mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
implement order lemma
Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
parent
979593e2f1
commit
b948091665
2 changed files with 232 additions and 54 deletions
|
@ -27,8 +27,8 @@ template <typename C>
|
|||
void print_vector(const C & t, std::ostream & out) {
|
||||
for (const auto & p : t)
|
||||
out << p << " ";
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
template <typename C, typename D>
|
||||
bool contains(const C & collection, const D & key) {
|
||||
return collection.find(key) != collection.end();
|
||||
|
|
|
@ -47,13 +47,6 @@ struct solver::imp {
|
|||
lp::explanation * m_expl;
|
||||
lemma * m_lemma;
|
||||
|
||||
// for a rooted monomial rm = m_rm_table.vec[i] with rm.vars() = (a, b, c)
|
||||
// the key = sort([abs(vvr(a)),abs(vvr(b)),abs(vvr(c))])
|
||||
// lex_sorted contains pair (key,i), and key has all elements equal to 1 removed
|
||||
typedef vector<std::pair<std::vector<rational>, unsigned>> lex_sorted;
|
||||
|
||||
// the key of arity n is in m_lex_sorted_root_mons[n]
|
||||
std::unordered_map<unsigned, lex_sorted> m_lex_sorted_root_mons;
|
||||
|
||||
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p)
|
||||
:
|
||||
|
@ -187,8 +180,8 @@ struct solver::imp {
|
|||
return r;
|
||||
}
|
||||
|
||||
// return true if the monomial value is equal to the product of the values of the factors
|
||||
bool check_monomial(const monomial& m) {
|
||||
// return true iff the monomial value is equal to the product of the values of the factors
|
||||
bool check_monomial(const monomial& m) const {
|
||||
SASSERT(m_lar_solver.get_column_value(m.var()).is_int());
|
||||
return mon_value_by_vars(m) == m_lar_solver.get_column_value_rational(m.var());
|
||||
}
|
||||
|
@ -1438,65 +1431,250 @@ struct solver::imp {
|
|||
return false;
|
||||
}
|
||||
|
||||
std::vector<rational> get_monotone_key(const rooted_mon& rm) {
|
||||
std::vector<rational> get_sorted_key(const rooted_mon& rm) {
|
||||
std::vector<rational> r;
|
||||
for (lpvar j : rm.vars()) {
|
||||
for (unsigned j : rm.vars()) {
|
||||
r.push_back(abs(vvr(j)));
|
||||
}
|
||||
std::sort(r.begin(), r.end() ,[](rational const& a, rational const& b) {
|
||||
return a > b; // sort in reverse order
|
||||
} );
|
||||
std::sort(r.begin(), r.end());
|
||||
return r;
|
||||
}
|
||||
|
||||
void add_rm_to_monotone_table(lpvar i) {
|
||||
const rooted_mon& rm = m_rm_table.vec()[i];
|
||||
auto key = get_monotone_key(rm);
|
||||
// make sure that the entry of the needed arity is there
|
||||
auto it = m_lex_sorted_root_mons.find(key.size());
|
||||
if (it == m_lex_sorted_root_mons.end()) {
|
||||
it = m_lex_sorted_root_mons.insert(it, std::make_pair(key.size(), lex_sorted()));
|
||||
}
|
||||
|
||||
it->second.push_back(std::make_pair(key, i));
|
||||
}
|
||||
|
||||
void sort_monotone_table() {
|
||||
for (auto & p : m_lex_sorted_root_mons){
|
||||
std::sort(p.second.begin(),p.second.end(),
|
||||
[](std::pair<std::vector<rational>, unsigned> const &a,
|
||||
std::pair<std::vector<rational>, unsigned> const &b) {
|
||||
return a.first < b.first;
|
||||
} );
|
||||
}
|
||||
TRACE("nla_solver", tout << "Monotone table:\n"; print_monotone_table(tout););
|
||||
}
|
||||
// void sort_monotone_table() {
|
||||
// for (auto & p : m_lex_sorted_root_mons){
|
||||
// std::sort(p.second.begin(),p.second.end(),
|
||||
// [](std::pair<std::vector<rational>, unsigned> const &a,
|
||||
// std::pair<std::vector<rational>, unsigned> const &b) {
|
||||
// return a.first[0] < b.first[0]; // just compare the first elements
|
||||
// } );
|
||||
// }
|
||||
// find_to_refines();
|
||||
// TRACE("nla_solver", tout << "Monotone table:\n"; print_monotone_table(tout); tout << "\n";);
|
||||
// }
|
||||
|
||||
void print_monotone_table(std::ostream& out) const {
|
||||
for (const auto & p : m_lex_sorted_root_mons){
|
||||
out << "Arity = " << p.first << " {";
|
||||
for(auto & t : p.second) {
|
||||
out << "(";
|
||||
print_vector(t.first, out);
|
||||
out << "), " << t.second << " ";
|
||||
