3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00

More experimental FPA theory code

Signed-off-by: Christoph M. Wintersteiger <cwinter@microsoft.com>
This commit is contained in:
Christoph M. Wintersteiger 2014-06-02 17:57:59 +01:00
parent a8b65ebb36
commit baee61a2e4
2 changed files with 263 additions and 14 deletions

View file

@ -19,43 +19,275 @@ Revision History:
#include"ast_smt2_pp.h"
#include"smt_context.h"
#include"theory_fpa.h"
#include"smt_model_generator.h"
namespace smt {
theory_fpa::theory_fpa(ast_manager & m) :
theory(m.mk_family_id("float")),
m_converter(m),
m_rw(m, m_converter, params_ref())
m_rw(m, m_converter, params_ref()),
m_trans_map(m),
m_trail_stack(*this)
{
}
bool theory_fpa::internalize_atom(app * atom, bool gate_ctx) {
TRACE("fpa", tout << "internalizing atom: " << mk_ismt2_pp(atom, get_manager()) << "\n";);
SASSERT(atom->get_family_id() == get_family_id());
NOT_IMPLEMENTED_YET();
}
bool theory_fpa::internalize_term(app * term) {
TRACE("fpa", tout << "internalizing term: " << mk_ismt2_pp(term, get_manager()) << "\n";);
SASSERT(term->get_family_id() == get_family_id());
SASSERT(!get_context().e_internalized(term));
ast_manager & m = get_manager();
context & ctx = get_context();
simplifier & simp = ctx.get_simplifier();
unsigned num_args = term->get_num_args();
for (unsigned i = 0; i < num_args; i++)
ctx.internalize(term->get_arg(i), false);
expr_ref res(m);
m_rw(atom, res);
SASSERT(res.get() != atom);
ctx.internalize(res, gate_ctx);
return true;
m_rw(term, res);
SASSERT(is_app(res) && to_app(res)->get_num_args() == 3);
app * a = to_app(res);
TRACE("fpa", tout << "converted: " << mk_ismt2_pp(res, get_manager()) << "\n";);
expr_ref sgn(m), sig(m), exp(m);
proof_ref pr_sgn(m), pr_sig(m), pr_exp(m);
simp(a->get_arg(0), sgn, pr_sgn);
simp(a->get_arg(1), sig, pr_sig);
simp(a->get_arg(2), exp, pr_exp);
ctx.internalize(sgn, false);
ctx.internalize(sig, false);
ctx.internalize(exp, false);
expr_ref s_term(m);
m_converter.mk_triple(sgn, sig, exp, s_term);
SASSERT(!m_trans_map.contains(term));
m_trans_map.insert(term, s_term, 0);
enode * e = ctx.mk_enode(term, false, false, true);
theory_var v = mk_var(e);
ctx.attach_th_var(e, this, v);
TRACE("fpa", tout << "new theory var: " << mk_ismt2_pp(term, get_manager()) << " := " << v << "\n";);
SASSERT(e->get_th_var(get_id()) != null_theory_var);
return v != null_theory_var;
}
void theory_fpa::new_eq_eh(theory_var, theory_var) {
NOT_IMPLEMENTED_YET();
void theory_fpa::apply_sort_cnstr(enode * n, sort * s) {
if (!is_attached_to_var(n)) {
context & ctx = get_context();
ast_manager & m = get_manager();
simplifier & simp = ctx.get_simplifier();
app * owner = n->get_owner();
expr_ref converted(m);
theory_var v = mk_var(n);
ctx.attach_th_var(n, this, v);
m_rw(owner, converted);
m_trans_map.insert(owner, converted, 0);
if (m_converter.is_rm_sort(m.get_sort(owner))) {
ctx.internalize(converted, false);
}
else {
app * a = to_app(converted);
expr_ref sgn(m), sig(m), exp(m);
proof_ref pr_sgn(m), pr_sig(m), pr_exp(m);
simp(a->get_arg(0), sgn, pr_sgn);
simp(a->get_arg(1), sig, pr_sig);
simp(a->get_arg(2), exp, pr_exp);
ctx.internalize(sgn, false);
ctx.internalize(sig, false);
ctx.internalize(exp, false);
}
TRACE("fpa", tout << "new const: " << mk_ismt2_pp(owner, get_manager()) << " := " << v << "\n";);
}
}
void theory_fpa::new_diseq_eh(theory_var, theory_var) {
NOT_IMPLEMENTED_YET();
void theory_fpa::new_eq_eh(theory_var x, theory_var y) {
TRACE("fpa", tout << "new eq: " << x << " = " << y << "\n";);
ast_manager & m = get_manager();
context & ctx = get_context();
app * ax = get_enode(x)->get_owner();
app * ay = get_enode(y)->get_owner();
expr * ex, * ey;
proof * px, * py;
m_trans_map.get(ax, ex, px);
m_trans_map.get(ay, ey, py);
expr * sgn_x, * sig_x, * exp_x;
expr * sgn_y, * sig_y, * exp_y;
split_triple(ex, sgn_x, sig_x, exp_x);
split_triple(ey, sgn_y, sig_y, exp_y);
literal_vector lits;
lits.push_back(mk_eq(ax, ay, true));
expr_ref e1(m), e2(m), e3(m);
e1 = m.mk_eq(sgn_x, sgn_y);
e2 = m.mk_eq(sig_x, sig_y);
e3 = m.mk_eq(exp_x, exp_y);
ctx.internalize(e1, true);
ctx.internalize(e2, true);
ctx.internalize(e3, true);
lits.push_back(ctx.get_literal(e1));
lits.push_back(ctx.get_literal(e2));
lits.push_back(ctx.get_literal(e3));
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
}
