mirror of
https://github.com/Z3Prover/z3
synced 2025-04-07 18:05:21 +00:00
guard table erasure for representative
This commit is contained in:
parent
40159a3a96
commit
b7b7970c4a
|
@ -14,88 +14,8 @@ Author:
|
|||
Nikolaj Bjorner (nbjorner) 2020-08-23
|
||||
|
||||
Notes:
|
||||
--*/
|
||||
|
||||
Each node has a congruence closure root, cg.
|
||||
cg is set to the representative in the cc table
|
||||
(first insertion of congruent node).
|
||||
Each node n has a set of parents, denoted n.P.
|
||||
The table maintains the invariant
|
||||
- p.cg = find(p)
|
||||
|
||||
Merge sets r2 to the root of r1
|
||||
(r2 and r1 are both considered roots before the merge).
|
||||
The operation Unmerge reverses the effect of Merge.
|
||||
|
||||
|
||||
Merge(r1, r2)
|
||||
-------------
|
||||
|
||||
Erase: for each p in r1.P such that p.cg == p:
|
||||
erase from table
|
||||
Update root: r1.root := r2
|
||||
Insert: for each p in r1.P:
|
||||
p.cg = insert p in table
|
||||
if p.cg == p:
|
||||
append p to r2.P
|
||||
else
|
||||
add (p.cg == p) to 'to_merge'
|
||||
|
||||
Unmerge(r1, r2)
|
||||
---------------
|
||||
|
||||
Erase: for each p in r2.P added from r1.P:
|
||||
erase p from table
|
||||
Revert root: r1.root := r1
|
||||
Insert: for each p in r1.P:
|
||||
insert p if n was cc root before merge
|
||||
|
||||
condition for being cc root before merge:
|
||||
p.cg == p or !congruent(p, p.cg)
|
||||
|
||||
congruent(p,q) := roots of p.args = roots of q.args
|
||||
|
||||
The algorithm orients r1, r2 such that class_size(r1) <= class_size(r2).
|
||||
With N nodes, there can be at most N calls to Merge.
|
||||
Each of the calls traverse r1.P from the smaller class size.
|
||||
Label a merge tree with nodes from the larger class size.
|
||||
In other words, if Merge(r2,r1); Merge(r3,r1) is a sequence
|
||||
of calls where r1 is selected root, then the merge tree is
|
||||
|
||||
r1
|
||||
/ \
|
||||
r1 r3
|
||||
\
|
||||
r2
|
||||
|
||||
Note that parent lists are re-examined only for nodes that join
|
||||
from right subtrees (with lesser class sizes).
|
||||
Claim: a node participates in a path along right adjoining sub-trees at most O(log(N)) times.
|
||||
Justification (very roughly): the size of a right adjoining subtree can at most
|
||||
be equal to the left adjoining sub-tree. This entails a logarithmic number of
|
||||
re-examinations from the right adjoining tree.
|
||||
(TBD check how Hopcroft's main argument is phrased)
|
||||
|
||||
The parent lists are bounded by the maximal arity of functions.
|
||||
|
||||
Example:
|
||||
|
||||
Initially:
|
||||
n1 := f(a,b) has root n1
|
||||
n2 := f(a',b) has root n2
|
||||
table = [f(a,b) |-> n1, f(a',b) |-> n2]
|
||||
|
||||
merge(a,a') (a' becomes root)
|
||||
table = [f(a',b) |-> n2]
|
||||
n1.cg = n2
|
||||
a'.P = [n2]
|
||||
n1 is not added as parent because it is not a cc root after the assignment a.root := a'
|
||||
|
||||
unmerge(a,a')
|
||||
- nothing is erased
|
||||
- n1 is reinserted. It used to be a root.
|
||||
|
||||
|
||||
*/
|
||||
|
||||
#include "ast/euf/euf_egraph.h"
|
||||
#include "ast/ast_pp.h"
|
||||
|
@ -132,6 +52,10 @@ namespace euf {
|
|||
return rc;
|
||||
}
|
||||
|
||||
void egraph::erase_from_table(enode* p) {
|
||||
m_table.erase(p);
|
||||
}
|
||||
|
||||
void egraph::reinsert_equality(enode* p) {
|
||||
SASSERT(p->is_equality());
|
||||
if (p->value() != l_true && p->get_arg(0)->get_root() == p->get_arg(1)->get_root()) {
|
||||
|
@ -328,9 +252,10 @@ namespace euf {
|
|||
if (n->num_args() > 0) {
|
||||
if (enable_merge)
|
||||
insert_table(n);
|
||||
else
|
||||
m_table.erase(n);
|
||||
else if (m_table.contains_ptr(n))
|
||||
erase_from_table(n);
|
||||
}
|
||||
VERIFY(n->num_args() == 0 || !n->merge_enabled() || m_table.contains(n));
|
||||
}
|
||||
|
||||
void egraph::set_value(enode* n, lbool value) {
|
||||
|
@ -357,7 +282,7 @@ namespace euf {
|
|||
enode* n = m_nodes.back();
|
||||
expr* e = m_exprs.back();
|
||||
if (n->num_args() > 0 && n->is_cgr())
|
||||
m_table.erase(n);
|
||||
erase_from_table(n);
|
||||
|
||||
m_expr2enode[e->get_id()] = nullptr;
|
||||
n->~enode();
|
||||
|
@ -467,7 +392,7 @@ namespace euf {
|
|||
continue;
|
||||
SASSERT(m_table.contains_ptr(p));
|
||||
p->mark1();
|
||||
m_table.erase(p);
|
||||
erase_from_table(p);
|
||||
SASSERT(!m_table.contains_ptr(p));
|
||||
}
|
||||
else if (p->is_equality())
|
||||
|
@ -524,19 +449,13 @@ namespace euf {
|
|||
TRACE("euf", tout << "erase " << bpp(p) << "\n";);
|
||||
SASSERT(!p->merge_enabled() || m_table.contains_ptr(p));
|
||||
SASSERT(!p->merge_enabled() || p->is_cgr());
|
||||
if (p->merge_enabled())
|
||||
m_table.erase(p);
|
||||
if (p->merge_enabled())
|
||||
erase_from_table(p);
|
||||
}
|
||||
|
||||
for (enode* c : enode_class(r1))
|
||||
c->m_root = r1;
|
||||
|
||||
for (enode* p : enode_parents(r1))
|
||||
if (p->merge_enabled() && !p->is_cgr() && !p->m_cg) {
|
||||
std::cout << bpp(p) << "\n";
|
||||
SASSERT(false);
|
||||
}
|
||||
|
||||
for (enode* p : enode_parents(r1))
|
||||
if (p->merge_enabled() && (p->is_cgr() || !p->congruent(p->m_cg)))
|
||||
insert_table(p);
|
||||
|
@ -548,12 +467,12 @@ SASSERT(false);
|
|||
bool egraph::propagate() {
|
||||
SASSERT(m_new_lits_qhead <= m_new_lits.size());
|
||||
SASSERT(m_num_scopes == 0 || m_to_merge.empty());
|
||||
force_push();
|
||||
for (unsigned i = 0; i < m_to_merge.size() && m.limit().inc() && !inconsistent(); ++i) {
|
||||
auto const& w = m_to_merge[i];
|
||||
merge(w.a, w.b, justification::congruence(w.commutativity));
|
||||
}
|
||||
m_to_merge.reset();
|
||||
force_push();
|
||||
return
|
||||
(m_new_lits_qhead < m_new_lits.size()) ||
|
||||
(m_new_th_eqs_qhead < m_new_th_eqs.size()) ||
|
||||
|
@ -826,3 +745,86 @@ template void euf::egraph::explain(ptr_vector<size_t>& justifications);
|
|||
template void euf::egraph::explain_todo(ptr_vector<size_t>& justifications);
|
||||
template void euf::egraph::explain_eq(ptr_vector<size_t>& justifications, enode* a, enode* b);
|
||||
|
||||
|
||||
|
||||
#if 0
|
||||
Each node has a congruence closure root, cg.