void print_monotone_array(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted,
|
||||
std::ostream& out) const {
|
||||
out << "Monotone array :\n";
|
||||
for (const auto & t : lex_sorted ){
|
||||
out << "(";
|
||||
print_vector(t.first, out);
|
||||
out << "), rm[" << t.second << "]" << std::endl;
|
||||
}
|
||||
out << "}";
|
||||
}
|
||||
|
||||
|
||||
// Returns rooted monomials by arity
|
||||
std::unordered_map<unsigned, unsigned_vector> get_rm_by_arity() {
|
||||
std::unordered_map<unsigned, unsigned_vector> m;
|
||||
for (unsigned i = 0; i < m_rm_table.vec().size(); i++ ) {
|
||||
unsigned arity = m_rm_table.vec()[i].vars().size();
|
||||
auto it = m.find(arity);
|
||||
if (it == m.end()) {
|
||||
it = m.insert(it, std::make_pair(arity, unsigned_vector()));
|
||||
}
|
||||
it->second.push_back(i);
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
bool uniform_LE(const std::vector<rational>& a,
|
||||
const std::vector<rational>& b,
|
||||
bool & strict) const {
|
||||
SASSERT(a.size() == b.size());
|
||||
for (unsigned i = 0; i < a.size(); i++) {
|
||||
if (a[i] < b[i]) {
|
||||
strict = true;
|
||||
} else if (a[i] > b[i]){
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool uniform_GE(const std::vector<rational>& a,
|
||||
const std::vector<rational>& b,
|
||||
bool & strict) const {
|
||||
SASSERT(a.size() == b.size());
|
||||
for (unsigned i = 0; i < a.size(); i++) {
|
||||
if (a[i] > b[i]) {
|
||||
strict = true;
|
||||
} else if (a[i] < b[i]){
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
vector<std::pair<rational, lpvar>> get_sorted_key_with_vars(const rooted_mon& a) const {
|
||||
vector<std::pair<rational, lpvar>> r;
|
||||
for (lpvar j : a.vars()) {
|
||||
r.push_back(std::make_pair(abs(vvr(j)), j));
|
||||
}
|
||||
std::sort(r.begin(), r.end(), [](const std::pair<rational, lpvar>& a,
|
||||
const std::pair<rational, lpvar>& b) {
|
||||
return
|
||||
a.first < b.first ||
|
||||
(a.first == b.first &&
|
||||
a.second < b.second);
|
||||
});
|
||||
return r;
|
||||
}
|
||||
|
||||
void negate_abs_a_le_abs_b(lpvar a, lpvar b) {
|
||||
rational av = vvr(a);
|
||||
rational as = rational(rat_sign(av));
|
||||
rational bv = vvr(b);
|
||||
rational bs = rational(rat_sign(bv));
|
||||
TRACE("nla_solver", tout << "av = " << av << ", bv = " << bv << "\n";);
|
||||
SASSERT(as*av <= bs*bv);
|
||||
mk_ineq(as, a, llc::LT); // |aj| < 0
|
||||
mk_ineq(bs, b, llc::LT); // |bj| < 0
|
||||
bool strict = as*av < bs*bv;
|
||||
mk_ineq(as, a, -bs, b, strict? llc::GT : llc::GE); // negate |aj| < |bj|
|
||||
}
|
||||
|
||||
void assert_abs_val_a_le_abs_var_b(
|
||||
const rooted_mon& a,
|
||||
const rooted_mon& b,
|
||||
bool strict) {
|
||||
lpvar aj = var(a);
|
||||
lpvar bj = var(b);
|
||||
rational av = vvr(aj);
|
||||
rational as = rational(rat_sign(av));
|
||||
rational bv = vvr(bj);
|
||||
rational bs = rational(rat_sign(bv));
|
||||
// TRACE("nla_solver", tout << "rmv = " << rmv << ", jv = " << jv << "\n";);
|
||||
mk_ineq(as, aj, llc::LT); // |aj| < 0
|
||||
mk_ineq(bs, bj, llc::LT); // |bj| < 0
|
||||
mk_ineq(as, aj, -bs, bj, strict? llc::LT : llc::LE); // |aj| < |bj|
|
||||
}
|
||||
|
||||
void generate_monl(const rooted_mon& a,
|
||||
const rooted_mon& b,
|
||||
bool strict) {
|
||||
auto akey = get_sorted_key_with_vars(a);
|
||||
auto bkey = get_sorted_key_with_vars(b);
|
||||
SASSERT(akey.size() == bkey.size());
|
||||
for (unsigned i = 0; i < akey.size(); i++) {
|
||||
negate_abs_a_le_abs_b(a[i], b[i]);
|
||||
}
|
||||
assert_abs_val_a_le_abs_var_b(a, b, strict);
|
||||
}
|
||||
|
||||
bool monotonicity_lemma_on_lex_sorted_rm_upper(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const rooted_mon& rm) {
|
||||
const rational v = abs(vvr(rm));
|
||||
const auto& key = lex_sorted[i].first;
|
||||
TRACE("nla_solver", tout << "rm = ";
|
||||
print_rooted_monomial_with_vars(rm, tout); tout << "i = " << i << std::endl;);
|
||||
for (unsigned k = i + 1; k < lex_sorted.size(); k++) {
|
||||
const auto& p = lex_sorted[k];
|
||||
const rooted_mon& rmk = m_rm_table.vec()[p.second];
|
||||
const rational vk = abs(vvr(rmk));
|
