3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-20 12:53:38 +00:00

nla_interval initial review (#101)

* updates

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* code review of nla_intervals: combine functionality

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* tidy

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* formatting

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2019-12-16 14:02:41 -08:00 committed by Lev Nachmanson
parent 26956cafb0
commit b6c28764f8
2 changed files with 346 additions and 616 deletions

View file

@ -4,34 +4,7 @@
#include "util/mpq.h" #include "util/mpq.h"
namespace nla { namespace nla {
void intervals::set_var_interval_with_deps(lpvar v, interval& b) const {
TRACE("nla_intervals_details", m_core->print_var(v, tout) << "\n";);
lp::constraint_index ci;
rational val;
bool is_strict;
if (ls().has_lower_bound(v, ci, val, is_strict)) {
m_config.set_lower(b, val);
m_config.set_lower_is_open(b, is_strict);
m_config.set_lower_is_inf(b, false);
b.m_lower_dep = mk_dep(ci);
}
else {
m_config.set_lower_is_open(b, true);
m_config.set_lower_is_inf(b, true);
b.m_lower_dep = nullptr;
}
if (ls().has_upper_bound(v, ci, val, is_strict)) {
m_config.set_upper(b, val);
m_config.set_upper_is_open(b, is_strict);
m_config.set_upper_is_inf(b, false);
b.m_upper_dep = mk_dep(ci);
}
else {
m_config.set_upper_is_open(b, true);
m_config.set_upper_is_inf(b, true);
b.m_upper_dep = nullptr;
}
}
void intervals::set_interval_for_scalar(interv& a, const rational& v) { void intervals::set_interval_for_scalar(interv& a, const rational& v) {
set_lower(a, v); set_lower(a, v);
@ -42,105 +15,19 @@ void intervals::set_interval_for_scalar(interv& a, const rational& v) {
set_upper_is_inf(a, false); set_upper_is_inf(a, false);
} }
const nex* intervals::get_inf_interval_child(const nex_sum& e) const {
for (auto * c : e) {
intervals::interv intervals::power_with_deps(const interv& a, unsigned n) { if (has_inf_interval(*c))
interv b;
interval_deps_combine_rule combine_rule;
power(a, n, b, combine_rule);
combine_deps(a, combine_rule, b);
TRACE("nla_horner_details", tout << "power of "; display(tout, a) << " = ";
display(tout, b) << "\n"; );
return b;
}
intervals::interv intervals::interval_of_expr_with_deps(const nex* e, unsigned power) {
interv a;
switch (e->type()) {
case expr_type::SCALAR:
set_interval_for_scalar(a, to_scalar(e)->value());
if (power != 1) {
return power_with_deps(a, power);
}
return a;
case expr_type::SUM:
{
interv b = interval_of_sum_with_deps(to_sum(e));
if (power != 1)
return power_with_deps(b, power);
return b;
}
case expr_type::MUL:
{
interv b = interval_of_mul_with_deps(to_mul(e));
if (power != 1)
return power_with_deps(b, power);;
return b;
}
case expr_type::VAR:
set_var_interval_with_deps(to_var(e)->var(), a);
if (power != 1)
return power_with_deps(a, power);;
return a;
default:
TRACE("nla_intervals_details", tout << e->type() << "\n";);
SASSERT(false);
return interv();
}
}
intervals::interv intervals::interval_of_expr(const nex* e, unsigned power) {
TRACE("nla_intervals_details", tout << "e = " << *e << "\n";);
interv a;
switch (e->type()) {
case expr_type::SCALAR:
set_interval_for_scalar(a, to_scalar(e)->value());
break;
case expr_type::SUM:
{
interv b = interval_of_sum(to_sum(e));
if (power != 1) {
return power_with_deps(b, power);;
}
return b;
}
case expr_type::MUL:
{
interv b = interval_of_mul(to_mul(e));
if (power != 1) {
return power_with_deps(b, power);;
}
return b;
}
case expr_type::VAR:
set_var_interval(to_var(e)->var(), a);
break;
default:
TRACE("nla_intervals_details", tout << e->type() << "\n";);
SASSERT(false);
return interv();
}
if (power != 1) {
return power_with_deps(a, power);;
}
return a;
}
