mirror of
https://github.com/Z3Prover/z3
synced 2025-04-08 10:25:18 +00:00
merge
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
commit
b92bd89a45
|
@ -9,14 +9,15 @@ z3_add_component(rewriter
|
|||
datatype_rewriter.cpp
|
||||
der.cpp
|
||||
dl_rewriter.cpp
|
||||
enum2bv_rewriter.cpp
|
||||
expr_replacer.cpp
|
||||
expr_safe_replace.cpp
|
||||
factor_rewriter.cpp
|
||||
fd_rewriter.cpp
|
||||
fpa_rewriter.cpp
|
||||
label_rewriter.cpp
|
||||
mk_simplified_app.cpp
|
||||
pb_rewriter.cpp
|
||||
pb2bv_rewriter.cpp
|
||||
quant_hoist.cpp
|
||||
rewriter.cpp
|
||||
seq_rewriter.cpp
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
z3_add_component(portfolio
|
||||
SOURCES
|
||||
default_tactic.cpp
|
||||
enum2bv_solver.cpp
|
||||
pb2bv_solver.cpp
|
||||
bounded_int2bv_solver.cpp
|
||||
fd_solver.cpp
|
||||
smt_strategic_solver.cpp
|
||||
COMPONENT_DEPENDENCIES
|
||||
|
|
|
@ -78,6 +78,7 @@ add_executable(test-z3
|
|||
old_interval.cpp
|
||||
optional.cpp
|
||||
parray.cpp
|
||||
pb2bv.cpp
|
||||
pdr.cpp
|
||||
permutation.cpp
|
||||
polynomial.cpp
|
||||
|
|
76
examples/python/all_interval_series.py
Normal file
76
examples/python/all_interval_series.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
# Copyright Microsoft Research 2016
|
||||
# The following script finds sequences of length n-1 of
|
||||
# integers 0,..,n-1 such that the difference of the n-1
|
||||
# adjacent entries fall in the range 0,..,n-1
|
||||
# This is known as the "The All-Interval Series Problem"
|
||||
# See http://www.csplib.org/Problems/prob007/
|
||||
|
||||
from z3 import *
|
||||
import time
|
||||
|
||||
def diff_at_j_is_i(xs, j, i):
|
||||
assert(0 <= j and j + 1 < len(xs))
|
||||
assert(1 <= i and i < len(xs))
|
||||
return Or([ And(xs[j][k], xs[j+1][k-i]) for k in range(i,len(xs))] +
|
||||
[ And(xs[j][k], xs[j+1][k+i]) for k in range(0,len(xs)-i)])
|
||||
|
||||
|
||||
def ais(n):
|
||||
xij = [ [ Bool("x_%d_%d" % (i,j)) for j in range(n)] for i in range(n) ]
|
||||
s = SolverFor("QF_FD")
|
||||
# Optionally replace by (slower) default solver if using
|
||||
# more then just finite domains (Booleans, Bit-vectors, enumeration types
|
||||
# and bounded integers)
|
||||
# s = Solver()
|
||||
for i in range(n):
|
||||
s.add(AtMost(xij[i] + [1]))
|
||||
s.add(Or(xij[i]))
|
||||
for j in range(n):
|
||||
xi = [ xij[i][j] for i in range(n) ]
|
||||
s.add(AtMost(xi + [1]))
|
||||
s.add(Or(xi))
|
||||
dji = [ [ diff_at_j_is_i(xij, j, i + 1) for i in range(n-1)] for j in range(n-1) ]
|
||||
for j in range(n-1):
|
||||
s.add(AtMost(dji[j] + [1]))
|
||||
s.add(Or(dji[j]))
|
||||
for i in range(n-1):
|
||||
dj = [dji[j][i] for j in range(n-1)]
|
||||
s.add(AtMost(dj + [1]))
|
||||
s.add(Or(dj))
|
||||
return s, xij
|
||||
|
||||
def process_model(s, xij, n):
|
||||
# x_ij integer i is at position j
|
||||
# d_ij difference between integer at position j, j+1 is i
|
||||
# sum_j d_ij = 1 i = 1,...,n-1
|
||||
# sum_j x_ij = 1
|
||||
# sum_i x_ij = 1
|
||||
m = s.model()
|
||||
block = []
|
||||
values = []
|
||||
for i in range(n):
|
||||
k = -1
|
||||
for j in range(n):
|
||||
if is_true(m.eval(xij[i][j])):
|
||||
assert(k == -1)
|
||||
block += [xij[i][j]]
|
||||
k = j
|
||||
values += [k]
|
||||
print values
|
||||
sys.stdout.flush()
|
||||
return block
|
||||
|
||||
def all_models(n):
|
||||
count = 0
|
||||
s, xij = ais(n)
|
||||
start = time.clock()
|
||||
while sat == s.check():
|
||||
block = process_model(s, xij, n)
|
||||
s.add(Not(And(block)))
|
||||
count += 1
|
||||
print s.statistics()
|
||||
print time.clock() - start
|
||||
print count
|
||||
|
||||
set_option(verbose=1)
|
||||
all_models(12)
|
|
@ -914,7 +914,7 @@ extern "C" {
|
|||
fpa_decl_plugin * plugin = (fpa_decl_plugin*)m.get_plugin(mk_c(c)->get_fpa_fid());
|
||||
family_id fid = mk_c(c)->get_fpa_fid();
|
||||
expr * e = to_expr(t);
|
||||
if (!is_app(e) || is_app_of(e, fid, OP_FPA_NAN)) {
|
||||
if (!is_app(e) || is_app_of(e, fid, OP_FPA_NAN) || !is_fp(c, t)) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG);
|
||||
return 0;
|
||||
}
|
||||
|
@ -933,6 +933,8 @@ extern "C" {
|
|||
Z3_TRY;
|
||||
LOG_Z3_fpa_get_numeral_significand_string(c, t);
|
||||
RESET_ERROR_CODE();
|
||||
CHECK_NON_NULL(t, 0);
|
||||
CHECK_VALID_AST(t, 0);
|
||||
ast_manager & m = mk_c(c)->m();
|
||||
mpf_manager & mpfm = mk_c(c)->fpautil().fm();
|
||||
unsynch_mpq_manager & mpqm = mpfm.mpq_manager();
|
||||
|
@ -940,10 +942,7 @@ extern "C" {
|
|||
fpa_decl_plugin * plugin = (fpa_decl_plugin*)m.get_plugin(fid);
|
||||
SASSERT(plugin != 0);
|
||||
expr * e = to_expr(t);
|
||||
if (!is_app(e) ||
|
||||
is_app_of(e, fid, OP_FPA_NAN) ||
|
||||
is_app_of(e, fid, OP_FPA_PLUS_INF) ||
|
||||
is_app_of(e, fid, OP_FPA_MINUS_INF)) {
|
||||
if (!is_app(e) || is_app_of(e, fid, OP_FPA_NAN) || !is_fp(c, t)) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG);
|
||||
return "";
|
||||
}
|
||||
|
@ -958,6 +957,7 @@ extern "C" {
|
|||
mpqm.set(q, mpfm.sig(val));
|
||||
if (!mpfm.is_denormal(val)) mpqm.add(q, mpfm.m_powers2(sbits - 1), q);
|
||||
mpqm.div(q, mpfm.m_powers2(sbits - 1), q);
|
||||
if (mpfm.is_inf(val)) mpqm.set(q, 0);
|
||||
std::stringstream ss;
|
||||
mpqm.display_decimal(ss, q, sbits);
|
||||
return mk_c(c)->mk_external_string(ss.str());
|
||||
|
@ -975,10 +975,7 @@ extern "C" {
|
|||
fpa_decl_plugin * plugin = (fpa_decl_plugin*)m.get_plugin(fid);
|
||||
SASSERT(plugin != 0);
|
||||
expr * e = to_expr(t);
|
||||
if (!is_app(e) ||
|
||||
is_app_of(e, fid, OP_FPA_NAN) ||
|
||||
is_app_of(e, fid, OP_FPA_PLUS_INF) ||
|
||||
is_app_of(e, fid, OP_FPA_MINUS_INF)) {
|
||||
if (!is_app(e) || is_app_of(e, fid, OP_FPA_NAN) || !is_fp(c, t)) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG);
|
||||
*n = 0;
|
||||
return 0;
|
||||
|
@ -1008,10 +1005,7 @@ extern "C" {
|
|||
fpa_decl_plugin * plugin = (fpa_decl_plugin*)m.get_plugin(mk_c(c)->get_fpa_fid());
|
||||
SASSERT(plugin != 0);
|
||||
expr * e = to_expr(t);
|
||||
if (!is_app(e) ||
|
||||
is_app_of(e, fid, OP_FPA_NAN) ||
|
||||
is_app_of(e, fid, OP_FPA_PLUS_INF) ||
|
||||
is_app_of(e, fid, OP_FPA_MINUS_INF)) {
|
||||
if (!is_app(e) || is_app_of(e, fid, OP_FPA_NAN) || !is_fp(c, t)) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG);
|
||||
return "";
|
||||
}
|
||||
|
@ -1040,10 +1034,7 @@ extern "C" {
|
|||
fpa_decl_plugin * plugin = (fpa_decl_plugin*)m.get_plugin(mk_c(c)->get_fpa_fid());
|
||||
SASSERT(plugin != 0);
|
||||
expr * e = to_expr(t);
|
||||
if (!is_app(e) ||
|
||||
is_app_of(e, fid, OP_FPA_NAN) ||
|
||||
is_app_of(e, fid, OP_FPA_PLUS_INF) ||
|
||||
is_app_of(e, fid, OP_FPA_MINUS_INF)) {
|
||||
if (!is_app(e) || is_app_of(e, fid, OP_FPA_NAN) || !is_fp(c, t)) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG);
|
||||
*n = 0;
|
||||
return 0;
|
||||
|
|
|
@ -27,6 +27,7 @@ Revision History:
|
|||
#include"cancel_eh.h"
|
||||
#include"scoped_timer.h"
|
||||
#include"smt2parser.h"
|
||||
#include"api_ast_vector.h"
|
||||
|
||||
extern "C" {
|
||||
|
||||
|
@ -296,6 +297,35 @@ extern "C" {
|
|||
}
|
||||
|
||||
|
||||
Z3_ast_vector Z3_API Z3_optimize_get_assertions(Z3_context c, Z3_optimize o) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_optimize_get_assertions(c, o);
|
||||
RESET_ERROR_CODE();
|
||||
Z3_ast_vector_ref * v = alloc(Z3_ast_vector_ref, *mk_c(c), mk_c(c)->m());
|
||||
mk_c(c)->save_object(v);
|
||||
expr_ref_vector hard(mk_c(c)->m());
|
||||
to_optimize_ptr(o)->get_hard_constraints(hard);
|
||||
for (unsigned i = 0; i < hard.size(); i++) {
|
||||
v->m_ast_vector.push_back(hard[i].get());
|
||||
}
|
||||
RETURN_Z3(of_ast_vector(v));
|
||||
Z3_CATCH_RETURN(0);
|
||||
}
|
||||
|
||||
Z3_ast_vector Z3_API Z3_optimize_get_objectives(Z3_context c, Z3_optimize o) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_optimize_get_objectives(c, o);
|
||||
RESET_ERROR_CODE();
|
||||
unsigned n = to_optimize_ptr(o)->num_objectives();
|
||||
Z3_ast_vector_ref * v = alloc(Z3_ast_vector_ref, *mk_c(c), mk_c(c)->m());
|
||||
mk_c(c)->save_object(v);
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
v->m_ast_vector.push_back(to_optimize_ptr(o)->get_objective(i));
|
||||
}
|
||||
RETURN_Z3(of_ast_vector(v));
|
||||
Z3_CATCH_RETURN(0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
|
|
@ -2053,6 +2053,8 @@ namespace z3 {
|
|||
check_error();
|
||||
return expr(ctx(), r);
|
||||
}
|
||||
expr_vector assertions() const { Z3_ast_vector r = Z3_optimize_get_assertions(ctx(), m_opt); check_error(); return expr_vector(ctx(), r); }
|
||||
expr_vector objectives() const { Z3_ast_vector r = Z3_optimize_get_objectives(ctx(), m_opt); check_error(); return expr_vector(ctx(), r); }
|
||||
stats statistics() const { Z3_stats r = Z3_optimize_get_statistics(ctx(), m_opt); check_error(); return stats(ctx(), r); }
|
||||
friend std::ostream & operator<<(std::ostream & out, optimize const & s);
|
||||
void from_file(char const* filename) { Z3_optimize_from_file(ctx(), m_opt, filename); check_error(); }
|
||||
|
|
|
@ -290,6 +290,33 @@ namespace Microsoft.Z3
|
|||
Native.Z3_optimize_from_string(Context.nCtx, NativeObject, s);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// The set of asserted formulas.
|
||||
/// </summary>
|
||||
public BoolExpr[] Assertions
|
||||
{
|
||||
get
|
||||
{
|
||||
Contract.Ensures(Contract.Result<BoolExpr[]>() != null);
|
||||
|
||||
ASTVector assertions = new ASTVector(Context, Native.Z3_optimize_get_assertions(Context.nCtx, NativeObject));
|
||||
return assertions.ToBoolExprArray();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// The set of asserted formulas.
|
||||
/// </summary>
|
||||
public Expr[] Objectives
|
||||
{
|
||||
get
|
||||
{
|
||||
Contract.Ensures(Contract.Result<Expr[]>() != null);
|
||||
|
||||
ASTVector objectives = new ASTVector(Context, Native.Z3_optimize_get_objectives(Context.nCtx, NativeObject));
|
||||
return objectives.ToExprArray();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// <summary>
|
||||
|
|
|
@ -6796,6 +6796,14 @@ class Optimize(Z3PPObject):
|
|||
"""Parse assertions and objectives from a string"""
|
||||
Z3_optimize_from_string(self.ctx.ref(), self.optimize, s)
|
||||
|
||||
def assertions(self):
|
||||
"""Return an AST vector containing all added constraints."""
|
||||
return AstVector(Z3_optimize_get_assertions(self.ctx.ref(), self.optimize), self.ctx)
|
||||
|
||||
def objectives(self):
|
||||
"""returns set of objective functions"""
|
||||
return AstVector(Z3_optimize_get_objectives(self.ctx.ref(), self.optimize), self.ctx)
|
||||
|
||||
def __repr__(self):
|
||||
"""Return a formatted string with all added rules and constraints."""
|
||||
return self.sexpr()
|
||||
|
@ -8496,7 +8504,7 @@ class FPNumRef(FPRef):
|
|||
"""
|
||||
def as_string(self):
|
||||
s = Z3_fpa_get_numeral_string(self.ctx.ref(), self.as_ast())
|
||||
return ("FPVal(%s, %s)" % (s, FPSortRef(self.sort()).as_string()))
|
||||
return ("FPVal(%s, %s)" % (s, self.sort()))
|
||||
|
||||
def is_fp(a):
|
||||
"""Return `True` if `a` is a Z3 floating-point expression.
|
||||
|
@ -8536,7 +8544,7 @@ def FPSort(ebits, sbits, ctx=None):
|
|||
>>> eq(x, FP('x', FPSort(8, 24)))
|
||||
True
|
||||
"""
|
||||
ctx = z3._get_ctx(ctx)
|
||||
ctx = _get_ctx(ctx)
|
||||
return FPSortRef(Z3_mk_fpa_sort(ctx.ref(), ebits, sbits), ctx)
|
||||
|
||||
def _to_float_str(val, exp=0):
|
||||
|
@ -8722,7 +8730,7 @@ def FPs(names, fpsort, ctx=None):
|
|||
>>> fpMul(RNE(), fpAdd(RNE(), x, y), z)
|
||||
fpMul(RNE(), fpAdd(RNE(), x, y), z)
|
||||
"""
|
||||
ctx = z3._get_ctx(ctx)
|
||||
ctx = _get_ctx(ctx)
|
||||
if isinstance(names, str):
|
||||
names = names.split(" ")
|
||||
return [FP(name, fpsort, ctx) for name in names]
|
||||
|
|
|
@ -5832,7 +5832,7 @@ extern "C" {
|
|||
void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p);
|
||||
|
||||
/**
|
||||
\brief Return the set of asserted formulas as a goal object.
|
||||
\brief Return the set of asserted formulas on the solver.
|
||||
|
||||
def_API('Z3_solver_get_assertions', AST_VECTOR, (_in(CONTEXT), _in(SOLVER)))
|
||||
*/
|
||||
|
|
|
@ -239,6 +239,28 @@ extern "C" {
|
|||
def_API('Z3_optimize_get_statistics', STATS, (_in(CONTEXT), _in(OPTIMIZE)))
|
||||
*/
|
||||
Z3_stats Z3_API Z3_optimize_get_statistics(Z3_context c, Z3_optimize d);
|
||||
|
||||
|
||||
/**
|
||||
\brief Return the set of asserted formulas on the optimization context.
|
||||
|
||||
def_API('Z3_optimize_get_assertions', AST_VECTOR, (_in(CONTEXT), _in(OPTIMIZE)))
|
||||
*/
|
||||
Z3_ast_vector Z3_API Z3_optimize_get_assertions(Z3_context c, Z3_optimize o);
|
||||
|
||||
/**
|
||||
\brief Return objectives on the optimization context.
|
||||
If the objective function is a max-sat objective it is returned
|
||||
as a Pseudo-Boolean (minimization) sum of the form (+ (if f1 w1 0) (if f2 w2 0) ...)
|
||||
If the objective function is entered as a maximization objective, then return the corresponding minimizaiton
|
||||
objective. In this way the resulting objective function is always returned as a minimization objective.
