3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

implement order lemma

Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
Lev 2018-12-24 14:31:02 -08:00 committed by Lev Nachmanson
parent 979593e2f1
commit b948091665
2 changed files with 232 additions and 54 deletions

View file

@ -27,8 +27,8 @@ template <typename C>
void print_vector(const C & t, std::ostream & out) {
for (const auto & p : t)
out << p << " ";
out << std::endl;
}
template <typename C, typename D>
bool contains(const C & collection, const D & key) {
return collection.find(key) != collection.end();

View file

@ -47,13 +47,6 @@ struct solver::imp {
lp::explanation * m_expl;
lemma * m_lemma;
// for a rooted monomial rm = m_rm_table.vec[i] with rm.vars() = (a, b, c)
// the key = sort([abs(vvr(a)),abs(vvr(b)),abs(vvr(c))])
// lex_sorted contains pair (key,i), and key has all elements equal to 1 removed
typedef vector<std::pair<std::vector<rational>, unsigned>> lex_sorted;
// the key of arity n is in m_lex_sorted_root_mons[n]
std::unordered_map<unsigned, lex_sorted> m_lex_sorted_root_mons;
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p)
:
@ -187,8 +180,8 @@ struct solver::imp {
return r;
}
// return true if the monomial value is equal to the product of the values of the factors
bool check_monomial(const monomial& m) {
// return true iff the monomial value is equal to the product of the values of the factors
bool check_monomial(const monomial& m) const {
SASSERT(m_lar_solver.get_column_value(m.var()).is_int());
return mon_value_by_vars(m) == m_lar_solver.get_column_value_rational(m.var());
}
@ -1438,65 +1431,250 @@ struct solver::imp {
return false;
}
std::vector<rational> get_monotone_key(const rooted_mon& rm) {
std::vector<rational> get_sorted_key(const rooted_mon& rm) {
std::vector<rational> r;
for (lpvar j : rm.vars()) {
for (unsigned j : rm.vars()) {
r.push_back(abs(vvr(j)));
}
std::sort(r.begin(), r.end() ,[](rational const& a, rational const& b) {
return a > b; // sort in reverse order
} );
std::sort(r.begin(), r.end());
return r;
}
void add_rm_to_monotone_table(lpvar i) {
const rooted_mon& rm = m_rm_table.vec()[i];
auto key = get_monotone_key(rm);
// make sure that the entry of the needed arity is there
auto it = m_lex_sorted_root_mons.find(key.size());
if (it == m_lex_sorted_root_mons.end()) {
it = m_lex_sorted_root_mons.insert(it, std::make_pair(key.size(), lex_sorted()));
}
it->second.push_back(std::make_pair(key, i));
}
void sort_monotone_table() {
for (auto & p : m_lex_sorted_root_mons){
std::sort(p.second.begin(),p.second.end(),
[](std::pair<std::vector<rational>, unsigned> const &a,
std::pair<std::vector<rational>, unsigned> const &b) {
return a.first < b.first;
} );
}
TRACE("nla_solver", tout << "Monotone table:\n"; print_monotone_table(tout););
}
// void sort_monotone_table() {
// for (auto & p : m_lex_sorted_root_mons){
// std::sort(p.second.begin(),p.second.end(),
// [](std::pair<std::vector<rational>, unsigned> const &a,
// std::pair<std::vector<rational>, unsigned> const &b) {
// return a.first[0] < b.first[0]; // just compare the first elements
// } );
// }
// find_to_refines();
// TRACE("nla_solver", tout << "Monotone table:\n"; print_monotone_table(tout); tout << "\n";);
// }
void print_monotone_table(std::ostream& out) const {
for (const auto & p : m_lex_sorted_root_mons){
out << "Arity = " << p.first << " {";