const nex* intervals::get_inf_interval_child(const nex_sum* e) const {
for (auto * c : *e) {
if (has_inf_interval(c))
return c; return c;
} }
return nullptr; return nullptr;
} }
bool intervals::mul_has_inf_interval(const nex_mul* e) const { bool intervals::mul_has_inf_interval(const nex_mul& e) const {
bool has_inf = false; bool has_inf = false;
for (const auto & p : *e) { for (const auto & p : e) {
const nex *c = p.e(); const nex &c = *p.e();
if (!c->is_elementary()) if (!c.is_elementary())
return false; return false;
if (has_zero_interval(c)) if (has_zero_interval(c))
return false; return false;
@ -149,99 +36,33 @@ bool intervals::mul_has_inf_interval(const nex_mul* e) const {
return has_inf; return has_inf;
} }
bool intervals::has_inf_interval(const nex* e) const { bool intervals::has_inf_interval(const nex& e) const {
if (e->is_var()) if (e.is_var())
return m_core->no_bounds(to_var(e)->var()); return m_core->no_bounds(e.to_var().var());
if (e->is_mul()) { if (e.is_mul())
return mul_has_inf_interval(to_mul(e)); return mul_has_inf_interval(e.to_mul());
} if (e.is_scalar())
if (e->is_scalar())
return false; return false;
for (auto * c : e->to_sum()) { for (auto * c : e.to_sum())
if (has_inf_interval(c)) if (has_inf_interval(*c))
return true; return true;
}
return false; return false;
} }
bool intervals::has_zero_interval(const nex* e) const { bool intervals::has_zero_interval(const nex& e) const {
SASSERT(!e->is_scalar() || !to_scalar(e)->value().is_zero()); SASSERT(!e.is_scalar() || !e.to_scalar().value().is_zero());
return e->is_var() && m_core->var_is_fixed_to_zero(e->to_var().var()); return e.is_var() && m_core->var_is_fixed_to_zero(e.to_var().var());
} }
const nex* intervals::get_zero_interval_child(const nex_mul* e) const { const nex* intervals::get_zero_interval_child(const nex_mul& e) const {
for (const auto & p : *e) { for (const auto & p : e) {
const nex * c = p.e(); const nex * c = p.e();
if (has_zero_interval(c)) if (has_zero_interval(*c))
return c; return c;
} }
return nullptr; return nullptr;
} }
intervals::interv intervals::interval_of_mul_with_deps(const nex_mul* e) {
TRACE("nla_intervals_details", tout << "e = " << *e << "\n";);
const nex * zero_interval_child = get_zero_interval_child(e);
if (zero_interval_child) {
interv a = interval_of_expr_with_deps(zero_interval_child, 1);
set_zero_interval_deps_for_mult(a);
TRACE("nla_intervals_details", tout << "zero_interval_child = "<< *zero_interval_child << std::endl << "a = "; display(tout, a); );
return a;
}
interv a;
set_interval_for_scalar(a, e->coeff());
TRACE("nla_intervals_details", tout << "a = "; display(tout, a); );
for (const auto & ep : *e) {
interv b = interval_of_expr_with_deps(ep.e(), ep.pow());
TRACE("nla_intervals_details", tout << "ep = " << ep << ", "; display(tout, b); );
interv c;
interval_deps_combine_rule comb_rule;
mul_two_intervals(a, b, c, comb_rule);
TRACE("nla_intervals_details", tout << "c before combine_deps() "; display(tout, c););
combine_deps(a, b, comb_rule, c);
TRACE("nla_intervals_details", tout << "a "; display(tout, a););
TRACE("nla_intervals_details", tout << "c "; display(tout, c););
set_with_deps(a, c);
TRACE("nla_intervals_details", tout << "part mult "; display(tout, a););
}
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";
tout << " return "; display(tout, a););
return a;
}
intervals::interv intervals::interval_of_mul(const nex_mul* e) {
TRACE("nla_intervals_details", tout << "e = " << *e << "\n";);
const nex * zero_interval_child = get_zero_interval_child(e);
if (zero_interval_child) {
interv a = interval_of_expr(zero_interval_child, 1);
set_zero_interval_deps_for_mult(a);
TRACE("nla_intervals_details", tout << "zero_interval_child = "<< *zero_interval_child << std::endl << "a = "; display(tout, a); );