|
||||
|
||||
def_API('Z3_optimize_get_objectives', AST_VECTOR, (_in(CONTEXT), _in(OPTIMIZE)))
|
||||
*/
|
||||
Z3_ast_vector Z3_API Z3_optimize_get_objectives(Z3_context c, Z3_optimize o);
|
||||
|
||||
|
||||
|
||||
/*@}*/
|
||||
/*@}*/
|
||||
|
||||
|
|
|
@ -162,8 +162,8 @@ bool arith_rewriter::div_polynomial(expr * t, numeral const & g, const_treatment
|
|||
}
|
||||
|
||||
bool arith_rewriter::is_bound(expr * arg1, expr * arg2, op_kind kind, expr_ref & result) {
|
||||
numeral c;
|
||||
if (!is_add(arg1) && is_numeral(arg2, c)) {
|
||||
numeral b, c;
|
||||
if (!is_add(arg1) && !m_util.is_mod(arg1) && is_numeral(arg2, c)) {
|
||||
numeral a;
|
||||
bool r = false;
|
||||
expr * pp = get_power_product(arg1, a);
|
||||
|
@ -193,6 +193,45 @@ bool arith_rewriter::is_bound(expr * arg1, expr * arg2, op_kind kind, expr_ref &
|
|||
case EQ: result = m_util.mk_eq(pp, k); return true;
|
||||
}
|
||||
}
|
||||
expr* t1, *t2;
|
||||
bool is_int;
|
||||
if (m_util.is_mod(arg2)) {
|
||||
std::swap(arg1, arg2);
|
||||
switch (kind) {
|
||||
case LE: kind = GE; break;
|
||||
case GE: kind = LE; break;
|
||||
case EQ: break;
|
||||
}
|
||||
}
|
||||
|
||||
if (m_util.is_numeral(arg2, c, is_int) && is_int &&
|
||||
m_util.is_mod(arg1, t1, t2) && m_util.is_numeral(t2, b, is_int) && !b.is_zero()) {
|
||||
// mod x b <= c = false if c < 0, b != 0, true if c >= b, b != 0
|
||||
if (c.is_neg()) {
|
||||
switch (kind) {
|
||||
case EQ:
|
||||
case LE: result = m().mk_false(); return true;
|
||||
case GE: result = m().mk_true(); return true;
|
||||
}
|
||||
}
|
||||
if (c.is_zero() && kind == GE) {
|
||||
result = m().mk_true();
|
||||
return true;
|
||||
}
|
||||
if (c.is_pos() && c >= abs(b)) {
|
||||
switch (kind) {
|
||||
case LE: result = m().mk_true(); return true;
|
||||
case EQ:
|
||||
case GE: result = m().mk_false(); return true;
|
||||
}
|
||||
}
|
||||
// mod x b <= b - 1
|
||||
if (c + rational::one() == abs(b) && kind == LE) {
|
||||
result = m().mk_true();
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ Copyright (c) 2016 Microsoft Corporation
|
|||
|
||||
Module Name:
|
||||
|
||||
fd_rewriter.cpp
|
||||
enum2bv_rewriter.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
|
@ -19,11 +19,11 @@ Notes:
|
|||
|
||||
#include"rewriter.h"
|
||||
#include"rewriter_def.h"
|
||||
#include"fd_rewriter.h"
|
||||
#include"enum2bv_rewriter.h"
|
||||
#include"ast_util.h"
|
||||
#include"ast_pp.h"
|
||||
|
||||
struct fd_rewriter::imp {
|
||||
struct enum2bv_rewriter::imp {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
obj_map<func_decl, func_decl*> m_enum2bv;
|
||||
|
@ -258,6 +258,7 @@ struct fd_rewriter::imp {
|
|||
m_enum_defs.resize(lim);
|
||||
m_enum_bvs.resize(lim);
|
||||
}
|
||||
m_rw.reset();
|
||||
}
|
||||
|
||||
void flush_side_constraints(expr_ref_vector& side_constraints) {
|
||||
|
@ -275,18 +276,18 @@ struct fd_rewriter::imp {
|
|||
};
|
||||
|
||||
|
||||
fd_rewriter::fd_rewriter(ast_manager & m, params_ref const& p) { m_imp = alloc(imp, m, p); }
|
||||
fd_rewriter::~fd_rewriter() { dealloc(m_imp); }
|
||||
void fd_rewriter::updt_params(params_ref const & p) { m_imp->updt_params(p); }
|
||||
ast_manager & fd_rewriter::m() const { return m_imp->m; }
|
||||
unsigned fd_rewriter::get_num_steps() const { return m_imp->get_num_steps(); }
|
||||
void fd_rewriter::cleanup() { ast_manager& mgr = m(); params_ref p = m_imp->m_params; dealloc(m_imp); m_imp = alloc(imp, mgr, p); }
|
||||
obj_map<func_decl, func_decl*> const& fd_rewriter::enum2bv() const { return m_imp->m_enum2bv; }
|
||||
obj_map<func_decl, func_decl*> const& fd_rewriter::bv2enum() const { return m_imp->m_bv2enum; }
|
||||
obj_map<func_decl, expr*> const& fd_rewriter::enum2def() const { return m_imp->m_enum2def; }
|
||||
void fd_rewriter::operator()(expr * e, expr_ref & result, proof_ref & result_proof) { (*m_imp)(e, result, result_proof); }
|
||||
void fd_rewriter::push() { m_imp->push(); }
|
||||
void fd_rewriter::pop(unsigned num_scopes) { m_imp->pop(num_scopes); }
|
||||
void fd_rewriter::flush_side_constraints(expr_ref_vector& side_constraints) { m_imp->flush_side_constraints(side_constraints); }
|
||||
unsigned fd_rewriter::num_translated() const { return m_imp->m_num_translated; }
|
||||
void fd_rewriter::set_is_fd(i_sort_pred* sp) const { m_imp->set_is_fd(sp); }
|
||||
enum2bv_rewriter::enum2bv_rewriter(ast_manager & m, params_ref const& p) { m_imp = alloc(imp, m, p); }
|
||||
enum2bv_rewriter::~enum2bv_rewriter() { dealloc(m_imp); }
|
||||
void enum2bv_rewriter::updt_params(params_ref const & p) { m_imp->updt_params(p); }
|
||||
ast_manager & enum2bv_rewriter::m() const { return m_imp->m; }
|
||||
unsigned enum2bv_rewriter::get_num_steps() const { return m_imp->get_num_steps(); }
|
||||
void enum2bv_rewriter::cleanup() { ast_manager& mgr = m(); params_ref p = m_imp->m_params; dealloc(m_imp); m_imp = alloc(imp, mgr, p); }
|
||||
obj_map<func_decl, func_decl*> const& enum2bv_rewriter::enum2bv() const { return m_imp->m_enum2bv; }
|
||||
obj_map<func_decl, func_decl*> const& enum2bv_rewriter::bv2enum() const { return m_imp->m_bv2enum; }
|
||||
obj_map<func_decl, expr*> const& enum2bv_rewriter::enum2def() const { return m_imp->m_enum2def; }
|
||||
void enum2bv_rewriter::operator()(expr * e, expr_ref & result, proof_ref & result_proof) { (*m_imp)(e, result, result_proof); }
|
||||
void enum2bv_rewriter::push() { m_imp->push(); }
|
||||
void enum2bv_rewriter::pop(unsigned num_scopes) { m_imp->pop(num_scopes); }
|
||||
void enum2bv_rewriter::flush_side_constraints(expr_ref_vector& side_constraints) { m_imp->flush_side_constraints(side_constraints); }
|
||||
unsigned enum2bv_rewriter::num_translated() const { return m_imp->m_num_translated; }
|
||||
void enum2bv_rewriter::set_is_fd(i_sort_pred* sp) const { m_imp->set_is_fd(sp); }
|
453
src/ast/rewriter/pb2bv_rewriter.cpp
Normal file
453
src/ast/rewriter/pb2bv_rewriter.cpp
Normal file
|
@ -0,0 +1,453 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
pb2bv_rewriter.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Conversion from pseudo-booleans to bit-vectors.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include"rewriter.h"
|
||||
#include"rewriter_def.h"
|
||||
#include"statistics.h"
|
||||
#include"pb2bv_rewriter.h"
|
||||
#include"sorting_network.h"
|
||||
#include"ast_util.h"
|
||||
#include"ast_pp.h"
|
||||
|
||||
|
||||
struct pb2bv_rewriter::imp {
|
||||
|
||||
struct argc_t {
|
||||
expr* m_arg;
|
||||
rational m_coeff;
|
||||
argc_t():m_arg(0), m_coeff(0) {}
|
||||
argc_t(expr* arg, rational const& r): m_arg(arg), m_coeff(r) {}
|
||||
};
|
||||
|
||||
struct argc_gt {
|
||||
bool operator()(argc_t const& a, argc_t const& b) const {
|
||||
return a.m_coeff > b.m_coeff;
|
||||
}
|
||||
};
|
||||
|
||||
struct argc_entry {
|
||||
unsigned m_index;
|
||||
rational m_k;
|
||||
expr* m_value;
|
||||
argc_entry(unsigned i, rational const& k): m_index(i), m_k(k), m_value(0) {}
|
||||
argc_entry():m_index(0), m_k(0), m_value(0) {}
|
||||
|
||||
struct eq {
|
||||
bool operator()(argc_entry const& a, argc_entry const& b) const {
|
||||
return a.m_index == b.m_index && a.m_k == b.m_k;
|
||||
}
|
||||
};
|
||||
struct hash {
|
||||
unsigned operator()(argc_entry const& a) const {
|
||||
return a.m_index ^ a.m_k.hash();
|
||||
}
|
||||
};
|
||||
};
|
||||
typedef hashtable<argc_entry, argc_entry::hash, argc_entry::eq> argc_cache;
|
||||
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
expr_ref_vector m_lemmas;
|
||||
func_decl_ref_vector m_fresh; // all fresh variables
|
||||
unsigned_vector m_fresh_lim;
|
||||
unsigned m_num_translated;
|
||||
|
||||
struct card2bv_rewriter {
|
||||
typedef expr* literal;
|
||||
typedef ptr_vector<expr> literal_vector;
|
||||
psort_nw<card2bv_rewriter> m_sort;
|
||||
ast_manager& m;
|
||||
imp& m_imp;
|
||||
arith_util au;
|
||||
pb_util pb;
|
||||
bv_util bv;
|
||||
expr_ref_vector m_trail;
|
||||
|
||||
unsigned get_num_bits(func_decl* f) {
|
||||
rational r(0);
|
||||
unsigned sz = f->get_arity();
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
r += pb.get_coeff(f, i);
|
||||
}
|
||||
r = r > pb.get_k(f)? r : pb.get_k(f);
|
||||
return r.get_num_bits();
|
||||
}
|
||||
|
||||
void mk_bv(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
|
||||
|
||||
expr_ref zero(m), a(m), b(m);
|
||||
expr_ref_vector es(m);
|
||||
unsigned bw = get_num_bits(f);
|
||||
zero = bv.mk_numeral(rational(0), bw);
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
es.push_back(mk_ite(args[i], bv.mk_numeral(pb.get_coeff(f, i), bw), zero));
|
||||
}
|
||||
switch (es.size()) {
|
||||
case 0: a = zero; break;
|
||||
case 1: a = es[0].get(); break;
|
||||
default:
|
||||
a = es[0].get();
|
||||
for (unsigned i = 1; i < es.size(); ++i) {
|
||||
a = bv.mk_bv_add(a, es[i].get());
|
||||
}
|
||||
break;
|
||||
}
|
||||
b = bv.mk_numeral(pb.get_k(f), bw);
|
||||
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_AT_MOST_K:
|
||||
case OP_PB_LE:
|
||||
result = bv.mk_ule(a, b);
|
||||
break;
|
||||
case OP_AT_LEAST_K:
|
||||
case OP_PB_GE:
|
||||
result = bv.mk_ule(b, a);
|
||||
break;
|
||||
case OP_PB_EQ:
|
||||
result = m.mk_eq(a, b);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
}
|
||||
TRACE("pb", tout << result << "\n";);
|
||||
}
|
||||
|
||||
bool mk_shannon(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
|
||||
decl_kind kind = f->get_decl_kind();
|
||||
if (kind != OP_PB_GE && kind != OP_AT_LEAST_K) {
|
||||
return false;
|
||||
}
|
||||
unsigned max_clauses = sz*10;
|
||||
vector<argc_t> argcs;
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
argcs.push_back(argc_t(args[i], pb.get_coeff(f, i)));
|
||||
}
|
||||
std::sort(argcs.begin(), argcs.end(), argc_gt());
|
||||
DEBUG_CODE(
|
||||
for (unsigned i = 0; i + 1 < sz; ++i) {
|
||||
SASSERT(argcs[i].m_coeff >= argcs[i+1].m_coeff);
|
||||
});
|
||||
result = m.mk_app(f, sz, args);
|
||||
TRACE("pb", tout << result << "\n";);
|
||||
argc_cache cache;
|
||||
expr_ref_vector trail(m);
|
||||
vector<rational> todo_k;
|
||||
unsigned_vector todo_i;
|
||||
todo_k.push_back(pb.get_k(f));
|
||||
todo_i.push_back(0);
|
||||
argc_entry entry1;
|
||||
while (!todo_i.empty()) {
|
||||
SASSERT(todo_i.size() == todo_k.size());
|
||||
if (cache.size() > max_clauses) {
|
||||
return false;
|
||||
}
|
||||
unsigned i = todo_i.back();
|
||||
rational k = todo_k.back();
|
||||
argc_entry entry(i, k);
|
||||
if (cache.contains(entry)) {
|
||||
todo_i.pop_back();
|
||||
todo_k.pop_back();
|
||||
continue;
|
||||
}
|
||||
SASSERT(i < sz);
|
||||
SASSERT(!k.is_neg());
|
||||
rational const& coeff = argcs[i].m_coeff;
|
||||
expr* arg = argcs[i].m_arg;
|
||||
if (i + 1 == sz) {
|
||||
if (k.is_zero()) {
|
||||
entry.m_value = m.mk_true();
|
||||
}
|
||||
else if (coeff < k) {
|
||||
entry.m_value = m.mk_false();
|
||||
}
|
||||
else if (coeff.is_zero()) {
|
||||
entry.m_value = m.mk_true();
|
||||
}
|
||||
else {
|
||||
SASSERT(coeff >= k && k.is_pos());
|
||||
entry.m_value = arg;
|
||||
}
|
||||
todo_i.pop_back();
|
||||
todo_k.pop_back();
|
||||
cache.insert(entry);
|
||||
continue;
|
||||
}
|
||||
entry.m_index++;
|
||||
expr* lo = 0, *hi = 0;
|
||||
if (cache.find(entry, entry1)) {
|
||||
lo = entry1.m_value;
|
||||
}
|
||||
else {
|
||||
todo_i.push_back(i+1);
|
||||
todo_k.push_back(k);
|
||||
}
|
||||
entry.m_k -= coeff;
|
||||
if (!entry.m_k.is_pos()) {
|
||||
hi = m.mk_true();
|
||||
}
|
||||
else if (cache.find(entry, entry1)) {
|
||||
hi = entry1.m_value;
|
||||
}
|
||||
else {
|
||||
todo_i.push_back(i+1);
|
||||
todo_k.push_back(entry.m_k);
|
||||
}
|
||||
if (hi && lo) {
|
||||
todo_i.pop_back();
|
||||
todo_k.pop_back();
|
||||
entry.m_index = i;
|
||||
entry.m_k = k;
|
||||
entry.m_value = mk_ite(arg, hi, lo);
|
||||
trail.push_back(entry.m_value);
|
||||
cache.insert(entry);
|
||||
}
|
||||
}
|
||||
argc_entry entry(0, pb.get_k(f));
|
||||
VERIFY(cache.find(entry, entry));
|
||||
result = entry.m_value;
|
||||
TRACE("pb", tout << result << "\n";);
|
||||
return true;
|
||||
}
|
||||
|
||||
expr* negate(expr* e) {
|
||||
if (m.is_not(e, e)) return e;
|
||||
return m.mk_not(e);
|
||||
}
|
||||
expr* mk_ite(expr* c, expr* hi, expr* lo) {
|
||||
while (m.is_not(c, c)) {
|
||||
std::swap(hi, lo);
|
||||
}
|
||||
if (hi == lo) return hi;
|
||||
if (m.is_true(hi) && m.is_false(lo)) return c;
|
||||
if (m.is_false(hi) && m.is_true(lo)) return negate(c);
|
||||
if (m.is_true(hi)) return m.mk_or(c, lo);
|
||||
if (m.is_false(lo)) return m.mk_and(c, hi);
|
||||
if (m.is_false(hi)) return m.mk_and(negate(c), lo);
|
||||
if (m.is_true(lo)) return m.mk_implies(c, hi);
|
||||
return m.mk_ite(c, hi, lo);
|
||||
}
|
||||
|
||||
bool is_or(func_decl* f) {
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_AT_MOST_K:
|
||||
case OP_PB_LE:
|
||||
return false;
|
||||
case OP_AT_LEAST_K:
|
||||
case OP_PB_GE:
|
||||
return pb.get_k(f).is_one();
|
||||
case OP_PB_EQ:
|
||||
return false;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
card2bv_rewriter(imp& i, ast_manager& m):
|
||||
m(m),
|
||||
m_imp(i),
|
||||
au(m),
|
||||
pb(m),
|
||||
bv(m),
|
||||
m_sort(*this),
|
||||
m_trail(m)
|
||||
{}
|
||||
|
||||
br_status mk_app_core(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
|
||||
if (f->get_family_id() == pb.get_family_id()) {
|
||||
mk_pb(f, sz, args, result);
|
||||
++m_imp.m_num_translated;
|
||||
return BR_DONE;
|
||||
}
|
||||
else if (f->get_family_id() == au.get_family_id() && mk_arith(f, sz, args, result)) {
|
||||
++m_imp.m_num_translated;
|
||||
return BR_DONE;
|
||||
}
|
||||
else {
|
||||
return BR_FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// NSB: review
|
||||
// we should remove this code and rely on a layer above to deal with
|
||||
// whatever it accomplishes. It seems to break types.
|
||||
//
|
||||
bool mk_arith(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
|
||||
if (f->get_decl_kind() == OP_ADD) {
|
||||
unsigned bits = 0;
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
rational val1, val2;
|
||||
if (au.is_int(args[i]) && au.is_numeral(args[i], val1)) {
|
||||
bits += val1.get_num_bits();
|
||||
}
|
||||
else if (m.is_ite(args[i]) &&
|
||||
au.is_numeral(to_app(args[i])->get_arg(1), val1) && val1.is_one() &&
|
||||
au.is_numeral(to_app(args[i])->get_arg(2), val2) && val2.is_zero()) {
|
||||
bits++;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
result = 0;
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
rational val1, val2;
|
||||
expr * q;
|
||||
if (au.is_int(args[i]) && au.is_numeral(args[i], val1))
|
||||
q = bv.mk_numeral(val1, bits);
|
||||
else
|
||||
q = mk_ite(to_app(args[i])->get_arg(0), bv.mk_numeral(1, bits), bv.mk_numeral(0, bits));
|
||||
result = (i == 0) ? q : bv.mk_bv_add(result.get(), q);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
void mk_pb(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
|
||||
SASSERT(f->get_family_id() == pb.get_family_id());
|
||||
if (is_or(f)) {
|
||||
result = m.mk_or(sz, args);
|
||||
}
|
||||
else if (pb.is_at_most_k(f) && pb.get_k(f).is_unsigned()) {
|
||||
result = m_sort.le(true, pb.get_k(f).get_unsigned(), sz, args);
|
||||
}
|
||||
else if (pb.is_at_least_k(f) && pb.get_k(f).is_unsigned()) {
|
||||
result = m_sort.ge(true, pb.get_k(f).get_unsigned(), sz, args);
|
||||
}
|
||||
else if (pb.is_eq(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
|
||||
result = m_sort.eq(pb.get_k(f).get_unsigned(), sz, args);
|
||||
}
|
||||
else if (pb.is_le(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
|
||||
result = m_sort.le(true, pb.get_k(f).get_unsigned(), sz, args);
|
||||
}
|
||||
else if (pb.is_ge(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
|
||||
result = m_sort.ge(true, pb.get_k(f).get_unsigned(), sz, args);
|
||||
}
|
||||
else if (!mk_shannon(f, sz, args, result)) {
|
||||
mk_bv(f, sz, args, result);
|
||||
}
|
||||
}
|
||||
|
||||
// definitions used for sorting network
|
||||
literal mk_false() { return m.mk_false(); }
|
||||
literal mk_true() { return m.mk_true(); }
|
||||
literal mk_max(literal a, literal b) { return trail(m.mk_or(a, b)); }
|
||||
literal mk_min(literal a, literal b) { return trail(m.mk_and(a, b)); }
|
||||
literal mk_not(literal a) { if (m.is_not(a,a)) return a; return trail(m.mk_not(a)); }
|
||||
|
||||
std::ostream& pp(std::ostream& out, literal lit) { return out << mk_ismt2_pp(lit, m); }
|
||||
|
||||
literal trail(literal l) {
|
||||
m_trail.push_back(l);
|
||||
return l;
|
||||
}
|
||||
literal fresh() {
|
||||
expr_ref fr(m.mk_fresh_const("sn", m.mk_bool_sort()), m);
|
||||
m_imp.m_fresh.push_back(to_app(fr)->get_decl());
|
||||
return trail(fr);
|
||||
}
|
||||
|
||||
void mk_clause(unsigned n, literal const* lits) {
|
||||
m_imp.m_lemmas.push_back(mk_or(m, n, lits));
|
||||
}
|
||||
};
|
||||
|
||||
struct card2bv_rewriter_cfg : public default_rewriter_cfg {
|
||||
card2bv_rewriter m_r;
|
||||
bool rewrite_patterns() const { return false; }
|
||||
bool flat_assoc(func_decl * f) const { return false; }
|
||||
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
|
||||
result_pr = 0;
|
||||
return m_r.mk_app_core(f, num, args, result);
|
||||
}
|
||||
card2bv_rewriter_cfg(imp& i, ast_manager & m):m_r(i, m) {}
|
||||
};
|
||||
|
||||
class card_pb_rewriter : public rewriter_tpl<card2bv_rewriter_cfg> {
|
||||
public:
|
||||
card2bv_rewriter_cfg m_cfg;
|
||||
card_pb_rewriter(imp& i, ast_manager & m):
|
||||
rewriter_tpl<card2bv_rewriter_cfg>(m, false, m_cfg),
|
||||
m_cfg(i, m) {}
|
||||
};
|
||||
|
||||
card_pb_rewriter m_rw;
|
||||
|
||||
imp(ast_manager& m, params_ref const& p):
|
||||
m(m), m_params(p), m_lemmas(m),
|
||||
m_fresh(m),
|
||||
m_num_translated(0),
|
||||
m_rw(*this, m) {
|
||||
}
|
||||
|
||||
void updt_params(params_ref const & p) {}
|
||||
unsigned get_num_steps() const { return m_rw.get_num_steps(); }
|
||||
void cleanup() { m_rw.cleanup(); }
|
||||
void operator()(expr * e, expr_ref & result, proof_ref & result_proof) {
|
||||
m_rw(e, result, result_proof);
|
||||
}
|
||||
void push() {
|
||||
m_fresh_lim.push_back(m_fresh.size());
|
||||
}
|
||||
void pop(unsigned num_scopes) {
|
||||
SASSERT(m_lemmas.empty()); // lemmas must be flushed before pop.