void theory_fpa::new_diseq_eh(theory_var x, theory_var y) {
TRACE("fpa", tout << "new eq: " << x << " = " << y << "\n";);
ast_manager & m = get_manager();
context & ctx = get_context();
app * ax = get_enode(x)->get_owner();
app * ay = get_enode(y)->get_owner();
expr * ex, *ey;
proof * px, *py;
m_trans_map.get(ax, ex, px);
m_trans_map.get(ay, ey, py);
expr * sgn_x, *sig_x, *exp_x;
expr * sgn_y, *sig_y, *exp_y;
split_triple(ex, sgn_x, sig_x, exp_x);
split_triple(ex, sgn_y, sig_y, exp_y);
ctx.internalize(m.mk_not(m.mk_eq(sgn_x, sgn_y)), true);
ctx.internalize(m.mk_not(m.mk_eq(sig_x, sig_y)), true);
ctx.internalize(m.mk_not(m.mk_eq(exp_x, exp_y)), true);
}
void theory_fpa::push_scope_eh() {
NOT_IMPLEMENTED_YET();
theory::push_scope_eh();
m_trail_stack.push_scope();
}
void theory_fpa::pop_scope_eh(unsigned num_scopes) {
NOT_IMPLEMENTED_YET();
m_trail_stack.pop_scope(num_scopes);
theory::pop_scope_eh(num_scopes);
}
model_value_proc * theory_fpa::mk_value(enode * n, model_generator & mg) {
ast_manager & m = get_manager();
context & ctx = get_context();
bv_util & bu = m_converter.bu();
float_util & fu = m_converter.fu();
unsynch_mpz_manager & mpzm = fu.fm().mpz_manager();
unsynch_mpq_manager & mpqm = fu.fm().mpq_manager();
theory_var v = n->get_th_var(get_id());
SASSERT(v != null_theory_var);
expr * fpa_e = get_enode(v)->get_owner();
TRACE("fpa", tout << "mk_value for: " << mk_ismt2_pp(fpa_e, m) << "\n";);
expr * bv_e;
proof * bv_pr;
m_trans_map.get(fpa_e, bv_e, bv_pr);
expr_wrapper_proc * res = 0;
if (fu.is_rm(m.get_sort(fpa_e))) {
SASSERT(ctx.e_internalized(bv_e));
sort * s = m.get_sort(bv_e);
family_id fid = s->get_family_id();
theory * bv_th = ctx.get_theory(fid);
enode * ev = ctx.get_enode(bv_e);
ptr_vector<expr> pve;
app_ref mv(m);
mv = ((expr_wrapper_proc*)bv_th->mk_value(ev, mg))->mk_value(mg, pve);
rational val(0);
unsigned sz = 0;
if (bu.is_numeral(mv, val, sz)) {
app_ref fp_val_e(m);
SASSERT(val.is_uint64());
switch (val.get_uint64())
{
case BV_RM_TIES_TO_AWAY: fp_val_e = fu.mk_round_nearest_ties_to_away(); break;
case BV_RM_TIES_TO_EVEN: fp_val_e = fu.mk_round_nearest_ties_to_even(); break;
case BV_RM_TO_NEGATIVE: fp_val_e = fu.mk_round_toward_negative(); break;
case BV_RM_TO_POSITIVE: fp_val_e = fu.mk_round_toward_positive(); break;
case BV_RM_TO_ZERO:
default: fp_val_e = fu.mk_round_toward_zero();
}
TRACE("fpa", tout << mk_ismt2_pp(fpa_e, m) << " := " << mk_ismt2_pp(fp_val_e, m) << std::endl;);
res = alloc(expr_wrapper_proc, fp_val_e);
m.inc_ref(fp_val_e);
}
}
else {
expr * bv_sgn, *bv_sig, *bv_exp;
split_triple(bv_e, bv_sgn, bv_sig, bv_exp);
SASSERT(ctx.e_internalized(bv_sgn));
SASSERT(ctx.e_internalized(bv_sig));
SASSERT(ctx.e_internalized(bv_exp));
enode * e_sgn = ctx.get_enode(bv_sgn);
enode * e_sig = ctx.get_enode(bv_sig);
enode * e_exp = ctx.get_enode(bv_exp);
sort * s = m.get_sort(e_sgn->get_owner());
family_id fid = s->get_family_id();
theory * bv_th = ctx.get_theory(fid);
expr_wrapper_proc * mv_sgn = (expr_wrapper_proc*)bv_th->mk_value(e_sgn, mg);
expr_wrapper_proc * mv_sig = (expr_wrapper_proc*)bv_th->mk_value(e_sig, mg);
expr_wrapper_proc * mv_exp = (expr_wrapper_proc*)bv_th->mk_value(e_exp, mg);
ptr_vector<expr> pve;
app_ref bvm_sgn(m), bvm_sig(m), bvm_exp(m);
bvm_sgn = mv_sgn->mk_value(mg, pve);
bvm_sig = mv_sig->mk_value(mg, pve);
bvm_exp = mv_exp->mk_value(mg, pve);
TRACE("fpa", tout << "bv model: [" << mk_ismt2_pp(bvm_sgn, get_manager()) << " "
<< mk_ismt2_pp(bvm_sig, get_manager()) << " "
<< mk_ismt2_pp(bvm_exp, get_manager()) << "]\n";);
unsigned sgn_sz, sig_sz, exp_sz;
rational sgn_q(0), sig_q(0), exp_q(0);
if (bvm_sgn) bu.is_numeral(bvm_sgn, sgn_q, sgn_sz);
if (bvm_sig) bu.is_numeral(bvm_sig, sig_q, sig_sz);
if (bvm_exp) bu.is_numeral(bvm_exp, exp_q, exp_sz);
// un-bias exponent
rational exp_unbiased_q;
exp_unbiased_q = exp_q - fu.fm().m_powers2.m1(exp_sz - 1);
mpz sig_z; mpf_exp_t exp_z;
mpzm.set(sig_z, sig_q.to_mpq().numerator());
exp_z = mpzm.get_int64(exp_unbiased_q.to_mpq().numerator());
mpf fp_val;
fu.fm().set(fp_val, exp_sz, sig_sz+1, !mpqm.is_zero(sgn_q.to_mpq()), sig_z, exp_z);
app_ref fp_val_e(m);
fp_val_e = fu.mk_value(fp_val);
mpzm.del(sig_z);
TRACE("fpa", tout << mk_ismt2_pp(fpa_e, m) << " := " << mk_ismt2_pp(fp_val_e, m) << std::endl;);
res = alloc(expr_wrapper_proc, fp_val_e);
m.inc_ref(fp_val_e);
}
return res;
}
};

