3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-19 20:33:38 +00:00

add handling of pseudo-boolean inequalities that use if-expressions over Booleans and arihmetic instead of built-in PB predicates

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2016-10-24 17:41:52 -07:00
parent e4d2c5867a
commit b82b53dc34
3 changed files with 125 additions and 43 deletions

View file

@ -264,6 +264,10 @@ public:
bool is_ge(expr const * n) const { return is_app_of(n, m_afid, OP_GE); } bool is_ge(expr const * n) const { return is_app_of(n, m_afid, OP_GE); }
bool is_lt(expr const * n) const { return is_app_of(n, m_afid, OP_LT); } bool is_lt(expr const * n) const { return is_app_of(n, m_afid, OP_LT); }
bool is_gt(expr const * n) const { return is_app_of(n, m_afid, OP_GT); } bool is_gt(expr const * n) const { return is_app_of(n, m_afid, OP_GT); }
bool is_le(func_decl const * n) const { return is_decl_of(n, m_afid, OP_LE); }
bool is_ge(func_decl const * n) const { return is_decl_of(n, m_afid, OP_GE); }
bool is_lt(func_decl const * n) const { return is_decl_of(n, m_afid, OP_LT); }
bool is_gt(func_decl const * n) const { return is_decl_of(n, m_afid, OP_GT); }
bool is_add(expr const * n) const { return is_app_of(n, m_afid, OP_ADD); } bool is_add(expr const * n) const { return is_app_of(n, m_afid, OP_ADD); }
bool is_sub(expr const * n) const { return is_app_of(n, m_afid, OP_SUB); } bool is_sub(expr const * n) const { return is_app_of(n, m_afid, OP_SUB); }
bool is_uminus(expr const * n) const { return is_app_of(n, m_afid, OP_UMINUS); } bool is_uminus(expr const * n) const { return is_app_of(n, m_afid, OP_UMINUS); }

