample();
RcfRootsExample();
RcfInfinitesimalExample();
Console.WriteLine("\nAll RCF examples completed successfully!");
}
catch (Exception ex)
{
Console.Error.WriteLine("Error: " + ex.Message);
Console.Error.WriteLine(ex.StackTrace);
}
}
}

View file

@ -0,0 +1,119 @@
/**
Example demonstrating the RCF (Real Closed Field) API in Java.
This example shows how to use RCF numerals to work with:
- Transcendental numbers (pi, e)
- Algebraic numbers (roots of polynomials)
- Infinitesimals
- Exact real arithmetic
*/
package com.microsoft.z3;
public class RCFExample {
public static void rcfBasicExample() {
System.out.println("RCF Basic Example");
System.out.println("=================");
try (Context ctx = new Context()) {
// Create pi and e
RCFNum pi = RCFNum.mkPi(ctx);
RCFNum e = RCFNum.mkE(ctx);
System.out.println("pi = " + pi);
System.out.println("e = " + e);
// Arithmetic operations
RCFNum sum = pi.add(e);
RCFNum prod = pi.mul(e);
System.out.println("pi + e = " + sum);
System.out.println("pi * e = " + prod);
// Decimal approximations
System.out.println("pi (10 decimals) = " + pi.toDecimal(10));
System.out.println("e (10 decimals) = " + e.toDecimal(10));
// Comparisons
System.out.println("pi < e? " + (pi.lt(e) ? "yes" : "no"));
System.out.println("pi > e? " + (pi.gt(e) ? "yes" : "no"));
}
}
public static void rcfRationalExample() {
System.out.println("\nRCF Rational Example");
System.out.println("====================");
try (Context ctx = new Context()) {
// Create rational numbers
RCFNum half = new RCFNum(ctx, "1/2");
RCFNum third = new RCFNum(ctx, "1/3");
System.out.println("1/2 = " + half);
System.out.println("1/3 = " + third);
// Arithmetic
RCFNum sum = half.add(third);
System.out.println("1/2 + 1/3 = " + sum);
// Type queries
System.out.println("Is 1/2 rational? " + (half.isRational() ? "yes" : "no"));
System.out.println("Is 1/2 algebraic? " + (half.isAlgebraic() ? "yes" : "no"));
}
}
public static void rcfRootsExample() {
System.out.println("\nRCF Roots Example");
System.out.println("=================");
try (Context ctx = new Context()) {
// Find roots of x^2 - 2 = 0
// Polynomial: -2 + 0*x + 1*x^2
RCFNum[] coeffs = new RCFNum[] {
new RCFNum(ctx, -2), // constant term
new RCFNum(ctx, 0), // x coefficient
new RCFNum(ctx, 1) // x^2 coefficient
};
RCFNum[] roots = RCFNum.mkRoots(ctx, coeffs);
System.out.println("Roots of x^2 - 2 = 0:");
for (int i = 0; i < roots.length; i++) {
System.out.println(" root[" + i + "] = " + roots[i]);
System.out.println(" decimal = " + roots[i].toDecimal(15));
System.out.println(" is_algebraic = " + (roots[i].isAlgebraic() ? "yes" : "no"));
}
}
}
public static void rcfInfinitesimalExample() {
System.out.println("\nRCF Infinitesimal Example");
System.out.println("=========================");
try (Context ctx = new Context()) {
// Create an infinitesimal
RCFNum eps = RCFNum.mkInfinitesimal(ctx);
System.out.println("eps = " + eps);
System.out.println("Is eps infinitesimal? " + (eps.isInfinitesimal() ? "yes" : "no"));
// Infinitesimals are smaller than any positive real number
RCFNum tiny = new RCFNum(ctx, "1/1000000000");
System.out.println("eps < 1/1000000000? " + (eps.lt(tiny) ? "yes" : "no"));
}
}
public static void main(String[] args) {
try {
rcfBasicExample();
rcfRationalExample();
rcfRootsExample();
rcfInfinitesimalExample();
System.out.println("\nAll RCF examples completed successfully!");
} catch (Exception e) {
System.err.println("Error: " + e.getMessage());
e.printStackTrace();
}
}
}