return a;
}
interv a;
set_interval_for_scalar(a, e->coeff());
TRACE("nla_intervals_details", tout << "a = "; display(tout, a); );
for (const auto & ep : *e) {
interv b = interval_of_expr(ep.e(), ep.pow() );
TRACE("nla_intervals_details", tout << "ep = " << ep << ", "; display(tout, b); );
interv c;
interval_deps_combine_rule comb_rule;
mul_two_intervals(a, b, c, comb_rule);
TRACE("nla_intervals_details", tout << "c before combine_deps() "; display(tout, c););
combine_deps(a, b, comb_rule, c);
TRACE("nla_intervals_details", tout << "a "; display(tout, a););
TRACE("nla_intervals_details", tout << "c "; display(tout, c););
set_with_no_deps(a, c);
TRACE("nla_intervals_details", tout << "part mult "; display(tout, a););
}
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";
tout << " return "; display(tout, a););
return a;
}
std::ostream & intervals::print_dependencies(ci_dependency* deps , std::ostream& out) const { std::ostream & intervals::print_dependencies(ci_dependency* deps , std::ostream& out) const {
svector<lp::constraint_index> expl; svector<lp::constraint_index> expl;
m_dep_manager.linearize(deps, expl); m_dep_manager.linearize(deps, expl);
@ -260,64 +81,18 @@ std::ostream & intervals::print_dependencies(ci_dependency* deps , std::ostream&
// return true iff the interval of n is does not contain 0 // return true iff the interval of n is does not contain 0
bool intervals::check_nex(const nex* n, ci_dependency* initial_deps) { bool intervals::check_nex(const nex* n, ci_dependency* initial_deps) {
m_core->lp_settings().stats().m_cross_nested_forms++; m_core->lp_settings().stats().m_cross_nested_forms++;
auto i = interval_of_expr(n, 1); auto i = interval_of_expr<without_deps>(n, 1);
if (!separated_from_zero(i)) { if (!separated_from_zero(i)) {
reset(); reset();
return false; return false;
} }
auto interv_wd = interval_of_expr_with_deps(n, 1); auto interv_wd = interval_of_expr<with_deps>(n, 1);
TRACE("grobner", tout << "conflict: interv_wd = "; display(tout, interv_wd ) <<"expr = " << *n << "\n, initial deps\n"; print_dependencies(initial_deps, tout);); TRACE("grobner", tout << "conflict: interv_wd = "; display(tout, interv_wd ) <<"expr = " << *n << "\n, initial deps\n"; print_dependencies(initial_deps, tout););
check_interval_for_conflict_on_zero(interv_wd, initial_deps); check_interval_for_conflict_on_zero(interv_wd, initial_deps);
reset(); // clean the memory allocated by the interval bound dependencies reset(); // clean the memory allocated by the interval bound dependencies
return true; return true;
} }
intervals::interv intervals::interval_of_sum_no_term_with_deps(const nex_sum* e) {
const nex* inf_e = get_inf_interval_child(e);
if (inf_e) {
return interv();
}
auto & es = *e;
interv a = interval_of_expr_with_deps(es[0], 1);
for (unsigned k = 1; k < es.size(); k++) {
TRACE("nla_intervals_details_sum", tout << "es[" << k << "]= " << *es[k] << "\n";);
interv b = interval_of_expr_with_deps(es[k], 1);
interv c;
interval_deps_combine_rule combine_rule;
TRACE("nla_intervals_details_sum", tout << "a = "; display(tout, a) << "\nb = "; display(tout, b) << "\n";);
add(a, b, c, combine_rule);
combine_deps(a, b, combine_rule, c);
set_with_deps(a, c);
TRACE("nla_intervals_details_sum", tout << *es[k] << ", ";
display(tout, a); tout << "\n";);
}
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";
tout << " interv = "; display(tout, a););
return a;
}
intervals::interv intervals::interval_of_sum_no_term(const nex_sum* e) {
const nex* inf_e = get_inf_interval_child(e);
if (inf_e) {
return interv();
}
auto & es = *e;
interv a = interval_of_expr(es[0], 1);
for (unsigned k = 1; k < es.size(); k++) {
TRACE("nla_intervals_details_sum", tout << "es[" << k << "]= " << *es[k] << "\n";);
interv b = interval_of_expr(es[k], 1);
interv c;
TRACE("nla_intervals_details_sum", tout << "a = "; display(tout, a) << "\nb = "; display(tout, b) << "\n";);
add(a, b, c);
set_with_no_deps(a, c);
TRACE("nla_intervals_details_sum", tout << *es[k] << ", ";
display(tout, a); tout << "\n";);
}
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";
tout << " interv = "; display(tout, a););
return a;
}
void intervals::add_mul_of_degree_one_to_vector(const nex_mul* e, vector<std::pair<rational, lpvar>> &v) { void intervals::add_mul_of_degree_one_to_vector(const nex_mul* e, vector<std::pair<rational, lpvar>> &v) {
TRACE("nla_horner_details", tout << *e << "\n";); TRACE("nla_horner_details", tout << *e << "\n";);
SASSERT(e->size() == 1); SASSERT(e->size() == 1);
@ -351,7 +126,7 @@ lp::lar_term intervals::expression_to_normalized_term(const nex_sum* e, rational
unsigned a_index; unsigned a_index;
for (const nex* c : *e) { for (const nex* c : *e) {
if (c->is_scalar()) { if (c->is_scalar()) {
b += to_scalar(c)->value(); b += c->to_scalar().value();
} else { } else {
add_linear_to_vector(c, v); add_linear_to_vector(c, v);
if (v.empty()) if (v.empty())
@ -367,8 +142,7 @@ lp::lar_term intervals::expression_to_normalized_term(const nex_sum* e, rational
lp::lar_term t; lp::lar_term t;
if (a.is_one()) { if (a.is_one()) {
for (unsigned k = 0; k < v.size(); k++) { for (auto& p : v) {
auto& p = v[k];
t.add_coeff_var(p.first, p.second); t.add_coeff_var(p.first, p.second);
} }
} else { } else {
@ -398,126 +172,6 @@ lpvar intervals::find_term_column(const lp::lar_term & norm_t, rational& a) cons
return -1; return -1;
} }
bool intervals::interval_from_term_with_deps(const nex* e, interv & i) const {
rational a, b;
lp::lar_term norm_t = expression_to_normalized_term(to_sum(e), a, b);
lp::explanation exp;
if (m_core->explain_by_equiv(norm_t, exp)) {
set_zero_interval_with_explanation(i, exp);
TRACE("nla_intervals", tout << "explain_by_equiv\n";);
return true;
}
lpvar j = find_term_column(norm_t, a);
if (j + 1 == 0)
return false;
set_var_interval_with_deps(j, i);
interv bi;
mul_with_deps(a, i, bi);
add(b, bi);
set_with_deps(i, bi);
TRACE("nla_intervals",
m_core->m_lar_solver.print_column_info(j, tout) << "\n";
tout << "a=" << a << ", b=" << b << "\n";
tout << *e << ", interval = "; display(tout, i););
return true;
}
bool intervals::interval_from_term(const nex* e, interv & i) const {
rational a, b;
lp::lar_term norm_t = expression_to_normalized_term(to_sum(e), a, b);
lp::explanation exp;
if (m_core->explain_by_equiv(norm_t, exp)) {
set_zero_interval(i);
TRACE("nla_intervals", tout << "explain_by_equiv\n";);
return true;
}
lpvar j = find_term_column(norm_t, a);
if (j + 1 == 0)
return false;
set_var_interval(j, i);
interv bi;
mul_no_deps(a, i, bi);
add(b, bi);
set_with_no_deps(i, bi);
TRACE("nla_intervals",
m_core->m_lar_solver.print_column_info(j, tout) << "\n";
tout << "a=" << a << ", b=" << b << "\n";
tout << *e << ", interval = "; display(tout, i););
return true;
}
intervals::interv intervals::interval_of_sum_with_deps(const nex_sum* e) {
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";);
interv i_e = interval_of_sum_no_term_with_deps(e);
if (e->is_a_linear_term()) {
SASSERT(e->is_sum() && e->size() > 1);
interv i_from_term ;
if (interval_from_term_with_deps(e, i_from_term)) {
interv r = intersect_with_deps(i_e, i_from_term);
TRACE("nla_intervals_details", tout << "intersection="; display(tout, r) << "\n";);
if (is_empty(r)) {
SASSERT(false); // not implemented
}
return r;
}
}
return i_e;
}
intervals::interv intervals::interval_of_sum(const nex_sum* e) {
interv i_e = interval_of_sum_no_term(e);
TRACE("nla_intervals_details", tout << "e=" << *e << "\ni_e="; display(tout, i_e) << "\n";);
if (e->is_a_linear_term()) {
SASSERT(e->is_sum() && e->size() > 1);
interv i_from_term ;
if (interval_from_term(e, i_from_term)) {
TRACE("nla_intervals_details", tout << "i_from_term="; display(tout, i_from_term) << "\n";);
interv r = intersect(i_e, i_from_term, 44);
TRACE("nla_intervals_details", tout << "intersection="; display(tout, r) << "\n";);
if (is_empty(r)) {
SASSERT(false); // not implemented
}
return r;
}
}
return i_e;
}
void intervals::set_var_interval(lpvar v, interval& b) const {
lp::constraint_index ci;
rational val;
bool is_strict;
if (ls().has_lower_bound(v, ci, val, is_strict)) {
m_config.set_lower(b, val);
m_config.set_lower_is_open(b, is_strict);
m_config.set_lower_is_inf(b, false);
}
else {
m_config.set_lower_is_open(b, true);
m_config.set_lower_is_inf(b, true);
}
if (ls().has_upper_bound(v, ci, val, is_strict)) {
m_config.set_upper(b, val);
m_config.set_upper_is_open(b, is_strict);
m_config.set_upper_is_inf(b, false);
}
else {
m_config.set_upper_is_open(b, true);
m_config.set_upper_is_inf(b, true);
}
}
void intervals::set_zero_interval_with_explanation(interval& i, const lp::explanation& exp) const { void intervals::set_zero_interval_with_explanation(interval& i, const lp::explanation& exp) const {
auto val = rational(0); auto val = rational(0);
m_config.set_lower(i, val); m_config.set_lower(i, val);
@ -564,7 +218,6 @@ bool intervals::separated_from_zero_on_upper(const interval& i) const {
return true; return true;
} }
bool intervals::check_interval_for_conflict_on_zero(const interval & i, ci_dependency* dep) { bool intervals::check_interval_for_conflict_on_zero(const interval & i, ci_dependency* dep) {
return check_interval_for_conflict_on_zero_lower(i, dep) || check_interval_for_conflict_on_zero_upper(i, dep); return check_interval_for_conflict_on_zero_lower(i, dep) || check_interval_for_conflict_on_zero_upper(i, dep);
} }

View file

@ -90,7 +90,8 @@ class intervals {
return (!lower_is_inf(a)) && (!upper_is_inf(a)) && return (!lower_is_inf(a)) && (!upper_is_inf(a)) &&
(!lower_is_open(a)) && (!upper_is_open(a)) && (!lower_is_open(a)) && (!upper_is_open(a)) &&
unsynch_mpq_manager::is_zero(a.m_lower) && unsynch_mpq_manager::is_zero(a.m_lower) &&
unsynch_mpq_manager::is_zero(a.m_upper); } unsynch_mpq_manager::is_zero(a.m_upper);
}
// Setters // Setters
void set_lower(interval& a, mpq const& n) const { m_manager.set(a.m_lower, n); } void set_lower(interval& a, mpq const& n) const { m_manager.set(a.m_lower, n); }
@ -154,6 +155,8 @@ private:
lp::lar_solver& ls(); lp::lar_solver& ls();
const lp::lar_solver& ls() const; const lp::lar_solver& ls() const;
public: public:
enum with_deps_t { with_deps, without_deps };
intervals(core* c, reslimit& lim) : intervals(core* c, reslimit& lim) :
m_alloc(), m_alloc(),
m_dep_manager(m_val_manager, m_alloc), m_dep_manager(m_val_manager, m_alloc),
@ -164,11 +167,7 @@ public:
ci_dependency* mk_join(ci_dependency* a, ci_dependency* b) { return m_dep_manager.mk_join(a, b); } ci_dependency* mk_join(ci_dependency* a, ci_dependency* b) { return m_dep_manager.mk_join(a, b); }
ci_dependency* mk_leaf(lp::constraint_index ci) { return m_dep_manager.mk_leaf(ci); } ci_dependency* mk_leaf(lp::constraint_index ci) { return m_dep_manager.mk_leaf(ci); }
interval mul(const svector<lpvar>&) const;
void get_explanation_of_upper_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const;
void get_explanation_of_lower_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const;
std::ostream& print_dependencies(ci_dependency*, std::ostream&) const; std::ostream& print_dependencies(ci_dependency*, std::ostream&) const;
std::ostream& print_explanations(const svector<lp::constraint_index> &, std::ostream&) const;
std::ostream& display(std::ostream& out, const intervals::interval& i) const; std::ostream& display(std::ostream& out, const intervals::interval& i) const;
void set_lower(interval& a, rational const& n) const { m_config.set_lower(a, n.to_mpq()); } void set_lower(interval& a, rational const& n) const { m_config.set_lower(a, n.to_mpq()); }
void set_upper(interval& a, rational const& n) const { m_config.set_upper(a, n.to_mpq()); } void set_upper(interval& a, rational const& n) const { m_config.set_upper(a, n.to_mpq()); }
@ -177,22 +176,22 @@ public:
void set_upper_is_open(interval& a, bool strict) { m_config.set_upper_is_open(a, strict); } void set_upper_is_open(interval& a, bool strict) { m_config.set_upper_is_open(a, strict); }
void set_upper_is_inf(interval& a, bool inf) { m_config.set_upper_is_inf(a, inf); } void set_upper_is_inf(interval& a, bool inf) { m_config.set_upper_is_inf(a, inf); }
bool is_zero(const interval& a) const { return m_config.is_zero(a); } bool is_zero(const interval& a) const { return m_config.is_zero(a); }
void set_var_interval(lpvar v, interval & b) const;
void mul_with_deps(const rational& r, const interval& a, interval& b) const {
template <enum with_deps_t wd>
void mul(const rational& r, const interval& a, interval& b) const {
m_imanager.mul(r.to_mpq(), a, b); m_imanager.mul(r.to_mpq(), a, b);
if (wd == with_deps) {
if (r.is_pos()) { if (r.is_pos()) {
b.m_lower_dep = a.m_lower_dep; b.m_lower_dep = a.m_lower_dep;
b.m_upper_dep = a.m_upper_dep; b.m_upper_dep = a.m_upper_dep;
} else { }
else {
SASSERT(r.is_neg()); SASSERT(r.is_neg());
b.m_upper_dep = a.m_lower_dep; b.m_upper_dep = a.m_lower_dep;
b.m_lower_dep = a.m_upper_dep; b.m_lower_dep = a.m_upper_dep;
} }
} }
void mul_no_deps(const rational& r, const interval& a, interval& b) const {
m_imanager.mul(r.to_mpq(), a, b);
} }
void add(const rational& r, interval& a) const { void add(const rational& r, interval& a) const {
@ -207,14 +206,14 @@ public:
void mul(const interval& a, const interval& b, interval& c) { m_imanager.mul(a, b, c); } void mul(const interval& a, const interval& b, interval& c) { m_imanager.mul(a, b, c); }
void add(const interval& a, const interval& b, interval& c) { m_imanager.add(a, b, c); } void add(const interval& a, const interval& b, interval& c) { m_imanager.add(a, b, c); }
void add(const interval& a, const interval& b, interval& c, interval_deps_combine_rule& deps) { m_imanager.add(a, b, c, deps); } void add(const interval& a, const interval& b, interval& c, interval_deps_combine_rule& deps) { m_imanager.add(a, b, c, deps); }
void set_with_deps(interval& a, const interval& b) const {
template <enum with_deps_t wd>
void set(interval& a, const interval& b) const {
m_imanager.set(a, b); m_imanager.set(a, b);
if (wd == with_deps) {
a.m_lower_dep = b.m_lower_dep; a.m_lower_dep = b.m_lower_dep;
a.m_upper_dep = b.m_upper_dep; a.m_upper_dep = b.m_upper_dep;
} }
void set_with_no_deps(interval& a, const interval& b) const {
m_imanager.set(a, b);
} }
void mul_two_intervals(const interval& a, const interval& b, interval& c, interval_deps_combine_rule& deps) { m_imanager.mul(a, b, c, deps); } void mul_two_intervals(const interval& a, const interval& b, interval& c, interval_deps_combine_rule& deps) { m_imanager.mul(a, b, c, deps); }
@ -229,201 +228,292 @@ public:
m_config.add_deps(a, deps, i); m_config.add_deps(a, deps, i);
} }
void power(interval const & a, unsigned n, interval & b, interval_deps_combine_rule & b_deps) { template <enum with_deps_t wd>
m_imanager.power(a, n, b, b_deps); interval power(const interval& a, unsigned n) {
interv b;
if (with_deps == wd) {
interval_deps_combine_rule combine_rule;
m_imanager.power(a, n, b, combine_rule);
combine_deps(a, combine_rule, b);
} }
else {
void power(interval const & a, unsigned n, interval & b) {
m_imanager.power(a, n, b); m_imanager.power(a, n, b);
} }
TRACE("nla_horner_details", tout << "power of "; display(tout, a) << " = ";
display(tout, b) << "\n"; );
return b;
}
template <enum with_deps_t wd>
void update_lower_for_intersection(const interval& a, const interval& b, interval& i) const { void update_lower_for_intersection(const interval& a, const interval& b, interval& i) const {
if (a.m_lower_inf) { if (a.m_lower_inf) {
if (b.m_lower_inf) if (b.m_lower_inf)
return; return;
copy_lower_bound(b, i); copy_lower_bound<wd>(b, i);
return; return;
} }
if (b.m_lower_inf) { if (b.m_lower_inf) {
SASSERT(!a.m_lower_inf); SASSERT(!a.m_lower_inf);
copy_lower_bound(a, i); copy_lower_bound<wd>(a, i);
return; return;
} }
if (m_num_manager.lt(a.m_lower, b.m_lower)) { if (m_num_manager.lt(a.m_lower, b.m_lower)) {
copy_lower_bound(b, i); copy_lower_bound<wd>(b, i);
return; return;
} }
if (m_num_manager.gt(a.m_lower, b.m_lower)) { if (m_num_manager.gt(a.m_lower, b.m_lower)) {
copy_lower_bound(a, i); copy_lower_bound<wd>(a, i);
return; return;
} }
SASSERT(m_num_manager.eq(a.m_lower, b.m_lower)); SASSERT(m_num_manager.eq(a.m_lower, b.m_lower));
if (a.m_lower_open) { // we might consider to look at b.m_lower_open too here if (a.m_lower_open) { // we might consider to look at b.m_lower_open too here
copy_lower_bound(a, i); copy_lower_bound<wd>(a, i);
return; return;
} }
copy_lower_bound(b, i); copy_lower_bound<wd>(b, i);
}
void update_lower_for_intersection_with_deps(const interval& a, const interval& b, interval & i) const {
if (a.m_lower_inf) {
if (b.m_lower_inf)
return;
copy_lower_bound_with_deps(b, i);
return;
}
if (b.m_lower_inf) {
SASSERT(!a.m_lower_inf);
copy_lower_bound_with_deps(a, i);
return;
}
if (m_num_manager.lt(a.m_lower, b.m_lower)) {
copy_lower_bound_with_deps(b, i);
return;
}
if (m_num_manager.gt(a.m_lower, b.m_lower)) {
copy_lower_bound_with_deps(a, i);
return;
}
SASSERT(m_num_manager.eq(a.m_lower, b.m_lower));
if (a.m_lower_open) { // we might consider to look at b.m_lower_open too here
copy_lower_bound_with_deps(a, i);
return;
}
copy_lower_bound_with_deps(b, i);
}
void copy_upper_bound_with_deps(const interval& a, interval & i) const {
SASSERT(a.m_upper_inf == false);
i.m_upper_inf = false;
m_config.set_upper(i, a.m_upper);
i.m_upper_dep = a.m_upper_dep;
i.m_upper_open = a.m_upper_open;
} }
template <enum with_deps_t wd>
void copy_upper_bound(const interval& a, interval& i) const { void copy_upper_bound(const interval& a, interval& i) const {
SASSERT(a.m_upper_inf == false); SASSERT(a.m_upper_inf == false);
i.m_upper_inf = false; i.m_upper_inf = false;
m_config.set_upper(i, a.m_upper); m_config.set_upper(i, a.m_upper);
i.m_upper_open = a.m_upper_open; i.m_upper_open = a.m_upper_open;
if (wd == with_deps) {
i.m_upper_dep = a.m_upper_dep;
}
} }
void copy_lower_bound_with_deps(const interval& a, interval & i) const { template <enum with_deps_t wd>
SASSERT(a.m_lower_inf == false);
i.m_lower_inf = false;
m_config.set_lower(i, a.m_lower);
i.m_lower_dep = a.m_lower_dep;
i.m_lower_open = a.m_lower_open;
}
void copy_lower_bound(const interval& a, interval& i) const { void copy_lower_bound(const interval& a, interval& i) const {
SASSERT(a.m_lower_inf == false); SASSERT(a.m_lower_inf == false);
i.m_lower_inf = false; i.m_lower_inf = false;
m_config.set_lower(i, a.m_lower); m_config.set_lower(i, a.m_lower);
i.m_lower_open = a.m_lower_open; i.m_lower_open = a.m_lower_open;
if (wd == with_deps) {
i.m_lower_dep = a.m_lower_dep;
}
}
template <enum with_deps_t wd>
void set_var_interval(lpvar v, interval& b) const {
TRACE("nla_intervals_details", m_core->print_var(v, tout) << "\n";);
lp::constraint_index ci;
rational val;
bool is_strict;