View file

@ -25,20 +25,37 @@ Revision History:
namespace smt {
class theory_fpa : public theory {
typedef trail_stack<theory_fpa> th_trail_stack;
fpa2bv_converter m_converter;
fpa2bv_rewriter m_rw;
expr_map m_trans_map;
th_trail_stack m_trail_stack;
virtual final_check_status final_check_eh() { return FC_DONE; }
virtual bool internalize_atom(app * a, bool);
virtual bool internalize_term(app * a) { return internalize_atom(a, false); }
virtual bool internalize_atom(app * atom, bool gate_ctx);
virtual bool internalize_term(app * term);
virtual void apply_sort_cnstr(enode * n, sort * s);
virtual void new_eq_eh(theory_var, theory_var);
virtual void new_diseq_eh(theory_var, theory_var);
virtual void push_scope_eh();
virtual void pop_scope_eh(unsigned num_scopes);
virtual theory* mk_fresh(context*) { return alloc(theory_fpa, get_manager()); }
virtual char const * get_name() const { return "fpa"; }
virtual char const * get_name() const { return "fpa"; }
virtual model_value_proc * mk_value(enode * n, model_generator & mg);
public:
theory_fpa(ast_manager& m);
protected:
void split_triple(expr * e, expr * & sgn, expr * & sig, expr * & exp) const {
SASSERT(is_app_of(e, get_family_id(), OP_TO_FLOAT));
SASSERT(to_app(e)->get_num_args() == 3);
sgn = to_app(e)->get_arg(0);
sig = to_app(e)->get_arg(1);
exp = to_app(e)->get_arg(2);
}
};
};