|
||||
if (num_scopes > 0) {
|
||||
SASSERT(num_scopes <= m_fresh_lim.size());
|
||||
unsigned new_sz = m_fresh_lim.size() - num_scopes;
|
||||
unsigned lim = m_fresh_lim[new_sz];
|
||||
m_fresh.resize(lim);
|
||||
m_fresh_lim.resize(new_sz);
|
||||
}
|
||||
m_rw.reset();
|
||||
}
|
||||
|
||||
void flush_side_constraints(expr_ref_vector& side_constraints) {
|
||||
side_constraints.append(m_lemmas);
|
||||
m_lemmas.reset();
|
||||
}
|
||||
|
||||
void collect_statistics(statistics & st) const {
|
||||
st.update("pb-aux-variables", m_fresh.size());
|
||||
st.update("pb-aux-clauses", m_rw.m_cfg.m_r.m_sort.m_stats.m_num_compiled_clauses);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
pb2bv_rewriter::pb2bv_rewriter(ast_manager & m, params_ref const& p) { m_imp = alloc(imp, m, p); }
|
||||
pb2bv_rewriter::~pb2bv_rewriter() { dealloc(m_imp); }
|
||||
void pb2bv_rewriter::updt_params(params_ref const & p) { m_imp->updt_params(p); }
|
||||
ast_manager & pb2bv_rewriter::m() const { return m_imp->m; }
|
||||
unsigned pb2bv_rewriter::get_num_steps() const { return m_imp->get_num_steps(); }
|
||||
void pb2bv_rewriter::cleanup() { ast_manager& mgr = m(); params_ref p = m_imp->m_params; dealloc(m_imp); m_imp = alloc(imp, mgr, p); }
|
||||
func_decl_ref_vector const& pb2bv_rewriter::fresh_constants() const { return m_imp->m_fresh; }
|
||||
void pb2bv_rewriter::operator()(expr * e, expr_ref & result, proof_ref & result_proof) { (*m_imp)(e, result, result_proof); }
|
||||
void pb2bv_rewriter::push() { m_imp->push(); }
|
||||
void pb2bv_rewriter::pop(unsigned num_scopes) { m_imp->pop(num_scopes); }
|
||||
void pb2bv_rewriter::flush_side_constraints(expr_ref_vector& side_constraints) { m_imp->flush_side_constraints(side_constraints); }
|
||||
unsigned pb2bv_rewriter::num_translated() const { return m_imp->m_num_translated; }
|
||||
|
||||
void pb2bv_rewriter::collect_statistics(statistics & st) const { m_imp->collect_statistics(st); }
|
|
@ -3,46 +3,44 @@ Copyright (c) 2016 Microsoft Corporation
|
|||
|
||||
Module Name:
|
||||
|
||||
fd_rewriter.h
|
||||
pb2bv_rewriter.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Conversion from enumeration types to bit-vectors.
|
||||
Conversion from pseudo-booleans to bit-vectors.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-18
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef ENUM_REWRITER_H_
|
||||
#define ENUM_REWRITER_H_
|
||||
#ifndef PB2BV_REWRITER_H_
|
||||
#define PB2BV_REWRITER_H_
|
||||
|
||||
#include"datatype_decl_plugin.h"
|
||||
#include"pb_decl_plugin.h"
|
||||
#include"rewriter_types.h"
|
||||
#include"expr_functors.h"
|
||||
|
||||
class fd_rewriter {
|
||||
class pb2bv_rewriter {
|
||||
struct imp;
|
||||
imp* m_imp;
|
||||
public:
|
||||
fd_rewriter(ast_manager & m, params_ref const& p);
|
||||
~fd_rewriter();
|
||||
pb2bv_rewriter(ast_manager & m, params_ref const& p);
|
||||
~pb2bv_rewriter();
|
||||
|
||||
void updt_params(params_ref const & p);
|
||||
ast_manager & m() const;
|
||||
unsigned get_num_steps() const;
|
||||
void cleanup();
|
||||
obj_map<func_decl, func_decl*> const& enum2bv() const;
|
||||
obj_map<func_decl, func_decl*> const& bv2enum() const;
|
||||
obj_map<func_decl, expr*> const& enum2def() const;
|
||||
func_decl_ref_vector const& fresh_constants() const;
|
||||
void operator()(expr * e, expr_ref & result, proof_ref & result_proof);
|
||||
void push();
|
||||
void pop(unsigned num_scopes);
|
||||
void flush_side_constraints(expr_ref_vector& side_constraints);
|
||||
unsigned num_translated() const;
|
||||
void set_is_fd(i_sort_pred* sp) const;
|
||||
void collect_statistics(statistics & st) const;
|
||||
};
|
||||
|
||||
#endif
|
|
@ -257,7 +257,12 @@ br_status pb_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * cons
|
|||
all_unit &= m_coeffs.back().is_one();
|
||||
}
|
||||
if (is_eq) {
|
||||
result = m_util.mk_eq(sz, m_coeffs.c_ptr(), m_args.c_ptr(), k);
|
||||
if (sz == 0) {
|
||||
result = k.is_zero()?m.mk_true():m.mk_false();
|
||||
}
|
||||
else {
|
||||
result = m_util.mk_eq(sz, m_coeffs.c_ptr(), m_args.c_ptr(), k);
|
||||
}
|
||||
}
|
||||
else if (all_unit && k.is_one()) {
|
||||
result = mk_or(m, sz, m_args.c_ptr());
|
||||
|
|
|
@ -182,8 +182,8 @@ struct check_logic::imp {
|
|||
m_quantifiers = false;
|
||||
}
|
||||
else if (logic == "QF_FD") {
|
||||
m_bvs = true;
|
||||
m_uf = true;
|
||||
m_bvs = true;
|
||||
m_uf = true;
|
||||
m_ints = true;
|
||||
}
|
||||
else {
|
||||
|
|
|
@ -547,6 +547,7 @@ bool cmd_context::logic_has_arith_core(symbol const & s) const {
|
|||
s == "QF_BVFP" ||
|
||||
s == "QF_S" ||
|
||||
s == "ALL" ||
|
||||
s == "QF_FD" ||
|
||||
s == "HORN";
|
||||
}
|
||||
|
||||
|
|
|
@ -297,12 +297,16 @@ public:
|
|||
sort_assumptions(mutex);
|
||||
ptr_vector<expr> core(mutex.size(), mutex.c_ptr());
|
||||
remove_soft(core, m_asms);
|
||||
rational weight(0);
|
||||
rational weight(0), sum1(0), sum2(0);
|
||||
for (unsigned i = 0; i < mutex.size(); ++i) {
|
||||
sum1 += get_weight(mutex[i].get());
|
||||
}
|
||||
while (!mutex.empty()) {
|
||||
expr_ref soft = mk_or(mutex);
|
||||
rational w = get_weight(mutex.back());
|
||||
weight = w - weight;
|
||||
m_lower += weight*rational(mutex.size()-1);
|
||||
sum2 += weight*rational(mutex.size());
|
||||
add_soft(soft, weight);
|
||||
mutex.pop_back();
|
||||
while (!mutex.empty() && get_weight(mutex.back()) == w) {
|
||||
|
@ -310,6 +314,7 @@ public:
|
|||
}
|
||||
weight = w;
|
||||
}
|
||||
SASSERT(sum1 == sum2);
|
||||
}
|
||||
|
||||
lbool check_sat_hill_climb(expr_ref_vector& asms1) {
|
||||
|
@ -398,7 +403,7 @@ public:
|
|||
while (is_sat == l_false) {
|
||||
core.reset();
|
||||
s().get_unsat_core(core);
|
||||
//verify_core(core);
|
||||
// verify_core(core);
|
||||
model_ref mdl;
|
||||
get_mus_model(mdl);
|
||||
is_sat = minimize_core(core);
|
||||
|
@ -772,8 +777,6 @@ public:
|
|||
for (unsigned i = 0; i < m_soft.size(); ++i) {
|
||||
m_assignment[i] = is_true(m_soft[i]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
DEBUG_CODE(verify_assignment(););
|
||||
|
||||
|
|
|
@ -181,6 +181,43 @@ namespace opt {
|
|||
clear_state();
|
||||
}
|
||||
|
||||
void context::get_hard_constraints(expr_ref_vector& hard) {
|
||||
hard.append(m_scoped_state.m_hard);
|
||||
}
|
||||
|
||||
expr_ref context::get_objective(unsigned i) {
|
||||
SASSERT(i < num_objectives());
|
||||
objective const& o = m_scoped_state.m_objectives[i];
|
||||
expr_ref result(m), zero(m);
|
||||
expr_ref_vector args(m);
|
||||
switch (o.m_type) {
|
||||
case O_MAXSMT:
|
||||
zero = m_arith.mk_numeral(rational(0), false);
|
||||
for (unsigned i = 0; i < o.m_terms.size(); ++i) {
|
||||
args.push_back(m.mk_ite(o.m_terms[i], zero, m_arith.mk_numeral(o.m_weights[i], false)));
|
||||
}
|
||||
result = m_arith.mk_add(args.size(), args.c_ptr());
|
||||
break;
|
||||
case O_MAXIMIZE:
|
||||
result = o.m_term;
|
||||
if (m_arith.is_arith_expr(result)) {
|
||||
result = m_arith.mk_uminus(result);
|
||||
}
|
||||
else if (m_bv.is_bv(result)) {
|
||||
result = m_bv.mk_bv_neg(result);
|
||||
}
|
||||
else {
|
||||
UNREACHABLE();
|
||||
}
|
||||
break;
|
||||
case O_MINIMIZE:
|
||||
result = o.m_term;
|
||||
break;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
unsigned context::add_soft_constraint(expr* f, rational const& w, symbol const& id) {
|
||||
clear_state();
|
||||
return m_scoped_state.add(f, w, id);
|
||||
|
@ -1328,14 +1365,21 @@ namespace opt {
|
|||
}
|
||||
|
||||
std::string context::to_string() const {
|
||||
return to_string(m_scoped_state.m_hard, m_scoped_state.m_objectives);
|
||||
}
|
||||
|
||||
std::string context::to_string_internal() const {
|
||||
return to_string(m_hard_constraints, m_objectives);
|
||||
}
|
||||
|
||||
std::string context::to_string(expr_ref_vector const& hard, vector<objective> const& objectives) const {
|
||||
smt2_pp_environment_dbg env(m);
|
||||
ast_pp_util visitor(m);
|
||||
std::ostringstream out;
|
||||
#define PP(_e_) ast_smt2_pp(out, _e_, env);
|
||||
visitor.collect(m_scoped_state.m_hard);
|
||||
visitor.collect(hard);
|
||||
|
||||
for (unsigned i = 0; i < m_scoped_state.m_objectives.size(); ++i) {
|
||||
objective const& obj = m_scoped_state.m_objectives[i];
|
||||
for (unsigned i = 0; i < objectives.size(); ++i) {
|
||||
objective const& obj = objectives[i];
|
||||
switch(obj.m_type) {
|
||||
case O_MAXIMIZE:
|
||||
case O_MINIMIZE:
|
||||
|
@ -1351,33 +1395,34 @@ namespace opt {
|
|||
}
|
||||
|
||||
visitor.display_decls(out);
|
||||
visitor.display_asserts(out, m_scoped_state.m_hard, m_pp_neat);
|
||||
for (unsigned i = 0; i < m_scoped_state.m_objectives.size(); ++i) {
|
||||
objective const& obj = m_scoped_state.m_objectives[i];
|
||||
visitor.display_asserts(out, hard, m_pp_neat);
|
||||
for (unsigned i = 0; i < objectives.size(); ++i) {
|
||||
objective const& obj = objectives[i];
|
||||
switch(obj.m_type) {
|
||||
case O_MAXIMIZE:
|
||||
out << "(maximize ";
|
||||
PP(obj.m_term);
|
||||
ast_smt2_pp(out, obj.m_term, env);
|
||||
out << ")\n";
|
||||
break;
|
||||
case O_MINIMIZE:
|
||||
out << "(minimize ";
|
||||
PP(obj.m_term);
|
||||
ast_smt2_pp(out, obj.m_term, env);
|
||||
out << ")\n";
|
||||
break;
|
||||
case O_MAXSMT:
|
||||
for (unsigned j = 0; j < obj.m_terms.size(); ++j) {
|
||||
out << "(assert-soft ";
|
||||
PP(obj.m_terms[j]);
|
||||
ast_smt2_pp(out, obj.m_terms[j], env);
|
||||
rational w = obj.m_weights[j];
|
||||
if (w.is_int()) {
|
||||
out << " :weight " << w;
|
||||
}
|
||||
else {
|
||||
out << " :dweight " << w;
|
||||
}
|
||||
|
||||
w.display_decimal(out << " :weight ", 3, true);
|
||||
if (obj.m_id != symbol::null) {
|
||||
out << " :id " << obj.m_id;
|
||||
if (is_smt2_quoted_symbol(obj.m_id)) {
|
||||
out << " :id " << mk_smt2_quoted_symbol(obj.m_id);
|
||||
}
|
||||
else {
|
||||
out << " :id " << obj.m_id;
|
||||
}
|
||||
}
|
||||
out << ")\n";
|
||||
}
|
||||
|
|
|
@ -175,6 +175,8 @@ namespace opt {
|
|||
unsigned add_objective(app* t, bool is_max);
|
||||
void add_hard_constraint(expr* f);
|
||||
|
||||
void get_hard_constraints(expr_ref_vector& hard);
|
||||
expr_ref get_objective(unsigned i);
|
||||
|
||||
virtual void push();
|
||||
virtual void pop(unsigned n);
|
||||
|
@ -208,7 +210,7 @@ namespace opt {
|
|||
std::string to_string() const;
|
||||
|
||||
|
||||
virtual unsigned num_objectives() { return m_objectives.size(); }
|
||||
virtual unsigned num_objectives() { return m_scoped_state.m_objectives.size(); }
|
||||
virtual expr_ref mk_gt(unsigned i, model_ref& model);
|
||||
virtual expr_ref mk_ge(unsigned i, model_ref& model);
|
||||
virtual expr_ref mk_le(unsigned i, model_ref& model);
|
||||
|
@ -284,6 +286,9 @@ namespace opt {
|
|||
void display_objective(std::ostream& out, objective const& obj) const;
|
||||
void display_bounds(std::ostream& out, bounds_t const& b) const;
|
||||
|
||||
std::string to_string(expr_ref_vector const& hard, vector<objective> const& objectives) const;
|
||||
std::string to_string_internal() const;
|
||||
|
||||
|
||||
void validate_lex();
|
||||
|
||||
|
|
|
@ -90,19 +90,6 @@ namespace opt {
|
|||
virtual void get_labels(svector<symbol> & r) {
|
||||
m_solver->get_labels(r);
|
||||
}
|
||||
virtual void set_cancel(bool f) {
|
||||
m_solver->set_cancel(f);
|
||||
m_pb2bv.set_cancel(f);
|
||||
#pragma omp critical (sls_solver)
|
||||
{
|
||||
if (m_bvsls) {
|
||||
m_bvsls->set_cancel(f);
|
||||
}
|
||||
if (m_pbsls) {
|
||||
m_pbsls->set_cancel(f);
|
||||
}
|
||||
}
|
||||
}
|
||||
virtual void set_progress_callback(progress_callback * callback) {
|
||||
m_solver->set_progress_callback(callback);
|
||||
}
|
||||
|
@ -203,14 +190,11 @@ namespace opt {
|
|||
}
|
||||
|
||||
void pbsls_opt(model_ref& mdl) {
|
||||
#pragma omp critical (sls_solver)
|
||||
{
|
||||
if (m_pbsls) {
|
||||
m_pbsls->reset();
|
||||
}
|
||||
else {
|
||||
m_pbsls = alloc(smt::pb_sls, m);
|
||||
}
|
||||
if (m_pbsls) {
|
||||
m_pbsls->reset();
|
||||
}
|
||||
else {
|
||||
m_pbsls = alloc(smt::pb_sls, m);
|
||||
}
|
||||
m_pbsls->set_model(mdl);
|
||||
m_pbsls->updt_params(m_params);
|
||||
|
@ -226,10 +210,7 @@ namespace opt {
|
|||
}
|
||||
|
||||
void bvsls_opt(model_ref& mdl) {
|
||||
#pragma omp critical (sls_solver)
|
||||
{
|
||||
m_bvsls = alloc(bvsls_opt_engine, m, m_params);
|
||||
}
|
||||
m_bvsls = alloc(bvsls_opt_engine, m, m_params);
|
||||
assertions2sls();
|
||||
expr_ref objective = soft2bv(m_soft, m_weights);
|
||||
TRACE("opt", tout << objective << "\n";);
|
||||
|
|
|
@ -373,7 +373,7 @@ namespace smt {
|
|||
expr* n = vars[i];
|
||||
bool neg = m_manager.is_not(n, n);
|
||||
if (b_internalized(n)) {
|
||||
lits.insert(literal(get_bool_var(n), !neg).index());
|
||||
lits.insert(literal(get_bool_var(n), neg).index());
|
||||
}
|
||||
}
|
||||
while (!lits.empty()) {
|
||||
|
|
|
@ -1281,7 +1281,7 @@ namespace smt {
|
|||
The deletion event handler is ignored if binary clause optimization is applicable.
|
||||
*/
|
||||
clause * context::mk_clause(unsigned num_lits, literal * lits, justification * j, clause_kind k, clause_del_eh * del_eh) {
|
||||
TRACE("mk_clause", tout << "creating clause:\n"; display_literals(tout, num_lits, lits); tout << "\n";);
|
||||
TRACE("mk_clause", tout << "creating clause:\n"; display_literals_verbose(tout, num_lits, lits); tout << "\n";);
|
||||
switch (k) {
|
||||
case CLS_AUX: {
|
||||
literal_buffer simp_lits;
|
||||
|
|
|
@ -222,6 +222,12 @@ namespace smt {
|
|||
m_imp->assert_expr(e);
|
||||
}
|
||||
|
||||
void kernel::assert_expr(expr_ref_vector const& es) {
|
||||
for (unsigned i = 0; i < es.size(); ++i) {
|
||||
m_imp->assert_expr(es[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void kernel::assert_expr(expr * e, proof * pr) {
|
||||
m_imp->assert_expr(e, pr);
|
||||
}
|
||||
|
|
|
@ -70,7 +70,8 @@ namespace smt {
|
|||
This method uses the "asserted" proof as a justification for e.
|
||||
*/
|
||||
void assert_expr(expr * e);
|
||||
|
||||
|
||||
void assert_expr(expr_ref_vector const& es);
|
||||
/**
|
||||
\brief Assert the given assertion with the given proof as a justification.