for(auto & t : p.second) {
out << "(";
print_vector(t.first, out);
out << "), " << t.second << " ";
void print_monotone_array(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted,
std::ostream& out) const {
out << "Monotone array :\n";
for (const auto & t : lex_sorted ){
out << "(";
print_vector(t.first, out);
out << "), rm[" << t.second << "]" << std::endl;
}
out << "}";
}
// Returns rooted monomials by arity
std::unordered_map<unsigned, unsigned_vector> get_rm_by_arity() {
std::unordered_map<unsigned, unsigned_vector> m;
for (unsigned i = 0; i < m_rm_table.vec().size(); i++ ) {
unsigned arity = m_rm_table.vec()[i].vars().size();
auto it = m.find(arity);
if (it == m.end()) {
it = m.insert(it, std::make_pair(arity, unsigned_vector()));
}
it->second.push_back(i);
}
return m;
}
bool uniform_LE(const std::vector<rational>& a,
const std::vector<rational>& b,
bool & strict) const {
SASSERT(a.size() == b.size());
for (unsigned i = 0; i < a.size(); i++) {
if (a[i] < b[i]) {
strict = true;
} else if (a[i] > b[i]){
return false;
}
}
return true;
}
bool uniform_GE(const std::vector<rational>& a,
const std::vector<rational>& b,
bool & strict) const {
SASSERT(a.size() == b.size());
for (unsigned i = 0; i < a.size(); i++) {
if (a[i] > b[i]) {
strict = true;
} else if (a[i] < b[i]){
return false;
}
}
return true;
}
vector<std::pair<rational, lpvar>> get_sorted_key_with_vars(const rooted_mon& a) const {
vector<std::pair<rational, lpvar>> r;
for (lpvar j : a.vars()) {
r.push_back(std::make_pair(abs(vvr(j)), j));
}
std::sort(r.begin(), r.end(), [](const std::pair<rational, lpvar>& a,
const std::pair<rational, lpvar>& b) {
return
a.first < b.first ||
(a.first == b.first &&
a.second < b.second);
});
return r;
}
void negate_abs_a_le_abs_b(lpvar a, lpvar b) {
rational av = vvr(a);
rational as = rational(rat_sign(av));
rational bv = vvr(b);
rational bs = rational(rat_sign(bv));
TRACE("nla_solver", tout << "av = " << av << ", bv = " << bv << "\n";);
SASSERT(as*av <= bs*bv);
mk_ineq(as, a, llc::LT); // |aj| < 0
mk_ineq(bs, b, llc::LT); // |bj| < 0
bool strict = as*av < bs*bv;
mk_ineq(as, a, -bs, b, strict? llc::GT : llc::GE); // negate |aj| < |bj|
}
void assert_abs_val_a_le_abs_var_b(
const rooted_mon& a,
const rooted_mon& b,
bool strict) {
lpvar aj = var(a);
lpvar bj = var(b);
rational av = vvr(aj);
rational as = rational(rat_sign(av));
rational bv = vvr(bj);
rational bs = rational(rat_sign(bv));
// TRACE("nla_solver", tout << "rmv = " << rmv << ", jv = " << jv << "\n";);
mk_ineq(as, aj, llc::LT); // |aj| < 0
mk_ineq(bs, bj, llc::LT); // |bj| < 0
mk_ineq(as, aj, -bs, bj, strict? llc::LT : llc::LE); // |aj| < |bj|
}
void generate_monl(const rooted_mon& a,
const rooted_mon& b,
bool strict) {
auto akey = get_sorted_key_with_vars(a);
auto bkey = get_sorted_key_with_vars(b);
SASSERT(akey.size() == bkey.size());
for (unsigned i = 0; i < akey.size(); i++) {
negate_abs_a_le_abs_b(a[i], b[i]);
}
assert_abs_val_a_le_abs_var_b(a, b, strict);
}
bool monotonicity_lemma_on_lex_sorted_rm_upper(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const rooted_mon& rm) {
const rational v = abs(vvr(rm));
const auto& key = lex_sorted[i].first;
TRACE("nla_solver", tout << "rm = ";
print_rooted_monomial_with_vars(rm, tout); tout << "i = " << i << std::endl;);
for (unsigned k = i + 1; k < lex_sorted.size(); k++) {
const auto& p = lex_sorted[k];