||||
TRACE("nla_solver", tout << "rmk = ";
|
||||
print_rooted_monomial_with_vars(rmk, tout);
|
||||
tout << "\n";
|
||||
tout << "vk = " << vk << std::endl;);
|
||||
if (vk > v) continue;
|
||||
bool strict;
|
||||
TRACE("nla_solver", tout << "uniform_LE = " << uniform_LE(key, p.first, strict);
|
||||
print_rooted_monomial_with_vars(rmk, tout);
|
||||
tout << "\n";
|
||||
tout << "vk = " << vk << std::endl;);
|
||||
if (uniform_LE(key, p.first, strict)) {
|
||||
if (strict) {
|
||||
generate_monl(rm, rmk, strict);
|
||||
return true;
|
||||
} else {
|
||||
SASSERT(key == p.first);
|
||||
if (vk < v) {
|
||||
generate_monl(rm, rmk, strict);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
out << "}";
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void build_monotone_table() {
|
||||
for (unsigned i = 0; i < m_rm_table.vec().size(); i++ ) {
|
||||
add_rm_to_monotone_table(i);
|
||||
}
|
||||
sort_monotone_table();
|
||||
return false;
|
||||
}
|
||||
|
||||
bool find_lemma_in_monotone_table() {return false;}
|
||||
bool monotonicity_lemma_on_lex_sorted_rm_lower(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const rooted_mon& rm) {
|
||||
const rational v = abs(vvr(rm));
|
||||
const auto& key = lex_sorted[i].first;
|
||||
TRACE("nla_solver", tout << "rm = ";
|
||||
print_rooted_monomial_with_vars(rm, tout); tout << "i = " << i << std::endl;);
|
||||
|
||||
for (unsigned k = i; k-- > 0;) {
|
||||
const auto& p = lex_sorted[k];
|
||||
const rooted_mon& rmk = m_rm_table.vec()[p.second];
|
||||
const rational vk = abs(vvr(rmk));
|
||||
TRACE("nla_solver", tout << "rmk = ";
|
||||
print_rooted_monomial_with_vars(rmk, tout);
|
||||
tout << "\n";
|
||||
tout << "vk = " << vk << std::endl;);
|
||||
if (vk < v) continue;
|
||||
bool strict;
|
||||
if (uniform_GE(key, p.first, strict)) {
|
||||
TRACE("nla_solver", tout << "strict = " << strict << std::endl;);
|
||||
if (strict) {
|
||||
generate_monl(rmk, rm, strict);
|
||||
return true;
|
||||
} else {
|
||||
SASSERT(key == p.first);
|
||||
if (vk < v) {
|
||||
generate_monl(rmk, rm, strict);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool monotonicity_lemma_on_lex_sorted_rm(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const rooted_mon& rm) {
|
||||
return monotonicity_lemma_on_lex_sorted_rm_upper(lex_sorted, i, rm)
|
||||
|| monotonicity_lemma_on_lex_sorted_rm_lower(lex_sorted, i, rm);
|
||||
}
|
||||
|
||||
bool rm_check(const rooted_mon& rm) const {
|
||||
return check_monomial(m_monomials[rm.orig_index()]);
|
||||
}
|
||||
|
||||
bool monotonicity_lemma_on_lex_sorted(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted) {
|
||||
for (unsigned i = 0; i < lex_sorted.size(); i++) {
|
||||
unsigned rmi = lex_sorted[i].second;
|
||||
const rooted_mon& rm = m_rm_table.vec()[rmi];
|
||||
TRACE("nla_solver", print_rooted_monomial(rm, tout); tout << "\n, rm_check = " << rm_check(rm); tout << std::endl;);
|
||||
if ((!rm_check(rm)) && monotonicity_lemma_on_lex_sorted_rm(lex_sorted, i, rm))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool monotonicity_lemma_on_rms_of_same_arity(const unsigned_vector& rms) {
|
||||
vector<std::pair<std::vector<rational>, unsigned>> lex_sorted;
|
||||
for (unsigned i : rms) {
|
||||
lex_sorted.push_back(std::make_pair(get_sorted_key(m_rm_table.vec()[i]), i));
|
||||
}
|
||||
std::sort(lex_sorted.begin(), lex_sorted.end(),
|
||||
[](const std::pair<std::vector<rational>, unsigned> &a,
|
||||
const std::pair<std::vector<rational>, unsigned> &b) {
|
||||
return a.first < b.first;
|
||||
});
|
||||
TRACE("nla_solver", print_monotone_array(lex_sorted, tout););
|
||||
return monotonicity_lemma_on_lex_sorted(lex_sorted);
|
||||
}
|
||||
|
||||
bool monotonicity_lemma() {
|
||||
build_monotone_table();
|
||||
return find_lemma_in_monotone_table();
|
||||
auto rm_by_arity = get_rm_by_arity();
|
||||
for (const auto & p : rm_by_arity) {
|
||||
if (monotonicity_lemma_on_rms_of_same_arity(p.second)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool tangent_lemma() {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue