3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00

working on HS

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-06-16 16:55:48 -07:00
parent 63550d8a1a
commit bad03822b4

View file

@ -38,26 +38,37 @@ namespace opt {
vector<rational> m_weights;
rational m_max_weight;
rational m_denominator;
vector<set> m_S;
vector<set> m_T;
svector<lbool> m_value;
vector<set> m_F;
svector<lbool> m_value;
svector<lbool> m_value_saved;
unsigned_vector m_value_trail;
unsigned_vector m_value_lim;
unsigned_vector m_justification;
vector<unsigned_vector> m_tuse_list;
vector<unsigned_vector> m_fuse_list;
vector<unsigned_vector> m_twatch;
vector<unsigned_vector> m_fwatch;
unsigned_vector m_trail; // trail of assigned literals
unsigned m_qhead; // queue head
// simplex
unsynch_mpz_manager m;
Simplex m_simplex;
unsigned m_weights_var;
// sat solver
params_ref m_params;
sat::solver m_solver;
svector<sat::bool_var> m_vars;
static unsigned const null_clause = UINT_MAX;
static unsigned const axiom = UINT_MAX-1;
imp():
m_cancel(false),
m_max_weight(0),
m_denominator(1),
m_weights_var(0),
m_qhead(0),
m_solver(m_params,0) {
m_params.set_bool("elim_vars", false);
m_solver.updt_params(m_params);
@ -72,43 +83,48 @@ namespace opt {
m_simplex.set_upper(var, mpq_inf(mpq(1),mpq(0)));
m_weights.push_back(w);
m_value.push_back(l_undef);
m_justification.push_back(null_clause);
m_tuse_list.push_back(unsigned_vector());
m_fuse_list.push_back(unsigned_vector());
m_twatch.push_back(unsigned_vector());
m_fwatch.push_back(unsigned_vector());
m_max_weight += w;
m_vars.push_back(m_solver.mk_var());
}
void add_exists_false(unsigned sz, unsigned const* S) {
SASSERT(sz > 0);
for (unsigned i = 0; i < sz; ++i) {
m_fuse_list[S[i]].push_back(m_T.size());
}
init_weights();
m_T.push_back(unsigned_vector(sz, S));
add_simplex_row(false, sz, S);
// Add clause to SAT solver:
svector<sat::literal> lits;
for (unsigned i = 0; i < sz; ++i) {
lits.push_back(sat::literal(m_vars[S[i]], true));
}
m_solver.mk_clause(lits.size(), lits.c_ptr());
add_exists(sz, S, true);
}
void add_exists_true(unsigned sz, unsigned const* S) {
add_exists(sz, S, false);
}
void add_exists(unsigned sz, unsigned const* S, bool sign) {
vector<unsigned_vector>& use_list = sign?m_fuse_list:m_tuse_list;
lbool val = sign?l_false:l_true;
vector<set>& Sets = sign?m_F:m_T;
vector<unsigned_vector>& watch = sign?m_fwatch:m_twatch;
SASSERT(sz > 0);
for (unsigned i = 0; i < sz; ++i) {
m_tuse_list[S[i]].push_back(m_S.size());
use_list[S[i]].push_back(Sets.size());
}
init_weights();
m_S.push_back(unsigned_vector(sz, S));
add_simplex_row(true, sz, S);
// Add clause to SAT solver
if (sz == 1) {
assign(S[0], val, axiom);
}
else {
watch[S[0]].push_back(Sets.size());
watch[S[1]].push_back(Sets.size());
Sets.push_back(unsigned_vector(sz, S));
}
add_simplex_row(!sign, sz, S);
// Add clause to SAT solver:
svector<sat::literal> lits;
for (unsigned i = 0; i < sz; ++i) {
lits.push_back(sat::literal(m_vars[S[i]], false));
lits.push_back(sat::literal(m_vars[S[i]], sign));
}
m_solver.mk_clause(lits.size(), lits.c_ptr());
m_solver.mk_clause(lits.size(), lits.c_ptr());
}
lbool compute_lower() {
@ -136,7 +152,7 @@ namespace opt {
}
void set_upper(rational const& r) {
m_max_weight = r;
m_max_weight = r*m_denominator;
}
bool get_value(unsigned idx) {
@ -195,11 +211,11 @@ namespace opt {
for (unsigned i = 0; i < m_weights.size(); ++i) {
out << i << ": " << m_value_saved[i]<< " " << m_weights[i] << "\n";
}
for (unsigned i = 0; i < m_S.size(); ++i) {
display(out << "+ ", m_S[i]);
}
for (unsigned i = 0; i < m_T.size(); ++i) {
display(out << "- ", m_T[i]);
display(out << "+ ", m_T[i]);
}
for (unsigned i = 0; i < m_F.size(); ++i) {
display(out << "- ", m_F[i]);
}
}
@ -213,7 +229,7 @@ namespace opt {
struct scoped_select {
imp& s;
unsigned sz;
scoped_select(imp& s):s(s), sz(s.m_value_trail.size()) {
scoped_select(imp& s):s(s), sz(s.m_trail.size()) {
}
~scoped_select() {
s.undo_select(sz);
@ -241,13 +257,14 @@ namespace opt {
lbool U1() {
scoped_select _sc(*this);
while (true) {
if (!compute_U1()) {
return l_undef;
while (true) {
lbool is_sat = compute_U1();
if (is_sat != l_true) {
return is_sat;
}
unsigned i = 0, j = 0;
set_undef_to_false();
if (values_satisfy_Ts(i)) {
if (values_satisfy_Fs(i)) {
if (m_upper > m_max_weight) {
IF_VERBOSE(1, verbose_stream() << "(hs.bound_degradation " << m_upper << " )\n";);
}
@ -255,26 +272,26 @@ namespace opt {
}
//
// pick some unsatisfied clause from m_T,
// pick some unsatisfied clause from m_F,
// and set the value of the most expensive
// literal to true.