View file

@ -79,6 +79,9 @@ struct pb2bv_rewriter::imp {
pb_util pb; pb_util pb;
bv_util bv; bv_util bv;
expr_ref_vector m_trail; expr_ref_vector m_trail;
expr_ref_vector m_args;
rational m_k;
vector<rational> m_coeffs;
template<lbool is_le> template<lbool is_le>
expr_ref mk_le_ge(expr_ref_vector& fmls, expr* a, expr* b, expr* bound) { expr_ref mk_le_ge(expr_ref_vector& fmls, expr* a, expr* b, expr* bound) {
@ -109,8 +112,22 @@ struct pb2bv_rewriter::imp {
// The procedure for checking >= k is symmetric and checking for = k is // The procedure for checking >= k is symmetric and checking for = k is
// achieved by checking <= k on intermediary addends and the resulting sum is = k. // achieved by checking <= k on intermediary addends and the resulting sum is = k.
// //
// is_le = l_true - <=
// is_le = l_undef - =
// is_le = l_false - >=
//
template<lbool is_le> template<lbool is_le>
expr_ref mk_le_ge(func_decl *f, unsigned sz, expr * const* args, rational const & k) { expr_ref mk_le_ge(unsigned sz, expr * const* args, rational const & k) {
TRACE("pb",
for (unsigned i = 0; i < sz; ++i) {
tout << m_coeffs[i] << "*" << mk_pp(args[i], m) << " ";
}
switch (is_le) {
case l_true: tout << "<= "; break;
case l_undef: tout << "= "; break;
case l_false: tout << ">= "; break;
}
tout << m_k << "\n";);
if (k.is_zero()) { if (k.is_zero()) {
if (is_le != l_false) { if (is_le != l_false) {
return expr_ref(m.mk_not(mk_or(m, sz, args)), m); return expr_ref(m.mk_not(mk_or(m, sz, args)), m);
@ -119,6 +136,9 @@ struct pb2bv_rewriter::imp {
return expr_ref(m.mk_true(), m); return expr_ref(m.mk_true(), m);
} }
} }
if (k.is_neg()) {
return expr_ref((is_le == l_false)?m.mk_true():m.mk_false(), m);
}
SASSERT(k.is_pos()); SASSERT(k.is_pos());
expr_ref zero(m), bound(m); expr_ref zero(m), bound(m);
expr_ref_vector es(m), fmls(m); expr_ref_vector es(m), fmls(m);
@ -126,7 +146,8 @@ struct pb2bv_rewriter::imp {
zero = bv.mk_numeral(rational(0), nb); zero = bv.mk_numeral(rational(0), nb);
bound = bv.mk_numeral(k, nb); bound = bv.mk_numeral(k, nb);
for (unsigned i = 0; i < sz; ++i) { for (unsigned i = 0; i < sz; ++i) {
if (pb.get_coeff(f, i) > k) { SASSERT(!m_coeffs[i].is_neg());
if (m_coeffs[i] > k) {
if (is_le != l_false) { if (is_le != l_false) {
fmls.push_back(m.mk_not(args[i])); fmls.push_back(m.mk_not(args[i]));
} }
@ -135,7 +156,7 @@ struct pb2bv_rewriter::imp {
} }
} }
else { else {
es.push_back(mk_ite(args[i], bv.mk_numeral(pb.get_coeff(f, i), nb), zero)); es.push_back(mk_ite(args[i], bv.mk_numeral(m_coeffs[i], nb), zero));
} }
} }
while (es.size() > 1) { while (es.size() > 1) {
@ -165,6 +186,10 @@ struct pb2bv_rewriter::imp {
expr_ref mk_bv(func_decl * f, unsigned sz, expr * const* args) { expr_ref mk_bv(func_decl * f, unsigned sz, expr * const* args) {
decl_kind kind = f->get_decl_kind(); decl_kind kind = f->get_decl_kind();
rational k = pb.get_k(f); rational k = pb.get_k(f);
m_coeffs.reset();
for (unsigned i = 0; i < sz; ++i) {
m_coeffs.push_back(pb.get_coeff(f, i));
}
SASSERT(!k.is_neg()); SASSERT(!k.is_neg());
switch (kind) { switch (kind) {
case OP_PB_GE: case OP_PB_GE:
@ -173,13 +198,13 @@ struct pb2bv_rewriter::imp {
nargs.append(sz, args); nargs.append(sz, args);
dualize(f, nargs, k); dualize(f, nargs, k);
SASSERT(!k.is_neg()); SASSERT(!k.is_neg());
return mk_le_ge<l_true>(f, sz, nargs.c_ptr(), k); return mk_le_ge<l_true>(sz, nargs.c_ptr(), k);
} }
case OP_PB_LE: case OP_PB_LE:
case OP_AT_MOST_K: case OP_AT_MOST_K:
return mk_le_ge<l_true>(f, sz, args, k); return mk_le_ge<l_true>(sz, args, k);
case OP_PB_EQ: case OP_PB_EQ:
return mk_le_ge<l_undef>(f, sz, args, k); return mk_le_ge<l_undef>(sz, args, k);
default: default:
UNREACHABLE(); UNREACHABLE();
return expr_ref(m.mk_true(), m); return expr_ref(m.mk_true(), m);
@ -228,7 +253,6 @@ struct pb2bv_rewriter::imp {
} }
} }
public: public:
card2bv_rewriter(imp& i, ast_manager& m): card2bv_rewriter(imp& i, ast_manager& m):
@ -238,7 +262,8 @@ struct pb2bv_rewriter::imp {
pb(m), pb(m),
bv(m), bv(m),
m_sort(*this), m_sort(*this),
m_trail(m) m_trail(m),
m_args(m)
{} {}