|
||||
*/
|
||||
|
|
|
@ -1709,7 +1709,7 @@ namespace smt {
|
|||
SASSERT(!maintain_integrality || valid_assignment());
|
||||
SASSERT(satisfy_bounds());
|
||||
}
|
||||
TRACE("opt", display(tout););
|
||||
TRACE("opt_verbose", display(tout););
|
||||
return (best_efforts>0 || ctx.get_cancel_flag())?BEST_EFFORT:result;
|
||||
}
|
||||
|
||||
|
|
|
@ -1385,7 +1385,7 @@ namespace smt {
|
|||
m_branch_cut_counter++;
|
||||
// TODO: add giveup code
|
||||
if (m_branch_cut_counter % m_params.m_arith_branch_cut_ratio == 0) {
|
||||
TRACE("opt", display(tout););
|
||||
TRACE("opt_verbose", display(tout););
|
||||
move_non_base_vars_to_bounds();
|
||||
if (!make_feasible()) {
|
||||
TRACE("arith_int", tout << "failed to move variables to bounds.\n";);
|
||||
|
|
|
@ -704,8 +704,8 @@ namespace smt {
|
|||
bool bounded = false;
|
||||
unsigned n = 0;
|
||||
numeral range;
|
||||
for (unsigned i = 0; i < m_nl_monomials.size(); i++) {
|
||||
theory_var v = m_nl_monomials[i];
|
||||
for (unsigned j = 0; j < m_nl_monomials.size(); ++j) {
|
||||
theory_var v = m_nl_monomials[j];
|
||||
if (is_real(v))
|
||||
continue;
|
||||
bool computed_epsilon = false;
|
||||
|
@ -2336,8 +2336,8 @@ namespace smt {
|
|||
bool theory_arith<Ext>::max_min_nl_vars() {
|
||||
var_set already_found;
|
||||
svector<theory_var> vars;
|
||||
for (unsigned i = 0; i < m_nl_monomials.size(); i++) {
|
||||
theory_var v = m_nl_monomials[i];
|
||||
for (unsigned j = 0; j < m_nl_monomials.size(); ++j) {
|
||||
theory_var v = m_nl_monomials[j];
|
||||
mark_var(v, vars, already_found);
|
||||
expr * n = var2expr(v);
|
||||
SASSERT(is_pure_monomial(n));
|
||||
|
|
|
@ -321,7 +321,8 @@ namespace smt {
|
|||
if (m_simplex.upper_valid(v)) {
|
||||
m_simplex.get_upper(v, last_bound);
|
||||
if (m_mpq_inf_mgr.gt(bound, last_bound)) {
|
||||
literal lit = m_explain_upper.get(v, null_literal);
|
||||
literal lit = m_explain_upper.get(v, null_literal);
|
||||
TRACE("pb", tout << ~lit << " " << ~explain << "\n";);
|
||||
get_context().mk_clause(~lit, ~explain, justify(~lit, ~explain));
|
||||
return false;
|
||||
}
|
||||
|
@ -342,6 +343,7 @@ namespace smt {
|
|||
m_simplex.get_lower(v, last_bound);
|
||||
if (m_mpq_inf_mgr.gt(last_bound, bound)) {
|
||||
literal lit = m_explain_lower.get(v, null_literal);
|
||||
TRACE("pb", tout << ~lit << " " << ~explain << "\n";);
|
||||
get_context().mk_clause(~lit, ~explain, justify(~lit, ~explain));
|
||||
return false;
|
||||
}
|
||||
|
@ -405,6 +407,7 @@ namespace smt {
|
|||
if (proofs_enabled()) {
|
||||
js = alloc(theory_lemma_justification, get_id(), ctx, lits.size(), lits.c_ptr());
|
||||
}
|
||||
TRACE("pb", tout << lits << "\n";);
|
||||
ctx.mk_clause(lits.size(), lits.c_ptr(), js, CLS_AUX_LEMMA, 0);
|
||||
|
||||
return false;
|
||||
|
@ -515,11 +518,10 @@ namespace smt {
|
|||
++log;
|
||||
n *= 2;
|
||||
}
|
||||
unsigned th = args.size()*log; // 10*
|
||||
unsigned th = args.size()*log;
|
||||
c->m_compilation_threshold = th;
|
||||
IF_VERBOSE(2, verbose_stream() << "(smt.pb setting compilation threhshold to " << th << ")\n";);
|
||||
IF_VERBOSE(2, verbose_stream() << "(smt.pb setting compilation threshold to " << th << ")\n";);
|
||||
TRACE("pb", tout << "compilation threshold: " << th << "\n";);
|
||||
//compile_ineq(*c);
|
||||
}
|
||||
else {
|
||||
c->m_compilation_threshold = UINT_MAX;
|
||||
|
@ -1247,9 +1249,9 @@ namespace smt {
|
|||
literal_vector in;
|
||||
for (unsigned i = 0; i < num_args; ++i) {
|
||||
rational n = c.coeff(i);
|
||||
lbool val = ctx.get_assignment(c.lit());
|
||||
if (val != l_undef &&
|
||||
ctx.get_assign_level(thl) == ctx.get_base_level()) {
|
||||
literal lit = c.lit(i);
|
||||
lbool val = ctx.get_assignment(lit);
|
||||
if (val != l_undef && ctx.get_assign_level(lit) == ctx.get_base_level()) {
|
||||
if (val == l_true) {
|
||||
unsigned m = n.get_unsigned();
|
||||
if (k < m) {
|
||||
|
@ -1264,38 +1266,35 @@ namespace smt {
|
|||
n -= rational::one();
|
||||
}
|
||||
}
|
||||
|
||||
TRACE("pb", tout << in << " >= " << k << "\n";);
|
||||
|
||||
unsigned num_compiled_vars, num_compiled_clauses;
|
||||
|
||||
psort_expr ps(ctx, *this);
|
||||
psort_nw<psort_expr> sortnw(ps);
|
||||
sortnw.m_stats.reset();
|
||||
|
||||
if (ctx.get_assignment(thl) == l_true &&
|
||||
ctx.get_assign_level(thl) == ctx.get_base_level()) {
|
||||
psort_expr ps(ctx, *this);
|
||||
psort_nw<psort_expr> sortnw(ps);
|
||||
sortnw.m_stats.reset();
|
||||
at_least_k = sortnw.ge(false, k, in.size(), in.c_ptr());
|
||||
TRACE("pb", tout << ~thl << " " << at_least_k << "\n";);
|
||||
ctx.mk_clause(~thl, at_least_k, justify(~thl, at_least_k));
|
||||
num_compiled_vars = sortnw.m_stats.m_num_compiled_vars;
|
||||
num_compiled_clauses = sortnw.m_stats.m_num_compiled_clauses;
|
||||
}
|
||||
else {
|
||||
psort_expr ps(ctx, *this);
|
||||
psort_nw<psort_expr> sortnw(ps);
|
||||
sortnw.m_stats.reset();
|
||||
literal at_least_k = sortnw.ge(true, k, in.size(), in.c_ptr());
|
||||
TRACE("pb", tout << ~thl << " " << at_least_k << "\n";);
|
||||
ctx.mk_clause(~thl, at_least_k, justify(~thl, at_least_k));
|
||||
ctx.mk_clause(~at_least_k, thl, justify(thl, ~at_least_k));
|
||||
num_compiled_vars = sortnw.m_stats.m_num_compiled_vars;
|
||||
num_compiled_clauses = sortnw.m_stats.m_num_compiled_clauses;
|
||||
}
|
||||
m_stats.m_num_compiled_vars += num_compiled_vars;
|
||||
m_stats.m_num_compiled_clauses += num_compiled_clauses;
|
||||
m_stats.m_num_compiled_vars += sortnw.m_stats.m_num_compiled_vars;
|
||||
m_stats.m_num_compiled_clauses += sortnw.m_stats.m_num_compiled_clauses;
|
||||
|
||||
IF_VERBOSE(1, verbose_stream()
|
||||
<< "(smt.pb compile sorting network bound: "
|
||||
<< k << " literals: " << in.size()
|
||||
<< " clauses: " << num_compiled_clauses
|
||||
<< " vars: " << num_compiled_vars << ")\n";);
|
||||
|
||||
TRACE("pb", tout << thl << "\n";);
|
||||
// auxiliary clauses get removed when popping scopes.
|
||||
// we have to recompile the circuit after back-tracking.
|
||||
c.m_compiled = l_false;
|
||||
|
@ -1305,7 +1304,6 @@ namespace smt {
|
|||
|
||||
|
||||
void theory_pb::init_search_eh() {
|
||||
m_to_compile.reset();
|
||||
}
|
||||
|
||||
void theory_pb::push_scope_eh() {
|
||||
|
@ -1334,6 +1332,7 @@ namespace smt {
|
|||
m_ineq_rep.erase(r_info.m_rep);
|
||||
}
|
||||
}
|
||||
m_to_compile.erase(c);
|
||||
dealloc(c);
|
||||
}
|
||||
m_ineqs_lim.resize(new_lim);
|
||||
|
@ -1459,6 +1458,7 @@ namespace smt {
|
|||
if (proofs_enabled()) {
|
||||
js = alloc(theory_lemma_justification, get_id(), ctx, lits.size(), lits.c_ptr());
|
||||
}
|
||||
TRACE("pb", tout << lits << "\n";);
|
||||
ctx.mk_clause(lits.size(), lits.c_ptr(), js, CLS_AUX_LEMMA, 0);
|
||||
}
|
||||
|
||||
|
@ -1765,6 +1765,7 @@ namespace smt {
|
|||
for (unsigned i = 0; i < m_ineq_literals.size(); ++i) {
|
||||
m_ineq_literals[i].neg();
|
||||
}
|
||||
TRACE("pb", tout << m_ineq_literals << "\n";);
|
||||
ctx.mk_clause(m_ineq_literals.size(), m_ineq_literals.c_ptr(), justify(m_ineq_literals), CLS_AUX_LEMMA, 0);
|
||||
break;
|
||||
default: {
|
||||
|
|
|
@ -34,7 +34,7 @@ class bv2int_rewriter_ctx {
|
|||
|
||||
public:
|
||||
bv2int_rewriter_ctx(ast_manager& m, params_ref const& p) :
|
||||
m_side_conditions(m), m_trail(m) { update_params(p); }
|
||||
m_max_size(UINT_MAX), m_side_conditions(m), m_trail(m) { update_params(p); }
|
||||
|
||||
void reset() { m_side_conditions.reset(); m_trail.reset(); m_power2.reset(); }
|
||||
void add_side_condition(expr* e) { m_side_conditions.push_back(e); }
|
||||
|
|
|
@ -18,500 +18,22 @@ Notes:
|
|||
--*/
|
||||
#include"tactical.h"
|
||||
#include"cooperate.h"
|
||||
#include"rewriter_def.h"
|
||||
#include"ast_smt2_pp.h"
|
||||
#include"expr_substitution.h"
|
||||
#include"card2bv_tactic.h"
|
||||
#include"pb_rewriter.h"
|
||||
#include"pb2bv_rewriter.h"
|
||||
#include"ast_util.h"
|
||||
#include"ast_pp.h"
|
||||
|
||||
namespace pb {
|
||||
unsigned card2bv_rewriter::get_num_bits(func_decl* f) {
|
||||
rational r(0);
|
||||
unsigned sz = f->get_arity();
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
r += pb.get_coeff(f, i);
|
||||
}
|
||||
r = r > pb.get_k(f)? r : pb.get_k(f);
|
||||
return r.get_num_bits();
|
||||
}
|
||||
|
||||
card2bv_rewriter::card2bv_rewriter(ast_manager& m):
|
||||
m(m),
|
||||
au(m),
|
||||
pb(m),
|
||||
bv(m),
|
||||
m_sort(*this),
|
||||
m_lemmas(m),
|
||||
m_trail(m)
|
||||
{}
|
||||
|
||||
void card2bv_rewriter::mk_assert(func_decl * f, unsigned sz, expr * const* args, expr_ref & result, expr_ref_vector& lemmas) {
|
||||
m_lemmas.reset();
|
||||
SASSERT(f->get_family_id() == pb.get_family_id());
|
||||
if (is_or(f)) {
|
||||
result = m.mk_or(sz, args);
|
||||
}
|
||||
else if (is_and(f)) {
|
||||
result = m.mk_and(sz, args);
|
||||
}
|
||||
else if (pb.is_eq(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
|
||||
result = m_sort.eq(pb.get_k(f).get_unsigned(), sz, args);
|
||||
}
|
||||
else if (pb.is_le(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
|
||||
result = m_sort.le(false, pb.get_k(f).get_unsigned(), sz, args);
|
||||
}
|
||||
else if (pb.is_ge(f) && pb.get_k(f).is_unsigned() && pb.has_unit_coefficients(f)) {
|
||||
result = m_sort.ge(false, pb.get_k(f).get_unsigned(), sz, args);
|
||||
}
|
||||
else {
|
||||
br_status st = mk_shannon(f, sz, args, result);
|
||||
if (st == BR_FAILED) {
|
||||
mk_bv(f, sz, args, result);
|
||||
}
|
||||
}
|
||||
lemmas.append(m_lemmas);
|
||||
}
|
||||
|
||||
std::ostream& card2bv_rewriter::pp(std::ostream& out, literal lit) {
|
||||
return out << mk_ismt2_pp(lit, m);
|
||||
}
|
||||
|
||||
card2bv_rewriter::literal card2bv_rewriter::trail(literal l) {
|
||||
m_trail.push_back(l);
|
||||
return l;
|
||||
}
|
||||
card2bv_rewriter::literal card2bv_rewriter::fresh() {
|
||||
return trail(m.mk_fresh_const("sn", m.mk_bool_sort()));
|
||||
}
|
||||
|
||||
void card2bv_rewriter::mk_clause(unsigned n, literal const* lits) {
|
||||
m_lemmas.push_back(mk_or(m, n, lits));
|
||||
}
|
||||
|
||||
|
||||
br_status card2bv_rewriter::mk_app_core(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
|
||||
if (f->get_family_id() == null_family_id) {
|
||||
if (sz == 1) {
|
||||
// Expecting minimize/maximize.
|
||||
func_decl_ref fd(m);
|
||||
fd = m.mk_func_decl(f->get_name(), m.get_sort(args[0]), f->get_range());
|
||||
result = m.mk_app(fd.get(), args[0]);
|
||||
return BR_DONE;
|
||||
}
|
||||
else
|
||||
return BR_FAILED;
|
||||
}
|
||||
else if (f->get_family_id() == m.get_basic_family_id()) {
|
||||
result = m.mk_app(f, sz, args);
|
||||
return BR_DONE;
|
||||
}
|
||||
else if (f->get_family_id() == pb.get_family_id()) {
|
||||
if (is_or(f)) {
|
||||
result = m.mk_or(sz, args);
|
||||
return BR_DONE;
|
||||
}
|
||||
if (is_and(f)) {
|
||||
result = m.mk_and(sz, args);
|
||||
return BR_DONE;
|
||||
}
|
||||
if (is_atmost1(f, sz, args, result)) {
|
||||
return BR_DONE;
|
||||
}
|
||||
br_status st = mk_shannon(f, sz, args, result);
|
||||
if (st == BR_FAILED) {
|
||||
mk_bv(f, sz, args, result);
|
||||
return BR_DONE;
|
||||
}
|
||||
else {
|
||||
return st;
|
||||
}
|
||||
}
|
||||
// NSB: review
|
||||
// we should remove this code and rely on a layer above to deal with
|
||||
// whatever it accomplishes. It seems to break types.