|
||||
cg is set to the representative in the cc table
|
||||
(first insertion of congruent node).
|
||||
Each node n has a set of parents, denoted n.P.
|
||||
The table maintains the invariant
|
||||
- p.cg = find(p)
|
||||
|
||||
Merge sets r2 to the root of r1
|
||||
(r2 and r1 are both considered roots before the merge).
|
||||
The operation Unmerge reverses the effect of Merge.
|
||||
|
||||
|
||||
Merge(r1, r2)
|
||||
-------------
|
||||
|
||||
Erase: for each p in r1.P such that p.cg == p:
|
||||
erase from table
|
||||
Update root: r1.root := r2
|
||||
Insert: for each p in r1.P:
|
||||
p.cg = insert p in table
|
||||
if p.cg == p:
|
||||
append p to r2.P
|
||||
else
|
||||
add (p.cg == p) to 'to_merge'
|
||||
|
||||
Unmerge(r1, r2)
|
||||
---------------
|
||||
|
||||
Erase: for each p in r2.P added from r1.P:
|
||||
erase p from table
|
||||
Revert root: r1.root := r1
|
||||
Insert: for each p in r1.P:
|
||||
insert p if n was cc root before merge
|
||||
|
||||
condition for being cc root before merge:
|
||||
p.cg == p or !congruent(p, p.cg)
|
||||
|
||||
congruent(p,q) := roots of p.args = roots of q.args
|
||||
|
||||
The algorithm orients r1, r2 such that class_size(r1) <= class_size(r2).
|
||||
With N nodes, there can be at most N calls to Merge.
|
||||
Each of the calls traverse r1.P from the smaller class size.
|
||||
Label a merge tree with nodes from the larger class size.
|
||||
In other words, if Merge(r2,r1); Merge(r3,r1) is a sequence
|
||||
of calls where r1 is selected root, then the merge tree is
|
||||
|
||||
r1
|
||||
/ \
|
||||
r1 r3
|
||||
\
|
||||
r2
|
||||
|
||||
Note that parent lists are re-examined only for nodes that join
|
||||
from right subtrees (with lesser class sizes).
|
||||
Claim: a node participates in a path along right adjoining sub-trees at most O(log(N)) times.
|
||||
Justification (very roughly): the size of a right adjoining subtree can at most
|
||||
be equal to the left adjoining sub-tree. This entails a logarithmic number of
|
||||
re-examinations from the right adjoining tree.
|
||||
(TBD check how Hopcroft's main argument is phrased)
|
||||
|
||||
The parent lists are bounded by the maximal arity of functions.
|
||||
|
||||
Example:
|
||||
|
||||
Initially:
|
||||
n1 := f(a,b) has root n1
|
||||
n2 := f(a',b) has root n2
|
||||
table = [f(a,b) |-> n1, f(a',b) |-> n2]
|
||||
|
||||
merge(a,a') (a' becomes root)
|
||||
table = [f(a',b) |-> n2]
|
||||
n1.cg = n2
|
||||
a'.P = [n2]
|
||||
n1 is not added as parent because it is not a cc root after the assignment a.root := a'
|
||||
|
||||
unmerge(a,a')
|
||||
- nothing is erased
|
||||
- n1 is reinserted. It used to be a root.
|
||||
|
||||
#endif
|
||||
|
|
|
@ -199,6 +199,7 @@ namespace euf {
|
|||
void toggle_merge_enabled(enode* n);
|
||||
|
||||
enode_bool_pair insert_table(enode* p);
|
||||
void erase_from_table(enode* p);
|
||||
|
||||
template <typename T>
|
||||
void explain_eq(ptr_vector<T>& justifications, enode* a, enode* b, justification const& j) {
|
||||
|
|
Loading…
Reference in a new issue