br_status mk_app_core(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) { br_status mk_app_core(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {
@ -247,8 +272,31 @@ struct pb2bv_rewriter::imp {
++m_imp.m_num_translated; ++m_imp.m_num_translated;
return BR_DONE; return BR_DONE;
} }
else if (f->get_family_id() == au.get_family_id() && mk_arith(f, sz, args, result)) { else if (au.is_le(f) && is_pb(args[0], args[1])) {
++m_imp.m_num_translated; ++m_imp.m_num_translated;
result = mk_le_ge<l_true>(m_args.size(), m_args.c_ptr(), m_k);
return BR_DONE;
}
else if (au.is_lt(f) && is_pb(args[0], args[1])) {
++m_imp.m_num_translated;
++m_k;
result = mk_le_ge<l_true>(m_args.size(), m_args.c_ptr(), m_k);
return BR_DONE;
}
else if (au.is_ge(f) && is_pb(args[1], args[0])) {
++m_imp.m_num_translated;
result = mk_le_ge<l_true>(m_args.size(), m_args.c_ptr(), m_k);
return BR_DONE;
}
else if (au.is_gt(f) && is_pb(args[1], args[0])) {
++m_imp.m_num_translated;
++m_k;
result = mk_le_ge<l_true>(m_args.size(), m_args.c_ptr(), m_k);
return BR_DONE;
}
else if (m.is_eq(f) && is_pb(args[0], args[1])) {
++m_imp.m_num_translated;
result = mk_le_ge<l_undef>(m_args.size(), m_args.c_ptr(), m_k);
return BR_DONE; return BR_DONE;
} }
else { else {
@ -256,43 +304,75 @@ struct pb2bv_rewriter::imp {
} }
} }
// bool is_pb(expr* x, expr* y) {
// NSB: review m_args.reset();
// we should remove this code and rely on a layer above to deal with m_coeffs.reset();
// whatever it accomplishes. It seems to break types. m_k.reset();
// return is_pb(x, rational::one()) && is_pb(y, rational::minus_one());
bool mk_arith(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) { }
if (f->get_decl_kind() == OP_ADD) {
unsigned bits = 0; bool is_pb(expr* e, rational const& mul) {
for (unsigned i = 0; i < sz; i++) { if (!is_app(e)) {
rational val1, val2; return false;
if (au.is_int(args[i]) && au.is_numeral(args[i], val1)) { }
bits += val1.get_num_bits(); app* a = to_app(e);
rational r, r1, r2;
expr* c, *th, *el;
unsigned sz = a->get_num_args();
if (a->get_family_id() == au.get_family_id()) {
switch (a->get_decl_kind()) {
case OP_ADD:
for (unsigned i = 0; i < sz; ++i) {
if (!is_pb(a->get_arg(i), mul)) return false;
} }
else if (m.is_ite(args[i]) && return true;
au.is_numeral(to_app(args[i])->get_arg(1), val1) && val1.is_one() && case OP_SUB: {
au.is_numeral(to_app(args[i])->get_arg(2), val2) && val2.is_zero()) { if (!is_pb(a->get_arg(0), mul)) return false;
bits++; r = -mul;
for (unsigned i = 1; i < sz; ++i) {
if (!is_pb(a->get_arg(1), r)) return false;
} }
else return true;
return false; }
case OP_UMINUS:
return is_pb(a->get_arg(0), -mul);
case OP_NUM:
VERIFY(au.is_numeral(a, r));
m_k += mul * r;
return true;
case OP_MUL:
if (sz != 2) {
return false;
}
if (au.is_numeral(a->get_arg(0), r)) {
r *= mul;
return is_pb(a->get_arg(1), r);
}
if (au.is_numeral(a->get_arg(1), r)) {
r *= mul;
return is_pb(a->get_arg(0), r);
}
return false;
default:
return false;
}
}
if (m.is_ite(a, c, th, el) && au.is_numeral(th, r1) && au.is_numeral(el, r2)) {
r1 *= mul;
r2 *= mul;
if (r1 < r2) {
m_args.push_back(::mk_not(m, c));
m_coeffs.push_back(r2-r1);
m_k -= r1;
}
else {
m_args.push_back(c);
m_coeffs.push_back(r1-r2);
m_k -= r2;
} }
result = 0;
for (unsigned i = 0; i < sz; i++) {
rational val1, val2;
expr * q;
if (au.is_int(args[i]) && au.is_numeral(args[i], val1))
q = bv.mk_numeral(val1, bits);
else
q = mk_ite(to_app(args[i])->get_arg(0), bv.mk_numeral(1, bits), bv.mk_numeral(0, bits));
result = (i == 0) ? q : bv.mk_bv_add(result.get(), q);
}
return true; return true;
} }
else { return false;
return false;
}
} }
void mk_pb(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) { void mk_pb(func_decl * f, unsigned sz, expr * const* args, expr_ref & result) {

View file

@ -115,8 +115,6 @@ public:
} }
} }
lbool r = m_solver->get_consequences(asms, bvars, consequences); lbool r = m_solver->get_consequences(asms, bvars, consequences);
std::cout << consequences.size() << "\n";
// translate bit-vector consequences back to enumeration types // translate bit-vector consequences back to enumeration types
for (unsigned i = 0; i < consequences.size(); ++i) { for (unsigned i = 0; i < consequences.size(); ++i) {