|
||||
//
|
||||
else if (f->get_family_id() == au.get_family_id()) {
|
||||
if (f->get_decl_kind() == OP_ADD) {
|
||||
unsigned bits = 0;
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
rational val1, val2;
|
||||
if (au.is_int(args[i]) && au.is_numeral(args[i], val1)) {
|
||||
bits += val1.get_num_bits();
|
||||
}
|
||||
else if (m.is_ite(args[i]) &&
|
||||
au.is_numeral(to_app(args[i])->get_arg(1), val1) && val1.is_one() &&
|
||||
au.is_numeral(to_app(args[i])->get_arg(2), val2) && val2.is_zero()) {
|
||||
bits++;
|
||||
}
|
||||
else
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
result = 0;
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
rational val1, val2;
|
||||
expr * q;
|
||||
if (au.is_int(args[i]) && au.is_numeral(args[i], val1))
|
||||
q = bv.mk_numeral(val1, bits);
|
||||
else
|
||||
q = mk_ite(to_app(args[i])->get_arg(0), bv.mk_numeral(1, bits), bv.mk_numeral(0, bits));
|
||||
result = (i == 0) ? q : bv.mk_bv_add(result.get(), q);
|
||||
}
|
||||
return BR_DONE;
|
||||
}
|
||||
else
|
||||
return BR_FAILED;
|
||||
}
|
||||
else
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
expr_ref card2bv_rewriter::mk_atmost1(unsigned n, expr * const* xs) {
|
||||
expr_ref_vector result(m), in(m);
|
||||
in.append(n, xs);
|
||||
unsigned inc_size = 4;
|
||||
while (!in.empty()) {
|
||||
expr_ref_vector ors(m);
|
||||
unsigned i = 0;
|
||||
unsigned n = in.size();
|
||||
bool last = n <= inc_size;
|
||||
for (; i + inc_size < n; i += inc_size) {
|
||||
mk_at_most_1_small(last, inc_size, in.c_ptr() + i, result, ors);
|
||||
}
|
||||
if (i < n) {
|
||||
mk_at_most_1_small(last, n - i, in.c_ptr() + i, result, ors);
|
||||
}
|
||||
if (last) {
|
||||
break;
|
||||
}
|
||||
in.reset();
|
||||
in.append(ors);
|
||||
}
|
||||
return mk_and(result);
|
||||
}
|
||||
|
||||
void card2bv_rewriter::mk_at_most_1_small(bool last, unsigned n, literal const* xs, expr_ref_vector& result, expr_ref_vector& ors) {
|
||||
if (!last) {
|
||||
ors.push_back(m.mk_or(n, xs));
|
||||
}
|
||||
for (unsigned i = 0; i < n; ++i) {
|
||||
for (unsigned j = i + 1; j < n; ++j) {
|
||||
result.push_back(m.mk_not(m.mk_and(xs[i], xs[j])));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool card2bv_rewriter::is_atmost1(func_decl* f, unsigned sz, expr * const* args, expr_ref& result) {
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_AT_MOST_K:
|
||||
case OP_PB_LE:
|
||||
if (pb.get_k(f).is_one() && pb.has_unit_coefficients(f)) {
|
||||
result = mk_atmost1(sz, args);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
case OP_AT_LEAST_K:
|
||||
case OP_PB_GE:
|
||||
if (pb.get_k(f) == rational(sz-1) && pb.has_unit_coefficients(f)) {
|
||||
expr_ref_vector nargs(m);
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
nargs.push_back(mk_not(args[i]));
|
||||
}
|
||||
result = mk_atmost1(nargs.size(), nargs.c_ptr());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
case OP_PB_EQ:
|
||||
return false;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool card2bv_rewriter::is_or(func_decl* f) {
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_AT_MOST_K:
|
||||
case OP_PB_LE:
|
||||
return false;
|
||||
case OP_AT_LEAST_K:
|
||||
case OP_PB_GE:
|
||||
return pb.get_k(f).is_one();
|
||||
case OP_PB_EQ:
|
||||
return false;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool card2bv_rewriter::is_and(func_decl* f) {
|
||||
return false;
|
||||
}
|
||||
|
||||
void card2bv_rewriter::mk_bv(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
|
||||
expr_ref zero(m), a(m), b(m);
|
||||
expr_ref_vector es(m);
|
||||
unsigned bw = get_num_bits(f);
|
||||
zero = bv.mk_numeral(rational(0), bw);
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
es.push_back(mk_ite(args[i], bv.mk_numeral(pb.get_coeff(f, i), bw), zero));
|
||||
}
|
||||
switch (es.size()) {
|
||||
case 0: a = zero; break;
|
||||
case 1: a = es[0].get(); break;
|
||||
default:
|
||||
a = es[0].get();
|
||||
for (unsigned i = 1; i < es.size(); ++i) {
|
||||
a = bv.mk_bv_add(a, es[i].get());
|
||||
}
|
||||
break;
|
||||
}
|
||||
b = bv.mk_numeral(pb.get_k(f), bw);
|
||||
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_AT_MOST_K:
|
||||
case OP_PB_LE:
|
||||
UNREACHABLE();
|
||||
result = bv.mk_ule(a, b);
|
||||
break;
|
||||
case OP_AT_LEAST_K:
|
||||
UNREACHABLE();
|
||||
case OP_PB_GE:
|
||||
result = bv.mk_ule(b, a);
|
||||
break;
|
||||
case OP_PB_EQ:
|
||||
result = m.mk_eq(a, b);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
}
|
||||
TRACE("card2bv", tout << result << "\n";);
|
||||
}
|
||||
|
||||
struct argc_t {
|
||||
expr* m_arg;
|
||||
rational m_coeff;
|
||||
argc_t():m_arg(0), m_coeff(0) {}
|
||||
argc_t(expr* arg, rational const& r): m_arg(arg), m_coeff(r) {}
|
||||
};
|
||||
struct argc_gt {
|
||||
bool operator()(argc_t const& a, argc_t const& b) const {
|
||||
return a.m_coeff > b.m_coeff;
|
||||
}
|
||||
};
|
||||
struct argc_entry {
|
||||
unsigned m_index;
|
||||
rational m_k;
|
||||
expr* m_value;
|
||||
argc_entry(unsigned i, rational const& k): m_index(i), m_k(k), m_value(0) {}
|
||||
argc_entry():m_index(0), m_k(0), m_value(0) {}
|
||||
|
||||
struct eq {
|
||||
bool operator()(argc_entry const& a, argc_entry const& b) const {
|
||||
return a.m_index == b.m_index && a.m_k == b.m_k;
|
||||
}
|
||||
};
|
||||
struct hash {
|
||||
unsigned operator()(argc_entry const& a) const {
|
||||
return a.m_index ^ a.m_k.hash();
|
||||
}
|
||||
};
|
||||
};
|
||||
typedef hashtable<argc_entry, argc_entry::hash, argc_entry::eq> argc_cache;
|
||||
|
||||
br_status card2bv_rewriter::mk_shannon(
|
||||
func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
|
||||
|
||||
unsigned max_clauses = sz*10;
|
||||
vector<argc_t> argcs;
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
argcs.push_back(argc_t(args[i], pb.get_coeff(f, i)));
|
||||
}
|
||||
std::sort(argcs.begin(), argcs.end(), argc_gt());
|
||||
DEBUG_CODE(
|
||||
for (unsigned i = 0; i + 1 < sz; ++i) {
|
||||
SASSERT(argcs[i].m_coeff >= argcs[i+1].m_coeff);
|
||||
}
|
||||
);
|
||||
result = m.mk_app(f, sz, args);
|
||||
TRACE("card2bv", tout << result << "\n";);
|
||||
argc_cache cache;
|
||||
expr_ref_vector trail(m);
|
||||
vector<rational> todo_k;
|
||||
unsigned_vector todo_i;
|
||||
todo_k.push_back(pb.get_k(f));
|
||||
todo_i.push_back(0);
|
||||
decl_kind kind = f->get_decl_kind();
|
||||
argc_entry entry1;
|
||||
while (!todo_i.empty()) {
|
||||
SASSERT(todo_i.size() == todo_k.size());
|
||||
if (cache.size() > max_clauses) {
|
||||
return BR_FAILED;
|
||||
}
|
||||
unsigned i = todo_i.back();
|
||||
rational k = todo_k.back();
|
||||
argc_entry entry(i, k);
|
||||
if (cache.contains(entry)) {
|
||||
todo_i.pop_back();
|
||||
todo_k.pop_back();
|
||||
continue;
|
||||
}
|
||||
SASSERT(i < sz);
|
||||
SASSERT(!k.is_neg());
|
||||
rational const& coeff = argcs[i].m_coeff;
|
||||
expr* arg = argcs[i].m_arg;
|
||||
if (i + 1 == sz) {
|
||||
switch(kind) {
|
||||
case OP_AT_MOST_K:
|
||||
case OP_PB_LE:
|
||||
if (coeff <= k) {
|
||||
entry.m_value = m.mk_true();
|
||||
}
|
||||
else {
|
||||
entry.m_value = negate(arg);
|
||||
trail.push_back(entry.m_value);
|
||||
}
|
||||
break;
|
||||
case OP_AT_LEAST_K:
|
||||
case OP_PB_GE:
|
||||
if (k.is_zero()) {
|
||||
entry.m_value = m.mk_true();
|
||||
}
|
||||
else if (coeff < k) {
|
||||
entry.m_value = m.mk_false();
|
||||
}
|
||||
else if (coeff.is_zero()) {
|
||||
entry.m_value = m.mk_true();
|
||||
}
|
||||
else {
|
||||
SASSERT(coeff >= k && k.is_pos());
|
||||
entry.m_value = arg;
|
||||
}
|
||||
break;
|
||||
case OP_PB_EQ:
|
||||
if (coeff == k) {
|
||||
entry.m_value = arg;
|
||||
}
|
||||
else if (k.is_zero()) {
|
||||
entry.m_value = negate(arg);
|
||||
trail.push_back(entry.m_value);
|
||||
}
|
||||
else {
|
||||
entry.m_value = m.mk_false();
|
||||
}
|
||||
break;
|
||||
}
|
||||
todo_i.pop_back();
|
||||
todo_k.pop_back();
|
||||
cache.insert(entry);
|
||||
continue;
|
||||
}
|
||||
entry.m_index++;
|
||||
expr* lo = 0, *hi = 0;
|
||||
if (cache.find(entry, entry1)) {
|
||||
lo = entry1.m_value;
|
||||
}
|
||||
else {
|
||||
todo_i.push_back(i+1);
|
||||
todo_k.push_back(k);
|
||||
}
|
||||
entry.m_k -= coeff;
|
||||
if (kind != OP_PB_EQ && !entry.m_k.is_pos()) {
|
||||
switch (kind) {
|
||||
case OP_AT_MOST_K:
|
||||
case OP_PB_LE:
|
||||
hi = m.mk_false();
|
||||
break;
|
||||
case OP_AT_LEAST_K:
|
||||
case OP_PB_GE:
|
||||
hi = m.mk_true();
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
}
|
||||
}
|
||||
else if (cache.find(entry, entry1)) {
|
||||
hi = entry1.m_value;
|
||||
}
|
||||
else {
|
||||
todo_i.push_back(i+1);
|
||||
todo_k.push_back(entry.m_k);
|
||||
}
|
||||
if (hi && lo) {
|
||||
todo_i.pop_back();
|
||||
todo_k.pop_back();
|
||||
entry.m_index = i;
|
||||
entry.m_k = k;
|
||||
entry.m_value = mk_ite(arg, hi, lo);
|
||||
trail.push_back(entry.m_value);
|
||||
cache.insert(entry);
|
||||
}
|
||||
}
|
||||
argc_entry entry(0, pb.get_k(f));
|
||||
VERIFY(cache.find(entry, entry));
|
||||
result = entry.m_value;
|
||||
TRACE("card2bv", tout << result << "\n";);
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
expr* card2bv_rewriter::negate(expr* e) {
|
||||
if (m.is_not(e, e)) return e;
|
||||
return m.mk_not(e);
|
||||
}
|
||||
|
||||
expr* card2bv_rewriter::mk_ite(expr* c, expr* hi, expr* lo) {
|
||||
while (m.is_not(c, c)) {
|
||||
std::swap(hi, lo);
|
||||
}
|
||||
if (hi == lo) return hi;
|
||||
if (m.is_true(hi) && m.is_false(lo)) return c;
|
||||
if (m.is_false(hi) && m.is_true(lo)) return negate(c);
|
||||
if (m.is_true(hi)) return m.mk_or(c, lo);
|
||||
if (m.is_false(lo)) return m.mk_and(c, hi);
|
||||
if (m.is_false(hi)) return m.mk_and(negate(c), lo);
|
||||
if (m.is_true(lo)) return m.mk_implies(c, hi);
|
||||
return m.mk_ite(c, hi, lo);
|
||||
}
|
||||
|
||||
void card_pb_rewriter::rewrite(expr* e, expr_ref& result) {
|
||||
if (pb.is_eq(e)) {
|
||||
app* a = to_app(e);
|
||||
ast_manager& m = m_lemmas.get_manager();
|
||||
unsigned sz = a->get_num_args();
|
||||
expr_ref_vector args(m);
|
||||
expr_ref tmp(m);
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
(*this)(a->get_arg(i), tmp);
|
||||
args.push_back(tmp);
|
||||
}
|
||||
m_cfg.m_r.mk_assert(a->get_decl(), sz, args.c_ptr(), result, m_lemmas);
|
||||
}
|
||||
else {
|
||||
(*this)(e, result);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template class rewriter_tpl<pb::card2bv_rewriter_cfg>;
|
||||
|
||||
#include"filter_model_converter.h"
|
||||
|
||||
class card2bv_tactic : public tactic {
|
||||
ast_manager & m;
|
||||
params_ref m_params;
|
||||
th_rewriter m_rw1;
|
||||
pb::card_pb_rewriter m_rw2;
|
||||
|
||||
public:
|
||||
|
||||
card2bv_tactic(ast_manager & m, params_ref const & p):
|
||||
m(m),
|
||||
m_params(p),
|
||||
m_rw1(m),
|
||||
m_rw2(m) {
|
||||
m_params(p) {
|
||||
}
|
||||
|
||||
virtual tactic * translate(ast_manager & m) {
|
||||
|
@ -538,9 +60,8 @@ public:
|
|||
SASSERT(g->is_well_sorted());
|
||||
mc = 0; pc = 0; core = 0; result.reset();
|
||||
tactic_report report("card2bv", *g);
|
||||
m_rw1.reset();
|
||||
m_rw2.reset();
|
||||
m_rw2.lemmas().reset();
|
||||
th_rewriter rw1(m, m_params);
|
||||
pb2bv_rewriter rw2(m, m_params);
|
||||
|
||||
if (g->inconsistent()) {
|
||||
result.push_back(g.get());
|
||||
|
@ -550,18 +71,28 @@ public:
|
|||
expr_ref new_f1(m), new_f2(m);
|
||||
proof_ref new_pr1(m), new_pr2(m);
|
||||
for (unsigned idx = 0; !g->inconsistent() && idx < g->size(); idx++) {
|
||||
m_rw1(g->form(idx), new_f1, new_pr1);
|
||||
rw1(g->form(idx), new_f1, new_pr1);
|
||||
TRACE("card2bv", tout << "Rewriting " << mk_ismt2_pp(new_f1.get(), m) << std::endl;);
|
||||
m_rw2.rewrite(new_f1, new_f2);
|
||||
rw2(new_f1, new_f2, new_pr2);
|
||||
if (m.proofs_enabled()) {
|
||||
new_pr1 = m.mk_modus_ponens(g->pr(idx), new_pr1);
|
||||
new_pr2 = m.mk_rewrite(new_f1, new_f2);
|
||||
new_pr1 = m.mk_modus_ponens(new_pr1, new_pr2);
|
||||
}
|
||||
g->update(idx, new_f2, new_pr1, g->dep(idx));
|
||||
}
|
||||
for (unsigned i = 0; i < m_rw2.lemmas().size(); ++i) {
|
||||
g->assert_expr(m_rw2.lemmas()[i].get());
|
||||
expr_ref_vector fmls(m);
|
||||
rw2.flush_side_constraints(fmls);
|
||||
for (unsigned i = 0; !g->inconsistent() && i < fmls.size(); ++i) {
|
||||
g->assert_expr(fmls[i].get());
|
||||
}
|
||||
|
||||
func_decl_ref_vector const& fns = rw2.fresh_constants();
|
||||
if (!fns.empty()) {
|
||||
filter_model_converter* filter = alloc(filter_model_converter, m);
|
||||
for (unsigned i = 0; i < fns.size(); ++i) {
|
||||
filter->insert(fns[i]);
|
||||
}
|
||||
mc = filter;
|
||||
}
|
||||
|
||||
g->inc_depth();
|
||||
|
|
|
@ -29,10 +29,11 @@ Notes:
|
|||
#include"filter_model_converter.h"
|
||||
#include"pb2bv_model_converter.h"
|
||||
#include"pb2bv_tactic.h"
|
||||
#include"ast_pp.h"
|
||||
|
||||
class pb2bv_tactic : public tactic {
|
||||
public:
|
||||
struct non_pb {};
|
||||
struct non_pb { expr* e; non_pb(expr* e) : e(e) {}};
|
||||
|
||||
struct only_01_visitor {
|
||||
typedef rational numeral;
|
||||
|
@ -48,7 +49,7 @@ public:
|
|||
|
||||
void throw_non_pb(expr * n) {
|
||||
TRACE("pb2bv", tout << "Not pseudo-Boolean: " << mk_ismt2_pp(n, m) << "\n";);
|
||||
throw non_pb();
|
||||
throw non_pb(n);
|
||||
}
|
||||
|
||||
void operator()(var * n) {
|
||||
|
@ -575,7 +576,7 @@ private:
|
|||
|
||||
void throw_non_pb(expr * n) {
|
||||
TRACE("pb2bv", tout << "Not pseudo-Boolean: " << mk_ismt2_pp(n, m) << "\n";);
|
||||
throw non_pb();
|
||||
throw non_pb(n);
|
||||
}
|
||||
|
||||
// check if polynomial is encoding
|
||||
|
@ -910,8 +911,8 @@ private:
|
|||
try {
|
||||
quick_pb_check(g);
|
||||
}
|
||||
catch (non_pb) {
|
||||
throw tactic_exception("goal is in a fragment unsupported by pb2bv");
|
||||
catch (non_pb& p) {
|
||||
throw_tactic(p.e);
|
||||
}
|
||||
|
||||
unsigned size = g->size();
|
||||
|
@ -940,8 +941,8 @@ private:
|
|||
new_exprs.push_back(new_f);
|
||||
}
|
||||
}
|
||||
catch (non_pb) {
|
||||
throw tactic_exception("goal is in a fragment unsupported by pb2bv");
|
||||
catch (non_pb& p) {
|
||||
throw_tactic(p.e);
|
||||
}
|
||||
|
||||
for (unsigned idx = 0; idx < size; idx++)
|
||||
|
@ -966,6 +967,12 @@ private:
|
|||
TRACE("pb2bv", g->display(tout););
|
||||
SASSERT(g->is_well_sorted());
|
||||
}
|
||||
|
||||
void throw_tactic(expr* e) {
|
||||
std::stringstream strm;
|
||||
strm << "goal is in a fragment unsupported by pb2bv. Offending expression: " << mk_pp(e, m);
|
||||
throw tactic_exception(strm.str().c_str());
|
||||
}
|
||||
};
|
||||
|
||||
imp * m_imp;
|
||||
|
|
|
@ -29,7 +29,7 @@ Revision History:
|
|||
#include "extension_model_converter.h"
|
||||
#include "var_subst.h"
|
||||
#include "ast_util.h"
|
||||
#include "fd_rewriter.h"
|
||||
#include "enum2bv_rewriter.h"
|
||||
|
||||
|
||||
class dt2bv_tactic : public tactic {
|
||||
|
@ -40,7 +40,6 @@ class dt2bv_tactic : public tactic {
|
|||
bv_util m_bv;
|
||||
obj_hashtable<sort> m_fd_sorts;
|
||||
obj_hashtable<sort> m_non_fd_sorts;
|
||||
obj_map<func_decl, func_decl*>* m_translate;
|
||||
|
||||
|
||||
bool is_fd(expr* a) { return is_fd(get_sort(a)); }
|
||||
|
@ -99,11 +98,11 @@ class dt2bv_tactic : public tactic {
|
|||
sort_pred m_is_fd;
|
||||
public:
|
||||
|
||||
dt2bv_tactic(ast_manager& m, params_ref const& p, obj_map<func_decl, func_decl*>* tr):
|
||||
m(m), m_params(p), m_dt(m), m_bv(m), m_translate(tr), m_is_fd(*this) {}
|
||||
dt2bv_tactic(ast_manager& m, params_ref const& p):
|
||||
m(m), m_params(p), m_dt(m), m_bv(m), m_is_fd(*this) {}
|
||||
|
||||
virtual tactic * translate(ast_manager & m) {
|
||||
return alloc(dt2bv_tactic, m, m_params, 0);
|
||||
return alloc(dt2bv_tactic, m, m_params);
|
||||
}
|
||||
|
||||
virtual void updt_params(params_ref const & p) {
|
||||
|
@ -133,7 +132,7 @@ public:
|
|||
if (!m_fd_sorts.empty()) {
|
||||
ref<extension_model_converter> ext = alloc(extension_model_converter, m);
|
||||
ref<filter_model_converter> filter = alloc(filter_model_converter, m);
|
||||
fd_rewriter rw(m, m_params);
|
||||
enum2bv_rewriter rw(m, m_params);
|
||||
rw.set_is_fd(&m_is_fd);
|
||||
expr_ref new_curr(m);
|
||||
proof_ref new_pr(m);
|
||||
|
@ -154,9 +153,6 @@ public:
|
|||
obj_map<func_decl, func_decl*>::iterator it = rw.enum2bv().begin(), end = rw.enum2bv().end();
|
||||
for (; it != end; ++it) {
|
||||
filter->insert(it->m_value);
|
||||
if (m_translate) {
|
||||
m_translate->insert(it->m_key, it->m_value);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
|
@ -182,6 +178,6 @@ public:
|
|||
|
||||
};
|
||||
|
||||
tactic * mk_dt2bv_tactic(ast_manager & m, params_ref const & p, obj_map<func_decl, func_decl*>* tr) {
|
||||
return alloc(dt2bv_tactic, m, p, tr);
|
||||
tactic * mk_dt2bv_tactic(ast_manager & m, params_ref const & p) {
|
||||
return alloc(dt2bv_tactic, m, p);