const rooted_mon& rmk = m_rm_table.vec()[p.second];
const rational vk = abs(vvr(rmk));
TRACE("nla_solver", tout << "rmk = ";
print_rooted_monomial_with_vars(rmk, tout);
tout << "\n";
tout << "vk = " << vk << std::endl;);
if (vk > v) continue;
bool strict;
TRACE("nla_solver", tout << "uniform_LE = " << uniform_LE(key, p.first, strict);
print_rooted_monomial_with_vars(rmk, tout);
tout << "\n";
tout << "vk = " << vk << std::endl;);
if (uniform_LE(key, p.first, strict)) {
if (strict) {
generate_monl(rm, rmk, strict);
return true;
} else {
SASSERT(key == p.first);
if (vk < v) {
generate_monl(rm, rmk, strict);
return true;
}
}
}
out << "}";
}
}
void build_monotone_table() {
for (unsigned i = 0; i < m_rm_table.vec().size(); i++ ) {
add_rm_to_monotone_table(i);
}
sort_monotone_table();
return false;
}
bool find_lemma_in_monotone_table() {return false;}
bool monotonicity_lemma_on_lex_sorted_rm_lower(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const rooted_mon& rm) {
const rational v = abs(vvr(rm));
const auto& key = lex_sorted[i].first;
TRACE("nla_solver", tout << "rm = ";
print_rooted_monomial_with_vars(rm, tout); tout << "i = " << i << std::endl;);
for (unsigned k = i; k-- > 0;) {
const auto& p = lex_sorted[k];
const rooted_mon& rmk = m_rm_table.vec()[p.second];
const rational vk = abs(vvr(rmk));
TRACE("nla_solver", tout << "rmk = ";
print_rooted_monomial_with_vars(rmk, tout);
tout << "\n";
tout << "vk = " << vk << std::endl;);
if (vk < v) continue;
bool strict;
if (uniform_GE(key, p.first, strict)) {
TRACE("nla_solver", tout << "strict = " << strict << std::endl;);
if (strict) {
generate_monl(rmk, rm, strict);
return true;
} else {
SASSERT(key == p.first);
if (vk < v) {
generate_monl(rmk, rm, strict);
return true;
}
}
}
}
return false;
}
bool monotonicity_lemma_on_lex_sorted_rm(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const rooted_mon& rm) {
return monotonicity_lemma_on_lex_sorted_rm_upper(lex_sorted, i, rm)
|| monotonicity_lemma_on_lex_sorted_rm_lower(lex_sorted, i, rm);
}
bool rm_check(const rooted_mon& rm) const {
return check_monomial(m_monomials[rm.orig_index()]);
}
bool monotonicity_lemma_on_lex_sorted(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted) {
for (unsigned i = 0; i < lex_sorted.size(); i++) {
unsigned rmi = lex_sorted[i].second;
const rooted_mon& rm = m_rm_table.vec()[rmi];
TRACE("nla_solver", print_rooted_monomial(rm, tout); tout << "\n, rm_check = " << rm_check(rm); tout << std::endl;);
if ((!rm_check(rm)) && monotonicity_lemma_on_lex_sorted_rm(lex_sorted, i, rm))
return true;
}
return false;
}
bool monotonicity_lemma_on_rms_of_same_arity(const unsigned_vector& rms) {
vector<std::pair<std::vector<rational>, unsigned>> lex_sorted;
for (unsigned i : rms) {
lex_sorted.push_back(std::make_pair(get_sorted_key(m_rm_table.vec()[i]), i));
}
std::sort(lex_sorted.begin(), lex_sorted.end(),
[](const std::pair<std::vector<rational>, unsigned> &a,
const std::pair<std::vector<rational>, unsigned> &b) {
return a.first < b.first;
});
TRACE("nla_solver", print_monotone_array(lex_sorted, tout););
return monotonicity_lemma_on_lex_sorted(lex_sorted);
}
bool monotonicity_lemma() {
build_monotone_table();
return find_lemma_in_monotone_table();
auto rm_by_arity = get_rm_by_arity();
for (const auto & p : rm_by_arity) {
if (monotonicity_lemma_on_rms_of_same_arity(p.second)) {
return true;
}
}
return false;
}
bool tangent_lemma() {