//
IF_VERBOSE(1, verbose_stream() << "(hs.refining exclusion set " << i << ")\n";);
set const& T = m_T[i];
set const& F = m_F[i];
rational max_value(0);
j = 0;
for (i = 0; i < T.size(); ++i) {
SASSERT(m_value_saved[T[i]] == l_true);
if (max_value < m_weights[T[i]]) {
max_value = m_weights[T[i]];
j = T[i];
for (i = 0; i < F.size(); ++i) {
SASSERT(m_value_saved[F[i]] == l_true);
if (max_value < m_weights[F[i]]) {
max_value = m_weights[F[i]];
j = F[i];
}
}
IF_VERBOSE(1, verbose_stream() << "(hs.unselect " << j << ")\n";);
unselect(j);
for (i = 0; i < m_S.size(); ++i) {
set const& S = m_S[i];
assign(j, l_false, null_clause);
for (i = 0; i < m_T.size(); ++i) {
set const& S = m_T[i];
for (j = 0; j < S.size(); ++j) {
if (l_false != selected(S[j])) break;
}
@ -327,7 +344,7 @@ namespace opt {
}
// compute upper bound for hitting set.
bool compute_U1() {
lbool compute_U1() {
rational w(0);
scoped_select _sc(*this);
@ -345,20 +362,23 @@ namespace opt {
indices.push_back(i);
}
value_lt lt(m_weights, scores);
while (!m_cancel) {
while (true) {
if (m_cancel) {
return l_undef;
}
std::sort(indices.begin(), indices.end(), lt);
unsigned idx = indices[0];
if (scores[idx] == 0) {
break;
}
update_scores(scores, idx);
select(idx);
assign(idx, l_true, null_clause);
w += m_weights[idx];
}
m_upper = w;
m_value_saved.reset();
m_value_saved.append(m_value);
return !m_cancel;
return l_true;
}
void init_scores(unsigned_vector & scores) {
@ -366,12 +386,12 @@ namespace opt {
for (unsigned i = 0; i < m_value.size(); ++i) {
scores.push_back(0);
}
for (unsigned i = 0; i < m_S.size(); ++i) {
set const& S = m_S[i];
for (unsigned i = 0; i < m_T.size(); ++i) {
set const& S = m_T[i];
if (!has_selected(S)) {
for (unsigned j = 0; j < S.size(); ++j) {
if (selected(S[j]) != l_false) {
scores[S[j]]++;
++scores[S[j]];
}
}
}
@ -379,9 +399,9 @@ namespace opt {
}
void update_scores(unsigned_vector& scores, unsigned v) {
unsigned_vector const& v_uses = m_tuse_list[v];
for (unsigned i = 0; i < v_uses.size(); ++i) {
set const& S = m_S[v_uses[i]];
unsigned_vector const& uses = m_tuse_list[v];
for (unsigned i = 0; i < uses.size(); ++i) {
set const& S = m_T[uses[i]];
if (!has_selected(S)) {
for (unsigned j = 0; j < S.size(); ++j) {
if (selected(S[j]) != l_false) {
@ -392,16 +412,17 @@ namespace opt {
}
}
bool L1() {
rational w(0);
scoped_select _sc(*this);
for (unsigned i = 0; !m_cancel && i < m_S.size(); ++i) {
set const& S = m_S[i];
for (unsigned i = 0; !m_cancel && i < m_T.size(); ++i) {
set const& S = m_T[i];
SASSERT(!S.empty());
if (!has_selected(S)) {
w += m_weights[select_min(S)];
for (unsigned j = 0; j < S.size(); ++j) {
select(S[j]);
assign(S[j], l_true, null_clause);
}
}
}
@ -415,8 +436,8 @@ namespace opt {
rational w(0);
scoped_select _sc(*this);
int n = 0;
for (unsigned i = 0; i < m_S.size(); ++i) {
if (!has_selected(m_S[i])) ++n;
for (unsigned i = 0; i < m_T.size(); ++i) {
if (!has_selected(m_T[i])) ++n;
}
unsigned_vector scores;
init_scores(scores);
@ -472,7 +493,7 @@ namespace opt {
vars.push_back(S[i]);
coeffs.push_back(mpz(1));
}
unsigned base_var = m_T.size() + m_S.size() + m_weights.size();
unsigned base_var = m_F.size() + m_T.size() + m_weights.size();
m_simplex.ensure_var(base_var);
vars.push_back(base_var);
coeffs.push_back(mpz(-1));
@ -489,10 +510,10 @@ namespace opt {
}
void undo_select(unsigned sz) {
for (unsigned j = sz; j < m_value_trail.size(); ++j) {
m_value[m_value_trail[j]] = l_undef;
for (unsigned j = sz; j < m_trail.size(); ++j) {
m_value[m_trail[j]] = l_undef;
}
m_value_trail.resize(sz);
m_trail.resize(sz);
}
unsigned select_min(set const& S) {
@ -508,17 +529,13 @@ namespace opt {
lbool selected(unsigned j) const {
return m_value[j];
}
void assign(unsigned j, lbool val, unsigned clause_id = null_clause) {
m_value[j] = val;
m_justification[j] = clause_id;
m_trail.push_back(j);
}
void select(unsigned j) {
m_value[j] = l_true;
m_value_trail.push_back(j);
}
void unselect(unsigned j) {
m_value[j] = l_false;
m_value_trail.push_back(j);
}
bool have_selected(lbool val, vector<set> const& Sets, unsigned& i) {
for (i = 0; i < Sets.size(); ++i) {
if (!has_selected(val, Sets[i])) return false;
@ -534,20 +551,20 @@ namespace opt {
}
}
bool values_satisfy_Ts(unsigned& i) {
bool values_satisfy_Fs(unsigned& i) {
unsigned j = 0;
for (i = 0; i < m_T.size(); ++i) {
set const& T = m_T[i];
for (j = 0; j < T.size(); ++j) {
if (m_value_saved[T[j]] == l_false) {
for (i = 0; i < m_F.size(); ++i) {
set const& F = m_F[i];
for (j = 0; j < F.size(); ++j) {
if (m_value_saved[F[j]] == l_false) {
break;
}
}
if (T.size() == j) {
if (F.size() == j) {
break;
}
}
return i == m_T.size();
return i == m_F.size();
}
bool has_selected(set const& S) {
@ -570,6 +587,73 @@ namespace opt {
}
return false;
}
// (simple, greedy) CDCL learner for hitting sets.
lbool search() {
return l_undef;
}
lbool propagate() {
lbool is_sat = l_true;
while (m_qhead < m_trail.size() && is_sat == l_true) {
unsigned idx = m_trail[m_qhead];
++m_qhead;
switch (m_value[idx]) {
case l_undef:
UNREACHABLE();
break;
case l_true:
is_sat = propagate(idx, l_false, m_fwatch, m_F);
break;
case l_false:
is_sat = propagate(idx, l_true, m_twatch, m_T);
break;
}
}
return is_sat;
}
lbool propagate(unsigned idx, lbool good_val, vector<unsigned_vector>& watch, vector<set>& Fs)
{
unsigned sz = watch[idx].size();
lbool bad_val = ~good_val;
for (unsigned i = 0; i < sz; ++i) {
if (m_cancel) return l_undef;
unsigned clause_id = watch[idx][i];
set& F = Fs[clause_id];
SASSERT(F.size() >= 2);
unsigned k1 = (F[0] == idx)?0:1;
unsigned k2 = 1 - k1;
SASSERT(F[k1] == idx);
SASSERT(m_value[F[k1]] == bad_val);
if (m_value[F[k2]] == good_val) {
continue;
}
bool found = false;
for (unsigned j = 2; !found && j < F.size(); ++j) {
unsigned idx2 = F[j];
if (m_value[idx2] != bad_val) {
found = true;
std::swap(F[k1], F[j]);
watch[idx][i] = watch[idx].back();
watch[idx].pop_back();
--i;
--sz;
watch[idx2].push_back(clause_id);
}
}
if (!found) {
if (m_value[F[k2]] == bad_val) {
return l_false;
}
SASSERT(m_value[F[k2]] == l_undef);
assign(F[k2], good_val, clause_id);
}
}
return l_true;
}
};
hitting_sets::hitting_sets() { m_imp = alloc(imp); }