|
||||
}
|
||||
|
|
|
@ -24,7 +24,7 @@ Revision History:
|
|||
class ast_manager;
|
||||
class tactic;
|
||||
|
||||
tactic * mk_dt2bv_tactic(ast_manager & m, params_ref const & p = params_ref(), obj_map<func_decl, func_decl*>* tr = 0);
|
||||
tactic * mk_dt2bv_tactic(ast_manager & m, params_ref const & p = params_ref());
|
||||
|
||||
/*
|
||||
ADD_TACTIC("dt2bv", "eliminate finite domain data-types. Replace by bit-vectors.", "mk_dt2bv_tactic(m, p)")
|
||||
|
|
296
src/tactic/portfolio/bounded_int2bv_solver.cpp
Normal file
296
src/tactic/portfolio/bounded_int2bv_solver.cpp
Normal file
|
@ -0,0 +1,296 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
bounded_int2bv_solver.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
This solver identifies bounded integers and rewrites them to bit-vectors.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "bounded_int2bv_solver.h"
|
||||
#include "solver_na2as.h"
|
||||
#include "tactic.h"
|
||||
#include "pb2bv_rewriter.h"
|
||||
#include "filter_model_converter.h"
|
||||
#include "extension_model_converter.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
#include "bound_manager.h"
|
||||
#include "bv2int_rewriter.h"
|
||||
#include "expr_safe_replace.h"
|
||||
#include "bv_decl_plugin.h"
|
||||
#include "arith_decl_plugin.h"
|
||||
|
||||
class bounded_int2bv_solver : public solver_na2as {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
bv_util m_bv;
|
||||
arith_util m_arith;
|
||||
expr_ref_vector m_assertions;
|
||||
ref<solver> m_solver;
|
||||
ptr_vector<bound_manager> m_bounds;
|
||||
func_decl_ref_vector m_bv_fns;
|
||||
func_decl_ref_vector m_int_fns;
|
||||
unsigned_vector m_bv_fns_lim;
|
||||
obj_map<func_decl, func_decl*> m_int2bv;
|
||||
obj_map<func_decl, func_decl*> m_bv2int;
|
||||
obj_map<func_decl, rational> m_bv2offset;
|
||||
bv2int_rewriter_ctx m_rewriter_ctx;
|
||||
bv2int_rewriter_star m_rewriter;
|
||||
|
||||
public:
|
||||
|
||||
bounded_int2bv_solver(ast_manager& m, params_ref const& p, solver* s):
|
||||
solver_na2as(m),
|
||||
m(m),
|
||||
m_params(p),
|
||||
m_bv(m),
|
||||
m_arith(m),
|
||||
m_assertions(m),
|
||||
m_solver(s),
|
||||
m_bv_fns(m),
|
||||
m_int_fns(m),
|
||||
m_rewriter_ctx(m, p),
|
||||
m_rewriter(m, m_rewriter_ctx)
|
||||
{
|
||||
m_bounds.push_back(alloc(bound_manager, m));
|
||||
}
|
||||
|
||||
virtual ~bounded_int2bv_solver() {
|
||||
while (!m_bounds.empty()) {
|
||||
dealloc(m_bounds.back());
|
||||
m_bounds.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
virtual solver* translate(ast_manager& m, params_ref const& p) {
|
||||
return alloc(bounded_int2bv_solver, m, p, m_solver->translate(m, p));
|
||||
}
|
||||
|
||||
virtual void assert_expr(expr * t) {
|
||||
m_assertions.push_back(t);
|
||||
}
|
||||
|
||||
virtual void push_core() {
|
||||
flush_assertions();
|
||||
m_solver->push();
|
||||
m_bv_fns_lim.push_back(m_bv_fns.size());
|
||||
m_bounds.push_back(alloc(bound_manager, m));
|
||||
}
|
||||
|
||||
virtual void pop_core(unsigned n) {
|
||||
m_assertions.reset();
|
||||
m_solver->pop(n);
|
||||
|
||||
if (n > 0) {
|
||||
SASSERT(n <= m_bv_fns_lim.size());
|
||||
unsigned new_sz = m_bv_fns_lim.size() - n;
|
||||
unsigned lim = m_bv_fns_lim[new_sz];
|
||||
for (unsigned i = m_int_fns.size(); i > lim; ) {
|
||||
--i;
|
||||
m_int2bv.erase(m_int_fns[i].get());
|
||||
m_bv2int.erase(m_bv_fns[i].get());
|
||||
m_bv2offset.erase(m_bv_fns[i].get());
|
||||
}
|
||||
m_bv_fns_lim.resize(new_sz);
|
||||
m_bv_fns.resize(lim);
|
||||
m_int_fns.resize(lim);
|
||||
}
|
||||
|
||||
while (n > 0) {
|
||||
dealloc(m_bounds.back());
|
||||
m_bounds.pop_back();
|
||||
--n;
|
||||
}
|
||||
}
|
||||
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
flush_assertions();
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
virtual void updt_params(params_ref const & p) { m_solver->updt_params(p); }
|
||||
virtual void collect_param_descrs(param_descrs & r) { m_solver->collect_param_descrs(r); }
|
||||
virtual void set_produce_models(bool f) { m_solver->set_produce_models(f); }
|
||||
virtual void set_progress_callback(progress_callback * callback) { m_solver->set_progress_callback(callback); }
|
||||
virtual void collect_statistics(statistics & st) const { m_solver->collect_statistics(st); }
|
||||
virtual void get_unsat_core(ptr_vector<expr> & r) { m_solver->get_unsat_core(r); }
|
||||
virtual void get_model(model_ref & mdl) {
|
||||
m_solver->get_model(mdl);
|
||||
if (mdl) {
|
||||
extend_model(mdl);
|
||||
filter_model(mdl);
|
||||
}
|
||||
}
|
||||
virtual proof * get_proof() { return m_solver->get_proof(); }
|
||||
virtual std::string reason_unknown() const { return m_solver->reason_unknown(); }
|
||||
virtual void set_reason_unknown(char const* msg) { m_solver->set_reason_unknown(msg); }
|
||||
virtual void get_labels(svector<symbol> & r) { m_solver->get_labels(r); }
|
||||
virtual ast_manager& get_manager() const { return m; }
|
||||
virtual lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) { return m_solver->find_mutexes(vars, mutexes); }
|
||||
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) {
|
||||
flush_assertions();
|
||||
expr_ref_vector bvars(m);
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
expr* v = vars[i];
|
||||
func_decl* f;
|
||||
rational offset;
|
||||
if (is_app(v) && is_uninterp_const(v) && m_int2bv.find(to_app(v)->get_decl(), f)) {
|
||||
bvars.push_back(m.mk_const(f));
|
||||
}
|
||||
else {
|
||||
bvars.push_back(v);
|
||||
}
|
||||
}
|
||||
lbool r = m_solver->get_consequences(asms, bvars, consequences);
|
||||
|
||||
// translate bit-vector consequences back to integer values
|
||||
for (unsigned i = 0; i < consequences.size(); ++i) {
|
||||
expr* a, *b, *u, *v;
|
||||
func_decl* f;
|
||||
rational num;
|
||||
unsigned bvsize;
|
||||
rational offset;
|
||||
VERIFY(m.is_implies(consequences[i].get(), a, b));
|
||||
if (m.is_eq(b, u, v) && is_uninterp_const(u) && m_bv2int.find(to_app(u)->get_decl(), f) && m_bv.is_numeral(v, num, bvsize)) {
|
||||
SASSERT(num.is_unsigned());
|
||||
expr_ref head(m);
|
||||
VERIFY (m_bv2offset.find(to_app(u)->get_decl(), offset));
|
||||
// f + offset == num
|
||||
// f == num - offset
|
||||
head = m.mk_eq(m.mk_const(f), m_arith.mk_numeral(num + offset, true));
|
||||
consequences[i] = m.mk_implies(a, head);
|
||||
}
|
||||
}
|
||||
return r;
|
||||
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
void filter_model(model_ref& mdl) const {
|
||||
if (m_bv_fns.empty()) {
|
||||
return;
|
||||
}
|
||||
filter_model_converter filter(m);
|
||||
func_decl_ref_vector const& fns = m_bv_fns;
|
||||
for (unsigned i = 0; i < m_bv_fns.size(); ++i) {
|
||||
filter.insert(m_bv_fns[i]);
|
||||
}
|
||||
filter(mdl, 0);
|
||||
}
|
||||
|
||||
void extend_model(model_ref& mdl) {
|
||||
extension_model_converter ext(m);
|
||||
obj_map<func_decl, func_decl*>::iterator it = m_int2bv.begin(), end = m_int2bv.end();
|
||||
for (; it != end; ++it) {
|
||||
rational offset;
|
||||
VERIFY (m_bv2offset.find(it->m_value, offset));
|
||||
expr_ref value(m_bv.mk_bv2int(m.mk_const(it->m_value)), m);
|
||||
if (!offset.is_zero()) {
|
||||
value = m_arith.mk_add(value, m_arith.mk_numeral(offset, true));
|
||||
}
|
||||
TRACE("int2bv", tout << mk_pp(it->m_key, m) << " " << value << "\n";);
|
||||
ext.insert(it->m_key, value);
|
||||
}
|
||||
ext(mdl, 0);
|
||||
}
|
||||
|
||||
void accumulate_sub(expr_safe_replace& sub) {
|
||||
for (unsigned i = 0; i < m_bounds.size(); ++i) {
|
||||
accumulate_sub(sub, *m_bounds[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void accumulate_sub(expr_safe_replace& sub, bound_manager& bm) {
|
||||
bound_manager::iterator it = bm.begin(), end = bm.end();
|
||||
for (; it != end; ++it) {
|
||||
expr* e = *it;
|
||||
rational lo, hi;
|
||||
bool s1, s2;
|
||||
SASSERT(is_uninterp_const(e));
|
||||
func_decl* f = to_app(e)->get_decl();
|
||||
|
||||
if (bm.has_lower(e, lo, s1) && bm.has_upper(e, hi, s2) && lo <= hi && !s1 && !s2) {
|
||||
func_decl* fbv;
|
||||
rational offset;
|
||||
if (!m_int2bv.find(f, fbv)) {
|
||||
rational n = hi - lo + rational::one();
|
||||
unsigned num_bits = get_num_bits(n);
|
||||
expr_ref b(m);
|
||||
b = m.mk_fresh_const("b", m_bv.mk_sort(num_bits));
|
||||
fbv = to_app(b)->get_decl();
|
||||
offset = lo;
|
||||
m_int2bv.insert(f, fbv);
|
||||
m_bv2int.insert(fbv, f);
|
||||
m_bv2offset.insert(fbv, offset);
|
||||
m_bv_fns.push_back(fbv);
|
||||
m_int_fns.push_back(f);
|
||||
unsigned shift;
|
||||
if (!offset.is_zero() && !n.is_power_of_two(shift)) {
|
||||
m_assertions.push_back(m_bv.mk_ule(b, m_bv.mk_numeral(n-rational::one(), num_bits)));
|
||||
}
|
||||
}
|
||||
else {
|
||||
VERIFY(m_bv2offset.find(fbv, offset));
|
||||
}
|
||||
expr_ref t(m.mk_const(fbv), m);
|
||||
t = m_bv.mk_bv2int(t);
|
||||
if (!offset.is_zero()) {
|
||||
t = m_arith.mk_add(t, m_arith.mk_numeral(lo, true));
|
||||
}
|
||||
sub.insert(e, t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsigned get_num_bits(rational const& k) {
|
||||
SASSERT(!k.is_neg());
|
||||
SASSERT(k.is_int());
|
||||
rational two(2);
|
||||
rational bound(1);
|
||||
unsigned num_bits = 1;
|
||||
while (bound <= k) {
|
||||
++num_bits;
|
||||
bound *= two;
|
||||
}
|
||||
return num_bits;
|
||||
}
|
||||
|
||||
void flush_assertions() {
|
||||
bound_manager& bm = *m_bounds.back();
|
||||
for (unsigned i = 0; i < m_assertions.size(); ++i) {
|
||||
bm(m_assertions[i].get());
|
||||
}
|
||||
expr_safe_replace sub(m);
|
||||
accumulate_sub(sub);
|
||||
proof_ref proof(m);
|
||||
expr_ref fml1(m), fml2(m);
|
||||
if (sub.empty()) {
|
||||
m_solver->assert_expr(m_assertions);
|
||||
}
|
||||
else {
|
||||
for (unsigned i = 0; i < m_assertions.size(); ++i) {
|
||||
sub(m_assertions[i].get(), fml1);
|
||||
m_rewriter(fml1, fml2, proof);
|
||||
m_solver->assert_expr(fml2);
|
||||
TRACE("int2bv", tout << fml2 << "\n";);
|
||||
}
|
||||
}
|
||||
m_assertions.reset();
|
||||
}
|
||||
};
|
||||
|
||||
solver * mk_bounded_int2bv_solver(ast_manager & m, params_ref const & p, solver* s) {
|
||||
return alloc(bounded_int2bv_solver, m, p, s);
|
||||
}
|
29
src/tactic/portfolio/bounded_int2bv_solver.h
Normal file
29
src/tactic/portfolio/bounded_int2bv_solver.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
bounded_int2bv_solver.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Finite domain solver.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef BOUNDED_INT2BV_SOLVER_H_
|
||||
#define BOUNDED_INT2BV_SOLVER_H_
|
||||
|
||||
#include"ast.h"
|
||||
#include"params.h"
|
||||
|
||||
class solver;
|
||||
|
||||
solver * mk_bounded_int2bv_solver(ast_manager & m, params_ref const & p, solver* s);
|
||||
|
||||
#endif
|
162
src/tactic/portfolio/enum2bv_solver.cpp
Normal file
162
src/tactic/portfolio/enum2bv_solver.cpp
Normal file
|
@ -0,0 +1,162 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
enum2bv_solver.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Finite domain solver.
|
||||
|
||||
Enumeration data-types are translated into bit-vectors, and then
|
||||
the incremental sat-solver is applied to the resulting assertions.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "solver_na2as.h"
|
||||
#include "tactic.h"
|
||||
#include "bv_decl_plugin.h"
|
||||
#include "datatype_decl_plugin.h"
|
||||
#include "enum2bv_rewriter.h"
|
||||
#include "extension_model_converter.h"
|
||||
#include "filter_model_converter.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
#include "enum2bv_solver.h"
|
||||
|
||||
class enum2bv_solver : public solver_na2as {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
ref<solver> m_solver;
|
||||
enum2bv_rewriter m_rewriter;
|
||||
|
||||
public:
|
||||
|
||||
enum2bv_solver(ast_manager& m, params_ref const& p, solver* s):
|
||||
solver_na2as(m),
|
||||
m(m),
|
||||
m_params(p),
|
||||
m_solver(s),
|
||||
m_rewriter(m, p)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~enum2bv_solver() {}
|
||||
|
||||
virtual solver* translate(ast_manager& m, params_ref const& p) {
|
||||
return alloc(enum2bv_solver, m, p, m_solver->translate(m, p));
|
||||
}
|
||||
|
||||
virtual void assert_expr(expr * t) {
|
||||
expr_ref tmp(t, m);
|
||||
expr_ref_vector bounds(m);
|
||||
proof_ref tmp_proof(m);
|
||||
m_rewriter(t, tmp, tmp_proof);
|
||||
m_solver->assert_expr(tmp);
|
||||
m_rewriter.flush_side_constraints(bounds);
|
||||
m_solver->assert_expr(bounds);
|
||||
}
|
||||
|
||||
virtual void push_core() {
|
||||
m_rewriter.push();
|
||||
m_solver->push();
|
||||
}
|
||||
|
||||
virtual void pop_core(unsigned n) {
|
||||
m_solver->pop(n);
|
||||
m_rewriter.pop(n);
|
||||
}
|
||||
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
virtual void updt_params(params_ref const & p) { m_solver->updt_params(p); }
|
||||
virtual void collect_param_descrs(param_descrs & r) { m_solver->collect_param_descrs(r); }
|
||||
virtual void set_produce_models(bool f) { m_solver->set_produce_models(f); }
|
||||
virtual void set_progress_callback(progress_callback * callback) { m_solver->set_progress_callback(callback); }
|
||||
virtual void collect_statistics(statistics & st) const { m_solver->collect_statistics(st); }
|
||||
virtual void get_unsat_core(ptr_vector<expr> & r) { m_solver->get_unsat_core(r); }
|
||||
virtual void get_model(model_ref & mdl) {
|
||||
m_solver->get_model(mdl);
|
||||
if (mdl) {
|
||||
extend_model(mdl);
|
||||
filter_model(mdl);
|
||||
}
|
||||
}
|
||||
virtual proof * get_proof() { return m_solver->get_proof(); }
|
||||
virtual std::string reason_unknown() const { return m_solver->reason_unknown(); }
|
||||
virtual void set_reason_unknown(char const* msg) { m_solver->set_reason_unknown(msg); }
|
||||
virtual void get_labels(svector<symbol> & r) { m_solver->get_labels(r); }
|
||||
virtual ast_manager& get_manager() const { return m; }
|
||||
virtual lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) { return m_solver->find_mutexes(vars, mutexes); }
|
||||
|
||||
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) {
|
||||
|
||||
datatype_util dt(m);
|
||||
bv_util bv(m);
|
||||
|
||||
// translate enumeration constants to bit-vectors.
|
||||
expr_ref_vector bvars(m), conseq(m);
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
func_decl* f;
|
||||
if (is_app(vars[i]) && is_uninterp_const(vars[i]) && m_rewriter.enum2bv().find(to_app(vars[i])->get_decl(), f)) {
|
||||
bvars.push_back(m.mk_const(f));
|
||||
}
|
||||
else {
|
||||
bvars.push_back(vars[i]);
|
||||
}
|
||||
}
|
||||
lbool r = m_solver->get_consequences(asms, bvars, consequences);
|
||||
std::cout << consequences.size() << "\n";
|
||||
|
||||
|
||||
// translate bit-vector consequences back to enumeration types
|
||||
for (unsigned i = 0; i < consequences.size(); ++i) {
|
||||
expr* a, *b, *u, *v;
|
||||
func_decl* f;
|
||||
rational num;
|
||||
unsigned bvsize;
|
||||
VERIFY(m.is_implies(consequences[i].get(), a, b));
|
||||
if (m.is_eq(b, u, v) && is_uninterp_const(u) && m_rewriter.bv2enum().find(to_app(u)->get_decl(), f) && bv.is_numeral(v, num, bvsize)) {
|
||||
SASSERT(num.is_unsigned());
|
||||
expr_ref head(m);
|
||||
ptr_vector<func_decl> const& enums = *dt.get_datatype_constructors(f->get_range());
|
||||
head = m.mk_eq(m.mk_const(f), m.mk_const(enums[num.get_unsigned()]));
|
||||
consequences[i] = m.mk_implies(a, head);
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void filter_model(model_ref& mdl) {
|
||||
filter_model_converter filter(m);
|
||||
obj_map<func_decl, func_decl*>::iterator it = m_rewriter.enum2bv().begin(), end = m_rewriter.enum2bv().end();
|
||||
for (; it != end; ++it) {
|
||||
filter.insert(it->m_value);
|
||||
}
|
||||
filter(mdl, 0);
|
||||
}
|
||||
|
||||
void extend_model(model_ref& mdl) {
|
||||
extension_model_converter ext(m);
|
||||
obj_map<func_decl, expr*>::iterator it = m_rewriter.enum2def().begin(), end = m_rewriter.enum2def().end();
|
||||
for (; it != end; ++it) {
|
||||
ext.insert(it->m_key, it->m_value);
|
||||
|
||||
}
|
||||
ext(mdl, 0);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
solver * mk_enum2bv_solver(ast_manager & m, params_ref const & p, solver* s) {
|
||||
return alloc(enum2bv_solver, m, p, s);
|
||||
}
|
29
src/tactic/portfolio/enum2bv_solver.h
Normal file
29
src/tactic/portfolio/enum2bv_solver.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
enum2bv_solver.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Finite domain solver.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef ENUM2BV_SOLVER_H_
|
||||
#define ENUM2BV_SOLVER_H_
|
||||
|
||||
#include"ast.h"
|
||||
#include"params.h"
|
||||
|
||||
class solver;
|
||||
|
||||
solver * mk_enum2bv_solver(ast_manager & m, params_ref const & p, solver* s);
|
||||
|
||||
#endif
|
|
@ -9,9 +9,6 @@ Abstract:
|
|||
|
||||
Finite domain solver.
|
||||
|
||||
Enumeration data-types are translated into bit-vectors, and then
|
||||
the incremental sat-solver is applied to the resulting assertions.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-17
|
||||
|
@ -21,141 +18,16 @@ Notes:
|
|||
--*/
|
||||
|
||||
#include "fd_solver.h"
|
||||
#include "solver_na2as.h"
|
||||
#include "tactic.h"
|
||||
#include "inc_sat_solver.h"
|
||||
#include "bv_decl_plugin.h"
|
||||
#include "datatype_decl_plugin.h"
|
||||
#include "fd_rewriter.h"
|
||||
#include "extension_model_converter.h"
|
||||
#include "filter_model_converter.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
|
||||
class fd_solver : public solver_na2as {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
ref<solver> m_solver;
|
||||
fd_rewriter m_rewriter;
|
||||
|
||||
public:
|
||||
|
||||
fd_solver(ast_manager& m, params_ref const& p):
|
||||
solver_na2as(m),
|
||||
m(m),
|
||||
m_params(p),
|
||||
m_solver(mk_inc_sat_solver(m, p)),
|
||||
m_rewriter(m, p)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~fd_solver() {}
|
||||
|
||||
virtual solver* translate(ast_manager& m, params_ref const& p) {
|
||||
return alloc(fd_solver, m, p);
|
||||
}
|
||||
|
||||
virtual void assert_expr(expr * t) {
|
||||
expr_ref tmp(t, m);
|
||||
expr_ref_vector bounds(m);
|
||||
proof_ref tmp_proof(m);
|
||||
m_rewriter(t, tmp, tmp_proof);
|
||||
m_solver->assert_expr(tmp);
|
||||
m_rewriter.flush_side_constraints(bounds);
|
||||
m_solver->assert_expr(bounds);
|
||||
}
|
||||
|
||||
virtual void push_core() {
|
||||
m_rewriter.push();
|
||||
m_solver->push();
|
||||
}
|
||||
|
||||
virtual void pop_core(unsigned n) {
|
||||
m_solver->pop(n);
|
||||
m_rewriter.pop(n);
|
||||
}
|
||||
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
virtual void updt_params(params_ref const & p) { m_solver->updt_params(p); }
|
||||
virtual void collect_param_descrs(param_descrs & r) { m_solver->collect_param_descrs(r); }
|
||||
virtual void set_produce_models(bool f) { m_solver->set_produce_models(f); }
|
||||
virtual void set_progress_callback(progress_callback * callback) { m_solver->set_progress_callback(callback); }
|
||||
virtual void collect_statistics(statistics & st) const { m_solver->collect_statistics(st); }
|
||||
virtual void get_unsat_core(ptr_vector<expr> & r) { m_solver->get_unsat_core(r); }
|
||||
virtual void get_model(model_ref & mdl) {
|
||||
m_solver->get_model(mdl);
|
||||
if (mdl) {
|
||||
extend_model(mdl);
|
||||
filter_model(mdl);
|
||||
}
|
||||
}
|
||||
virtual proof * get_proof() { return m_solver->get_proof(); }
|
||||
virtual std::string reason_unknown() const { return m_solver->reason_unknown(); }
|
||||
virtual void set_reason_unknown(char const* msg) { m_solver->set_reason_unknown(msg); }
|
||||
virtual void get_labels(svector<symbol> & r) { m_solver->get_labels(r); }
|
||||
virtual ast_manager& get_manager() const { return m; }
|
||||
virtual lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) { return m_solver->find_mutexes(vars, mutexes); }
|
||||
|
||||
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) {
|
||||
|
||||
datatype_util dt(m);
|
||||
bv_util bv(m);
|
||||
|
||||
// translate enumeration constants to bit-vectors.
|
||||
expr_ref_vector bvars(m), conseq(m);
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
func_decl* f;
|
||||
if (is_app(vars[i]) && is_uninterp_const(vars[i]) && m_rewriter.enum2bv().find(to_app(vars[i])->get_decl(), f)) {
|
||||
bvars.push_back(m.mk_const(f));
|
||||
}
|
||||
else {
|
||||
bvars.push_back(vars[i]);
|
||||
}
|
||||
}
|
||||
lbool r = m_solver->get_consequences(asms, bvars, consequences);
|
||||
|
||||
// translate bit-vector consequences back to enumeration types
|
||||
for (unsigned i = 0; i < consequences.size(); ++i) {
|
||||
expr* a, *b, *u, *v;
|
||||
func_decl* f;
|
||||
rational num;
|
||||
unsigned bvsize;
|
||||
VERIFY(m.is_implies(consequences[i].get(), a, b));
|
||||
if (m.is_eq(b, u, v) && is_uninterp_const(u) && m_rewriter.bv2enum().find(to_app(u)->get_decl(), f) && bv.is_numeral(v, num, bvsize)) {
|
||||
SASSERT(num.is_unsigned());
|
||||
expr_ref head(m);
|
||||
ptr_vector<func_decl> const& enums = *dt.get_datatype_constructors(f->get_range());
|
||||
head = m.mk_eq(m.mk_const(f), m.mk_const(enums[num.get_unsigned()]));
|
||||
consequences[i] = m.mk_implies(a, head);
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void filter_model(model_ref& mdl) {
|
||||
filter_model_converter filter(m);
|
||||
obj_map<func_decl, func_decl*>::iterator it = m_rewriter.enum2bv().begin(), end = m_rewriter.enum2bv().end();
|
||||
for (; it != end; ++it) {
|
||||
filter.insert(it->m_value);
|
||||
}
|
||||
filter(mdl, 0);
|
||||
}
|
||||
|
||||
void extend_model(model_ref& mdl) {
|
||||
extension_model_converter ext(m);
|
||||
obj_map<func_decl, expr*>::iterator it = m_rewriter.enum2def().begin(), end = m_rewriter.enum2def().end();
|
||||
for (; it != end; ++it) {
|
||||
ext.insert(it->m_key, it->m_value);
|
||||
|
||||
}
|
||||
ext(mdl, 0);
|
||||
}
|
||||
|
||||
};
|
||||
#include "enum2bv_solver.h"
|
||||
#include "pb2bv_solver.h"
|
||||
#include "bounded_int2bv_solver.h"
|
||||
|
||||
solver * mk_fd_solver(ast_manager & m, params_ref const & p) {
|
||||
return alloc(fd_solver, m, p);
|
||||
solver* s = mk_inc_sat_solver(m, p);
|
||||
s = mk_enum2bv_solver(m, p, s);
|
||||
s = mk_pb2bv_solver(m, p, s);
|
||||
s = mk_bounded_int2bv_solver(m, p, s);
|
||||
return s;
|
||||
}
|
||||
|
|
127
src/tactic/portfolio/pb2bv_solver.cpp
Normal file
127
src/tactic/portfolio/pb2bv_solver.cpp
Normal file
|
@ -0,0 +1,127 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
pb2bv_solver.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "pb2bv_solver.h"
|
||||
#include "solver_na2as.h"
|
||||
#include "tactic.h"
|
||||
#include "pb2bv_rewriter.h"
|
||||
#include "filter_model_converter.h"
|
||||
#include "ast_pp.h"
|
||||
#include "model_smt2_pp.h"
|
||||
|
||||
class pb2bv_solver : public solver_na2as {
|
||||
ast_manager& m;
|
||||
params_ref m_params;
|
||||
expr_ref_vector m_assertions;
|
||||
ref<solver> m_solver;
|
||||
pb2bv_rewriter m_rewriter;
|
||||
|
||||
public:
|
||||
|
||||
pb2bv_solver(ast_manager& m, params_ref const& p, solver* s):
|
||||
solver_na2as(m),
|
||||
m(m),
|
||||
m_params(p),
|
||||
m_assertions(m),
|
||||
m_solver(s),
|
||||
m_rewriter(m, p)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~pb2bv_solver() {}
|
||||
|
||||
virtual solver* translate(ast_manager& m, params_ref const& p) {
|
||||
return alloc(pb2bv_solver, m, p, m_solver->translate(m, p));
|
||||
}
|
||||
|
||||
virtual void assert_expr(expr * t) {
|
||||
m_assertions.push_back(t);
|
||||
}
|
||||
|
||||
virtual void push_core() {
|
||||
flush_assertions();
|
||||
m_rewriter.push();
|
||||
m_solver->push();
|
||||
}
|
||||
|
||||
virtual void pop_core(unsigned n) {
|
||||
m_assertions.reset();
|
||||
m_solver->pop(n);
|
||||
m_rewriter.pop(n);
|
||||
}
|
||||
|
||||
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
|
||||
flush_assertions();
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
virtual void updt_params(params_ref const & p) { m_solver->updt_params(p); }
|
||||
virtual void collect_param_descrs(param_descrs & r) { m_solver->collect_param_descrs(r); }
|
||||
virtual void set_produce_models(bool f) { m_solver->set_produce_models(f); }
|
||||
virtual void set_progress_callback(progress_callback * callback) { m_solver->set_progress_callback(callback); }
|
||||
virtual void collect_statistics(statistics & st) const {
|
||||
m_rewriter.collect_statistics(st);
|
||||
m_solver->collect_statistics(st);
|
||||
}
|
||||
virtual void get_unsat_core(ptr_vector<expr> & r) { m_solver->get_unsat_core(r); }
|
||||
virtual void get_model(model_ref & mdl) {
|
||||
m_solver->get_model(mdl);
|
||||
if (mdl) {
|
||||
filter_model(mdl);
|
||||
}
|
||||
}
|
||||
virtual proof * get_proof() { return m_solver->get_proof(); }
|
||||
virtual std::string reason_unknown() const { return m_solver->reason_unknown(); }
|
||||
virtual void set_reason_unknown(char const* msg) { m_solver->set_reason_unknown(msg); }
|
||||
virtual void get_labels(svector<symbol> & r) { m_solver->get_labels(r); }
|
||||
virtual ast_manager& get_manager() const { return m; }
|
||||
virtual lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) { return m_solver->find_mutexes(vars, mutexes); }
|
||||
virtual lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) {
|
||||
flush_assertions();
|
||||
return m_solver->get_consequences(asms, vars, consequences); }
|
||||
|
||||
void filter_model(model_ref& mdl) {
|
||||
if (m_rewriter.fresh_constants().empty()) {
|
||||
return;
|
||||
}
|
||||
filter_model_converter filter(m);
|
||||
func_decl_ref_vector const& fns = m_rewriter.fresh_constants();
|
||||
for (unsigned i = 0; i < fns.size(); ++i) {
|
||||
filter.insert(fns[i]);
|
||||
}
|
||||
filter(mdl, 0);
|
||||
}
|
||||
|
||||
private:
|
||||
void flush_assertions() {
|
||||
proof_ref proof(m);
|
||||
expr_ref fml(m);
|
||||
expr_ref_vector fmls(m);
|
||||
for (unsigned i = 0; i < m_assertions.size(); ++i) {
|
||||
m_rewriter(m_assertions[i].get(), fml, proof);
|
||||
m_solver->assert_expr(fml);
|
||||
}
|
||||
m_rewriter.flush_side_constraints(fmls);
|
||||
m_solver->assert_expr(fmls);
|
||||
m_assertions.reset();
|
||||
}
|
||||
};
|
||||
|
||||
solver * mk_pb2bv_solver(ast_manager & m, params_ref const & p, solver* s) {
|
||||
return alloc(pb2bv_solver, m, p, s);
|
||||
}
|
29
src/tactic/portfolio/pb2bv_solver.h
Normal file
29
src/tactic/portfolio/pb2bv_solver.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
pb2bv_solver.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Pseudo-Boolean to bit-vector solver.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-23
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#ifndef PB2BV_SOLVER_H_
|
||||
#define PB2BV_SOLVER_H_
|
||||
|
||||
#include"ast.h"
|
||||
#include"params.h"
|
||||
|
||||
class solver;
|
||||
|
||||
solver * mk_pb2bv_solver(ast_manager & m, params_ref const & p, solver* s);
|
||||
|
||||
#endif
|
|
@ -51,85 +51,8 @@ static void test1() {
|
|||
std::cout << conseq << "\n";
|
||||
}
|
||||
|
||||
static void test2() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
bv_util bv(m);
|
||||
datatype_util dtutil(m);
|
||||
params_ref p;
|
||||
|
||||
datatype_decl_plugin & dt = *(static_cast<datatype_decl_plugin*>(m.get_plugin(m.get_family_id("datatype"))));
|
||||
sort_ref_vector new_sorts(m);
|
||||
constructor_decl* R = mk_constructor_decl(symbol("R"), symbol("is-R"), 0, 0);
|
||||
constructor_decl* G = mk_constructor_decl(symbol("G"), symbol("is-G"), 0, 0);
|
||||
constructor_decl* B = mk_constructor_decl(symbol("B"), symbol("is-B"), 0, 0);
|
||||
constructor_decl* constrs[3] = { R, G, B };
|
||||
datatype_decl * enum_sort = mk_datatype_decl(symbol("RGB"), 3, constrs);
|
||||
VERIFY(dt.mk_datatypes(1, &enum_sort, new_sorts));
|
||||
del_constructor_decls(3, constrs);
|
||||
sort* rgb = new_sorts[0].get();
|
||||
|
||||
expr_ref x = mk_const(m, "x", rgb), y = mk_const(m, "y", rgb), z = mk_const(m, "z", rgb);
|
||||
ptr_vector<func_decl> const& enums = *dtutil.get_datatype_constructors(rgb);
|
||||
expr_ref r = expr_ref(m.mk_const(enums[0]), m);
|
||||
expr_ref g = expr_ref(m.mk_const(enums[1]), m);
|
||||
expr_ref b = expr_ref(m.mk_const(enums[2]), m);
|
||||
expr_ref val(m);
|
||||
|
||||
// Eliminate enumeration data-types:
|
||||
goal_ref gl = alloc(goal, m);
|
||||
gl->assert_expr(m.mk_not(m.mk_eq(x, r)));
|
||||
gl->assert_expr(m.mk_not(m.mk_eq(x, b)));
|
||||
gl->display(std::cout);
|
||||
obj_map<func_decl, func_decl*> tr;
|
||||
obj_map<func_decl, func_decl*> rev_tr;
|
||||
ref<tactic> dt2bv = mk_dt2bv_tactic(m, p, &tr);
|
||||
goal_ref_buffer result;
|
||||
model_converter_ref mc;
|
||||
proof_converter_ref pc;
|
||||
expr_dependency_ref core(m);
|
||||
(*dt2bv)(gl, result, mc, pc, core);
|
||||
|
||||
// Collect translations from enumerations to bit-vectors
|
||||
obj_map<func_decl, func_decl*>::iterator it = tr.begin(), end = tr.end();
|
||||
for (; it != end; ++it) {
|
||||
rev_tr.insert(it->m_value, it->m_key);
|
||||
}
|
||||
|
||||
// Create bit-vector implication problem
|
||||
val = m.mk_const(tr.find(to_app(x)->get_decl()));
|
||||
std::cout << val << "\n";
|
||||
ptr_vector<expr> fmls;
|
||||
result[0]->get_formulas(fmls);
|
||||
ref<solver> solver = mk_inc_sat_solver(m, p);
|
||||
for (unsigned i = 0; i < fmls.size(); ++i) {
|
||||
solver->assert_expr(fmls[i]);
|
||||
}
|
||||
expr_ref_vector asms(m), vars(m), conseq(m);
|
||||
vars.push_back(val);
|
||||
|
||||
// retrieve consequences
|
||||
solver->get_consequences(asms, vars, conseq);
|
||||
|
||||
// Convert consequences over bit-vectors to enumeration types.
|
||||
std::cout << conseq << "\n";
|
||||
for (unsigned i = 0; i < conseq.size(); ++i) {
|
||||
expr* a, *b, *u, *v;
|
||||
func_decl* f;
|
||||
rational num;
|
||||
unsigned bvsize;
|
||||
VERIFY(m.is_implies(conseq[i].get(), a, b));
|
||||
if (m.is_eq(b, u, v) && rev_tr.find(to_app(u)->get_decl(), f) && bv.is_numeral(v, num, bvsize)) {
|
||||
SASSERT(num.is_unsigned());
|
||||
expr_ref head(m);
|
||||
head = m.mk_eq(m.mk_const(f), m.mk_const(enums[num.get_unsigned()]));
|
||||
conseq[i] = m.mk_implies(a, head);
|
||||
}
|
||||
}
|
||||
std::cout << conseq << "\n";
|
||||
}
|
||||
|
||||
void test3() {
|
||||
void test2() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
bv_util bv(m);
|
||||
|
@ -189,6 +112,4 @@ void test3() {
|
|||
void tst_get_consequences() {
|
||||
test1();
|
||||
test2();
|
||||
test3();
|
||||
|
||||
}
|
||||
|
|
|
@ -229,6 +229,7 @@ int main(int argc, char ** argv) {
|
|||
TST_ARGV(ddnf);
|
||||
TST(model_evaluator);
|
||||
TST(get_consequences);
|
||||
TST(pb2bv);
|
||||
//TST_ARGV(hs);
|
||||
}
|
||||
|
||||
|
|
195
src/test/pb2bv.cpp
Normal file
195
src/test/pb2bv.cpp
Normal file
|
@ -0,0 +1,195 @@
|
|||
/*++
|
||||
Copyright (c) 2015 Microsoft Corporation
|
||||
|
||||
--*/
|
||||
|
||||
#include "trace.h"
|
||||
#include "vector.h"
|
||||
#include "ast.h"
|
||||
#include "ast_pp.h"
|
||||
#include "statistics.h"
|
||||
#include "reg_decl_plugins.h"
|
||||
#include "pb2bv_rewriter.h"
|
||||
#include "smt_kernel.h"
|
||||
#include "model_smt2_pp.h"
|
||||
#include "smt_params.h"
|
||||
#include "ast_util.h"
|
||||
#include "pb_decl_plugin.h"
|
||||
#include "th_rewriter.h"
|
||||
#include "fd_solver.h"
|
||||
#include "solver.h"
|
||||
|
||||
static void test1() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
pb_util pb(m);
|
||||
params_ref p;
|
||||
pb2bv_rewriter rw(m, p);
|
||||
expr_ref_vector vars(m);
|
||||
unsigned N = 5;
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
std::stringstream strm;
|
||||
strm << "b" << i;
|
||||
vars.push_back(m.mk_const(symbol(strm.str().c_str()), m.mk_bool_sort()));
|
||||
}
|
||||
|
||||
for (unsigned k = 1; k <= N; ++k) {
|
||||
expr_ref fml(m), result(m);
|
||||
proof_ref proof(m);
|
||||
fml = pb.mk_at_least_k(vars.size(), vars.c_ptr(), k);
|
||||
rw(fml, result, proof);
|
||||
std::cout << fml << " |-> " << result << "\n";
|
||||
}
|
||||
expr_ref_vector lemmas(m);
|
||||
rw.flush_side_constraints(lemmas);
|
||||
std::cout << lemmas << "\n";
|
||||
}
|
||||
|
||||
static void test_semantics(ast_manager& m, expr_ref_vector const& vars, vector<rational> const& coeffs, unsigned k, unsigned kind) {
|
||||
pb_util pb(m);
|
||||
params_ref p;
|
||||
pb2bv_rewriter rw(m, p);
|
||||
unsigned N = vars.size();
|
||||
expr_ref fml1(m), fml2(m), result1(m), result2(m);
|
||||
proof_ref proof(m);
|
||||
expr_ref_vector lemmas(m);
|
||||
th_rewriter th_rw(m);
|
||||
|
||||
switch (kind) {
|
||||
case 0: fml1 = pb.mk_ge(vars.size(), coeffs.c_ptr(), vars.c_ptr(), rational(k)); break;
|
||||
case 1: fml1 = pb.mk_le(vars.size(), coeffs.c_ptr(), vars.c_ptr(), rational(k)); break;
|
||||
default: fml1 = pb.mk_eq(vars.size(), coeffs.c_ptr(), vars.c_ptr(), rational(k)); break;
|
||||
}
|
||||
rw(fml1, result1, proof);
|
||||
rw.flush_side_constraints(lemmas);
|
||||
std::cout << lemmas << "\n";
|
||||
for (unsigned values = 0; values < static_cast<unsigned>(1 << N); ++values) {
|
||||
smt_params fp;
|
||||
smt::kernel solver(m, fp);
|
||||
expr_ref_vector tf(m);
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
bool is_true = 0 != (values & (1 << i));
|
||||
tf.push_back(is_true ? m.mk_true() : m.mk_false());
|
||||
solver.assert_expr(is_true ? vars[i] : m.mk_not(vars[i]));
|
||||
}
|
||||
|
||||
solver.assert_expr(lemmas);
|
||||
switch (kind) {
|
||||
case 0: fml2 = pb.mk_ge(tf.size(), coeffs.c_ptr(), tf.c_ptr(), rational(k)); break;
|
||||
case 1: fml2 = pb.mk_le(tf.size(), coeffs.c_ptr(), tf.c_ptr(), rational(k)); break;
|
||||
default: fml2 = pb.mk_eq(tf.size(), coeffs.c_ptr(), tf.c_ptr(), rational(k)); break;
|
||||
}
|
||||
std::cout << fml1 << " " << fml2 << "\n";
|
||||
th_rw(fml2, result2, proof);
|
||||
SASSERT(m.is_true(result2) || m.is_false(result2));
|
||||
lbool res = solver.check();
|
||||
SASSERT(res == l_true);
|
||||
solver.assert_expr(m.is_true(result2) ? m.mk_not(result1) : result1.get());
|
||||
res = solver.check();
|
||||
SASSERT(res == l_false);
|
||||
}
|
||||
}
|
||||
|
||||
static void test_semantics(ast_manager& m, expr_ref_vector const& vars, vector<rational> const& coeffs, unsigned k) {
|
||||
test_semantics(m, vars, coeffs, k, 0);
|
||||
test_semantics(m, vars, coeffs, k, 1);
|
||||
test_semantics(m, vars, coeffs, k, 2);
|
||||
}
|
||||
|
||||
static void test2() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
expr_ref_vector vars(m);
|
||||
unsigned N = 4;
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
std::stringstream strm;
|
||||
strm << "b" << i;
|
||||
vars.push_back(m.mk_const(symbol(strm.str().c_str()), m.mk_bool_sort()));
|
||||
}
|
||||
for (unsigned coeff = 0; coeff < static_cast<unsigned>(1 << N); ++coeff) {
|
||||
vector<rational> coeffs;
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
bool is_one = 0 != (coeff & (1 << i));
|
||||
coeffs.push_back(is_one ? rational(1) : rational(2));
|
||||
}
|
||||
for (unsigned i = 0; i <= N; ++i) {
|
||||
test_semantics(m, vars, coeffs, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void test_solver_semantics(ast_manager& m, expr_ref_vector const& vars, vector<rational> const& coeffs, unsigned k, unsigned kind) {
|
||||
pb_util pb(m);
|
||||
params_ref p;
|
||||
unsigned N = vars.size();
|
||||
expr_ref fml1(m), fml2(m), result1(m), result2(m);
|
||||
proof_ref proof(m);
|
||||
th_rewriter th_rw(m);
|
||||
|
||||
switch (kind) {
|
||||
case 0: fml1 = pb.mk_ge(vars.size(), coeffs.c_ptr(), vars.c_ptr(), rational(k)); break;
|
||||
case 1: fml1 = pb.mk_le(vars.size(), coeffs.c_ptr(), vars.c_ptr(), rational(k)); break;
|
||||
default: fml1 = pb.mk_eq(vars.size(), coeffs.c_ptr(), vars.c_ptr(), rational(k)); break;
|
||||
}
|
||||
result1 = m.mk_fresh_const("xx", m.mk_bool_sort());
|
||||
for (unsigned values = 0; values < static_cast<unsigned>(1 << N); ++values) {
|
||||
ref<solver> slv = mk_fd_solver(m, p);
|
||||
expr_ref_vector tf(m);
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
bool is_true = 0 != (values & (1 << i));
|
||||
tf.push_back(is_true ? m.mk_true() : m.mk_false());
|
||||
slv->assert_expr(is_true ? vars[i] : m.mk_not(vars[i]));
|
||||
}
|
||||
slv->assert_expr(m.mk_eq(result1, fml1));
|
||||
|
||||
switch (kind) {
|
||||
case 0: fml2 = pb.mk_ge(tf.size(), coeffs.c_ptr(), tf.c_ptr(), rational(k)); break;
|
||||
case 1: fml2 = pb.mk_le(tf.size(), coeffs.c_ptr(), tf.c_ptr(), rational(k)); break;
|
||||
default: fml2 = pb.mk_eq(tf.size(), coeffs.c_ptr(), tf.c_ptr(), rational(k)); break;
|
||||
}
|
||||
std::cout << fml1 << " " << fml2 << "\n";
|
||||
th_rw(fml2, result2, proof);
|
||||
SASSERT(m.is_true(result2) || m.is_false(result2));
|
||||
lbool res = slv->check_sat(0,0);
|
||||
SASSERT(res == l_true);
|
||||
slv->assert_expr(m.is_true(result2) ? m.mk_not(result1) : result1.get());
|
||||
res = slv->check_sat(0,0);
|
||||
SASSERT(res == l_false);
|
||||
}
|
||||
}
|
||||
|
||||
static void test_solver_semantics(ast_manager& m, expr_ref_vector const& vars, vector<rational> const& coeffs, unsigned k) {
|
||||
test_solver_semantics(m, vars, coeffs, k, 0);
|
||||
test_solver_semantics(m, vars, coeffs, k, 1);
|
||||
test_solver_semantics(m, vars, coeffs, k, 2);
|
||||
}
|
||||
|
||||
static void test3() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
expr_ref_vector vars(m);
|
||||
unsigned N = 4;
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
std::stringstream strm;
|
||||
strm << "b" << i;
|
||||
vars.push_back(m.mk_const(symbol(strm.str().c_str()), m.mk_bool_sort()));
|
||||
}
|
||||
for (unsigned coeff = 0; coeff < static_cast<unsigned>(1 << N); ++coeff) {
|
||||
vector<rational> coeffs;
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
bool is_one = 0 != (coeff & (1 << i));
|
||||
coeffs.push_back(is_one ? rational(1) : rational(2));
|
||||
}
|
||||
for (unsigned i = 0; i <= N; ++i) {
|
||||
test_solver_semantics(m, vars, coeffs, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void tst_pb2bv() {
|
||||
test1();
|
||||
test2();
|
||||
test3();
|
||||
}
|
||||
|
|
@ -332,31 +332,106 @@ void test_sorting5(unsigned n, unsigned k) {
|
|||
test_sorting_ge(n, k);
|
||||
}
|
||||
|
||||
void test_at_most_1(unsigned n) {
|
||||
expr_ref naive_at_most1(expr_ref_vector const& xs) {
|
||||
ast_manager& m = xs.get_manager();
|
||||
expr_ref_vector clauses(m);
|
||||
for (unsigned i = 0; i < xs.size(); ++i) {
|
||||
for (unsigned j = i + 1; j < xs.size(); ++j) {
|
||||
clauses.push_back(m.mk_not(m.mk_and(xs[i], xs[j])));
|
||||
}
|
||||
}
|
||||
return mk_and(clauses);
|
||||
}
|
||||
|
||||
void test_at_most_1(unsigned n, bool full) {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
expr_ref_vector in(m), out(m);
|
||||
for (unsigned i = 0; i < n; ++i) {
|
||||
in.push_back(m.mk_fresh_const("a",m.mk_bool_sort()));
|
||||
}
|
||||
|
||||
|
||||
ast_ext2 ext(m);
|
||||
psort_nw<ast_ext2> sn(ext);
|
||||
expr_ref result1(m), result2(m);
|
||||
result1 = sn.le(full, 1, in.size(), in.c_ptr());
|
||||
result2 = naive_at_most1(in);
|
||||
|
||||
std::cout << "clauses: " << ext.m_clauses << "\n-----\n";
|
||||
|
||||
smt_params fp;
|
||||
smt::kernel solver(m, fp);
|
||||
for (unsigned i = 0; i < ext.m_clauses.size(); ++i) {
|
||||
solver.assert_expr(ext.m_clauses[i].get());
|
||||
}
|
||||
lbool res;
|
||||
if (full) {
|
||||
solver.push();
|
||||
solver.assert_expr(m.mk_not(m.mk_eq(result1, result2)));
|
||||
|
||||
std::cout << result1 << "\n";
|
||||
|
||||
res = solver.check();
|
||||
SASSERT(res == l_false);
|
||||
|
||||
solver.pop(1);
|
||||
}
|
||||
|
||||
if (n >= 9) return;
|
||||
for (unsigned i = 0; i < static_cast<unsigned>(1 << n); ++i) {
|
||||
std::cout << "checking: " << n << ": " << i << "\n";
|
||||
solver.push();
|
||||
unsigned k = 0;
|
||||
for (unsigned j = 0; j < n; ++j) {
|
||||
bool is_true = (i & (1 << j)) != 0;
|
||||
expr_ref atom(m);
|
||||
atom = is_true ? in[j].get() : m.mk_not(in[j].get());
|
||||
solver.assert_expr(atom);
|
||||
std::cout << atom << "\n";
|
||||
if (is_true) ++k;
|
||||
}
|
||||
res = solver.check();
|
||||
SASSERT(res == l_true);
|
||||
if (k > 1) {
|
||||
solver.assert_expr(result1);
|
||||
}
|
||||
else if (!full) {
|
||||
solver.pop(1);
|
||||
continue;
|
||||
}
|
||||
else {
|
||||
solver.assert_expr(m.mk_not(result1));
|
||||
}
|
||||
res = solver.check();
|
||||
SASSERT(res == l_false);
|
||||
solver.pop(1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void test_at_most1() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
expr_ref_vector in(m), out(m);
|
||||
for (unsigned i = 0; i < 5; ++i) {
|
||||
in.push_back(m.mk_fresh_const("a",m.mk_bool_sort()));
|
||||
}
|
||||
in[4] = in[3];
|
||||
|
||||
ast_ext2 ext(m);
|
||||
psort_nw<ast_ext2> sn(ext);
|
||||
expr_ref result(m);
|
||||
result = sn.le(false, 1, in.size(), in.c_ptr());
|
||||
result = sn.le(true, 1, in.size(), in.c_ptr());
|
||||
std::cout << result << "\n";
|
||||
std::cout << ext.m_clauses << "\n";
|
||||
}
|
||||
|
||||
void tst_sorting_network() {
|
||||
test_at_most_1(1);
|
||||
test_at_most_1(2);
|
||||
test_at_most_1(3);
|
||||
test_at_most_1(4);
|
||||
test_at_most_1(5);
|
||||
test_at_most_1(10);
|
||||
return;
|
||||
for (unsigned i = 1; i < 17; ++i) {
|
||||
test_at_most_1(i, true);
|
||||
test_at_most_1(i, false);
|
||||
}
|
||||
test_at_most1();
|
||||
|
||||
test_sorting_eq(11,7);
|
||||
for (unsigned n = 3; n < 20; n += 2) {
|
||||
|
|
|
@ -153,7 +153,7 @@ void mpq_manager<SYNCH>::display_smt2(std::ostream & out, mpq const & a, bool de
|
|||
}
|
||||
|
||||
template<bool SYNCH>
|
||||
void mpq_manager<SYNCH>::display_decimal(std::ostream & out, mpq const & a, unsigned prec) {
|
||||
void mpq_manager<SYNCH>::display_decimal(std::ostream & out, mpq const & a, unsigned prec, bool truncate) {
|
||||
mpz n1, d1, v1;
|
||||
get_numerator(a, n1);
|
||||
get_denominator(a, d1);
|
||||
|
@ -177,7 +177,7 @@ void mpq_manager<SYNCH>::display_decimal(std::ostream & out, mpq const & a, unsi
|
|||
if (is_zero(n1))
|
||||
goto end; // number is precise
|
||||
}
|
||||
out << "?";
|
||||
if (!truncate) out << "?";
|
||||
end:
|
||||
del(ten); del(n1); del(d1); del(v1);
|
||||
}
|
||||
|
|
|
@ -265,7 +265,7 @@ public:
|
|||
|
||||
void display_smt2(std::ostream & out, mpq const & a, bool decimal) const;
|
||||
|
||||
void display_decimal(std::ostream & out, mpq const & a, unsigned prec);
|
||||
void display_decimal(std::ostream & out, mpq const & a, unsigned prec, bool truncate = false);
|
||||
|
||||
void add(mpz const & a, mpz const & b, mpz & c) { mpz_manager<SYNCH>::add(a, b, c); }
|
||||
|
||||
|
|
|
@ -86,7 +86,7 @@ public:
|
|||
|
||||
void display(std::ostream & out) const { return m().display(out, m_val); }
|
||||
|
||||
void display_decimal(std::ostream & out, unsigned prec) const { return m().display_decimal(out, m_val, prec); }
|
||||
void display_decimal(std::ostream & out, unsigned prec, bool truncate = false) const { return m().display_decimal(out, m_val, prec, truncate); }
|
||||
|
||||
bool is_uint64() const { return m().is_uint64(m_val); }
|
||||
|
||||
|
|
|
@ -226,7 +226,12 @@ Notes:
|
|||
m_t = EQ;
|
||||
card(k+1, n, xs, out);
|
||||
SASSERT(out.size() >= k+1);
|
||||
return ctx.mk_min(out[k-1], ctx.mk_not(out[k]));
|
||||
if (k == 0) {
|
||||
return ctx.mk_not(out[k]);
|
||||
}
|
||||
else {
|
||||
return ctx.mk_min(out[k-1], ctx.mk_not(out[k]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -234,19 +239,28 @@ Notes:
|
|||
private:
|
||||
|
||||
literal mk_at_most_1(bool full, unsigned n, literal const* xs) {
|
||||
TRACE("pb", tout << (full?"full":"partial") << " ";
|
||||
for (unsigned i = 0; i < n; ++i) tout << xs[i] << " ";
|
||||
tout << "\n";);
|
||||
|
||||
if (!full && n >= 4) {
|
||||
return mk_at_most_1_bimander(n, xs);
|
||||
}
|
||||
literal_vector in(n, xs);
|
||||
literal result = fresh();
|
||||
unsigned inc_size = 4;
|
||||
literal_vector ands;
|
||||
ands.push_back(result);
|
||||
while (!in.empty()) {
|
||||
literal_vector ors;
|
||||
unsigned i = 0;
|
||||
unsigned n = in.size();
|
||||
bool last = n <= inc_size;
|
||||
for (; i + inc_size < n; i += inc_size) {
|
||||
mk_at_most_1_small(full, last, inc_size, in.c_ptr() + i, result, ors);
|
||||
mk_at_most_1_small(full, last, inc_size, in.c_ptr() + i, result, ands, ors);
|
||||
}
|
||||
if (i < n) {
|
||||
mk_at_most_1_small(full, last, n - i, in.c_ptr() + i, result, ors);
|
||||
mk_at_most_1_small(full, last, n - i, in.c_ptr() + i, result, ands, ors);
|
||||
}
|
||||
if (last) {
|
||||
break;
|
||||
|
@ -255,10 +269,20 @@ Notes:
|
|||
in.append(ors);
|
||||
ors.reset();
|
||||
}
|
||||
if (full) {
|
||||
add_clause(ands);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void mk_at_most_1_small(bool full, bool last, unsigned n, literal const* xs, literal result, literal_vector& ors) {
|
||||
void mk_at_most_1_small(bool full, bool last, unsigned n, literal const* xs, literal result, literal_vector& ands, literal_vector& ors) {
|
||||
SASSERT(n > 0);
|
||||
if (n == 1) {
|
||||
if (!last) {
|
||||
ors.push_back(xs[0]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
if (!last) {
|
||||
literal ex = fresh();
|
||||
for (unsigned j = 0; j < n; ++j) {
|
||||
|
@ -271,16 +295,59 @@ Notes:
|
|||
}
|
||||
ors.push_back(ex);
|
||||
}
|
||||
// result => xs[0] + ... + xs[n-1] <= 1
|
||||
for (unsigned i = 0; i < n; ++i) {
|
||||
for (unsigned j = i + 1; j < n; ++j) {
|
||||
add_clause(ctx.mk_not(result), ctx.mk_not(xs[i]), ctx.mk_not(xs[j]));
|
||||
}
|
||||
if (full) {
|
||||
add_clause(result, xs[i]);
|
||||
}
|
||||
// xs[0] + ... + xs[n-1] <= 1 => and_x
|
||||
if (full) {
|
||||
literal and_i = fresh();
|
||||
for (unsigned i = 0; i < n; ++i) {
|
||||
literal_vector lits;
|
||||
lits.push_back(and_i);
|
||||
for (unsigned j = 0; j < n; ++j) {
|
||||
if (j != i) lits.push_back(xs[j]);
|
||||
}
|
||||
add_clause(lits);
|
||||
}
|
||||
ands.push_back(ctx.mk_not(and_i));
|
||||
}
|
||||
}
|
||||
|
||||
literal mk_at_most_1_bimander(unsigned n, literal const* xs) {
|
||||
literal_vector in(n, xs);
|
||||
literal result = fresh();
|
||||
unsigned inc_size = 2;
|
||||
bool last = false;
|
||||
bool full = false;
|
||||
literal_vector ors, ands;
|
||||
unsigned i = 0;
|
||||
for (; i + inc_size < n; i += inc_size) {
|
||||
mk_at_most_1_small(full, last, inc_size, in.c_ptr() + i, result, ands, ors);
|
||||
}
|
||||
if (i < n) {
|
||||
mk_at_most_1_small(full, last, n - i, in.c_ptr() + i, result, ands, ors);
|
||||
}
|
||||
|
||||
unsigned nbits = 0;
|
||||
while (static_cast<unsigned>(1 << nbits) < ors.size()) {
|
||||
++nbits;
|
||||
}
|
||||
literal_vector bits;
|
||||
for (unsigned k = 0; k < nbits; ++k) {
|
||||
bits.push_back(fresh());
|
||||
}
|
||||
for (i = 0; i < ors.size(); ++i) {
|
||||
for (unsigned k = 0; k < nbits; ++k) {
|
||||
bool bit_set = (i & (static_cast<unsigned>(1 << k))) != 0;
|
||||
add_clause(ctx.mk_not(result), ctx.mk_not(ors[i]), bit_set ? bits[k] : ctx.mk_not(bits[k]));
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
std::ostream& pp(std::ostream& out, unsigned n, literal const* lits) {
|
||||
for (unsigned i = 0; i < n; ++i) ctx.pp(out, lits[i]) << " ";
|
||||
return out;
|
||||
|
@ -344,9 +411,13 @@ Notes:
|
|||
literal lits[2] = { l1, l2 };
|
||||
add_clause(2, lits);
|
||||
}
|
||||
void add_clause(literal_vector const& lits) {
|
||||
add_clause(lits.size(), lits.c_ptr());
|
||||
}
|
||||
void add_clause(unsigned n, literal const* ls) {
|
||||
m_stats.m_num_compiled_clauses++;
|
||||
literal_vector tmp(n, ls);
|
||||
TRACE("pb", for (unsigned i = 0; i < n; ++i) tout << ls[i] << " "; tout << "\n";);
|
||||
ctx.mk_clause(n, tmp.c_ptr());
|
||||
}
|
||||
|
||||
|
@ -383,7 +454,7 @@ Notes:
|
|||
}
|
||||
|
||||
void card(unsigned k, unsigned n, literal const* xs, literal_vector& out) {
|
||||
TRACE("pb", tout << "card k:" << k << " n: " << n << "\n";);
|
||||
TRACE("pb", tout << "card k: " << k << " n: " << n << "\n";);
|
||||
if (n <= k) {
|
||||
psort_nw<psort_expr>::sorting(n, xs, out);
|
||||
}
|
||||
|
@ -397,7 +468,7 @@ Notes:
|
|||
card(k, n-l, xs + l, out2);
|
||||
smerge(k, out1.size(), out1.c_ptr(), out2.size(), out2.c_ptr(), out);
|
||||
}
|
||||
TRACE("pb", tout << "card k:" << k << " n: " << n << "\n";
|
||||
TRACE("pb", tout << "card k: " << k << " n: " << n << "\n";
|
||||
pp(tout << "in:", n, xs) << "\n";
|
||||
pp(tout << "out:", out) << "\n";);
|
||||
|
||||
|
@ -743,7 +814,7 @@ Notes:
|
|||
if (j < b) {
|
||||
ls.push_back(as[i]);
|
||||
ls.push_back(bs[j]);
|
||||
add_clause(ls.size(), ls.c_ptr());
|
||||
add_clause(ls);
|
||||
ls.pop_back();
|
||||
ls.pop_back();
|
||||
}
|
||||
|
@ -804,7 +875,7 @@ Notes:
|
|||
pp(tout, lits) << "\n";);
|
||||
SASSERT(k + offset <= n);
|
||||
if (k == 0) {
|
||||
add_clause(lits.size(), lits.c_ptr());
|
||||
add_clause(lits);
|
||||
return;
|
||||
}
|
||||
for (unsigned i = offset; i < n - k + 1; ++i) {
|
||||
|
|
Loading…
Reference in a new issue