if (ls().has_lower_bound(v, ci, val, is_strict)) {
m_config.set_lower(b, val);
m_config.set_lower_is_open(b, is_strict);
m_config.set_lower_is_inf(b, false);
if (wd == with_deps) b.m_lower_dep = mk_dep(ci);
}
else {
m_config.set_lower_is_open(b, true);
m_config.set_lower_is_inf(b, true);
if (wd == with_deps) b.m_lower_dep = nullptr;
}
if (ls().has_upper_bound(v, ci, val, is_strict)) {
m_config.set_upper(b, val);
m_config.set_upper_is_open(b, is_strict);
m_config.set_upper_is_inf(b, false);
if (wd == with_deps) b.m_upper_dep = mk_dep(ci);
}
else {
m_config.set_upper_is_open(b, true);
m_config.set_upper_is_inf(b, true);
if (wd == with_deps) b.m_upper_dep = nullptr;
}
} }
void update_upper_for_intersection_with_deps(const interval& a, const interval& b, interval & i) const { template <enum with_deps_t wd>
if (a.m_upper_inf) {
if (b.m_upper_inf)
return;
copy_upper_bound_with_deps(b, i);
return;
}
if (b.m_upper_inf) {
SASSERT(!a.m_upper_inf);
copy_upper_bound_with_deps(a, i);
return;
}
if (m_num_manager.gt(a.m_upper, b.m_upper)) {
copy_upper_bound_with_deps(b, i);
return;
}
if (m_num_manager.lt(a.m_upper, b.m_upper)) {
copy_upper_bound_with_deps(a, i);
return;
}
SASSERT(m_num_manager.eq(a.m_upper, b.m_upper));
if (a.m_upper_open) { // we might consider to look at b.m_upper_open too here
copy_upper_bound_with_deps(a, i);
return;
}
copy_upper_bound_with_deps(b, i);
}
void update_upper_for_intersection(const interval& a, const interval& b, interval& i) const { void update_upper_for_intersection(const interval& a, const interval& b, interval& i) const {
if (a.m_upper_inf) { if (a.m_upper_inf) {
if (b.m_upper_inf) if (b.m_upper_inf)
return; return;
copy_upper_bound(b, i); copy_upper_bound<wd>(b, i);
return; return;
} }
if (b.m_upper_inf) { if (b.m_upper_inf) {
SASSERT(!a.m_upper_inf); SASSERT(!a.m_upper_inf);
copy_upper_bound(a, i); copy_upper_bound<wd>(a, i);
return; return;
} }
if (m_num_manager.gt(a.m_upper, b.m_upper)) { if (m_num_manager.gt(a.m_upper, b.m_upper)) {
copy_upper_bound(b, i); copy_upper_bound<wd>(b, i);
return; return;
} }
if (m_num_manager.lt(a.m_upper, b.m_upper)) { if (m_num_manager.lt(a.m_upper, b.m_upper)) {
copy_upper_bound(a, i); copy_upper_bound<wd>(a, i);
return; return;
} }
SASSERT(m_num_manager.eq(a.m_upper, b.m_upper)); SASSERT(m_num_manager.eq(a.m_upper, b.m_upper));
if (a.m_upper_open) { // we might consider to look at b.m_upper_open too here if (a.m_upper_open) { // we might consider to look at b.m_upper_open too here
copy_upper_bound(a, i); copy_upper_bound<wd>(a, i);
return; return;
} }
copy_upper_bound(b, i); copy_upper_bound<wd>(b, i);
} }
template <enum with_deps_t wd>
interval intersect_with_deps(const interval& a, const interval& b) const { interval intersect(const interval& a, const interval& b) const {
interval i; interval i;
TRACE("nla_interval_compare", tout << "a="; display(tout, a) << "\nb="; display(tout, b);); TRACE("nla_interval_compare", tout << "a="; display(tout, a) << "\nb="; display(tout, b););
update_lower_for_intersection_with_deps(a, b, i); update_lower_for_intersection<wd>(a, b, i);
TRACE("nla_interval_compare", tout << "i="; display(tout, i) << "\n";); TRACE("nla_interval_compare", tout << "i="; display(tout, i) << "\n";);
update_upper_for_intersection_with_deps(a, b, i); update_upper_for_intersection<wd>(a, b, i);
TRACE("nla_interval_compare", tout << "i="; display(tout, i) << "\n";); TRACE("nla_interval_compare", tout << "i="; display(tout, i) << "\n";);
return i; return i;
} }
interval intersect(const interval& a, const interval& b, int foo) const { template <enum with_deps_t wd>
interval i; bool interval_from_term(const nex& e, interval& i) const {
TRACE("nla_interval_compare", tout << "a="; display(tout, a) << "\nb="; display(tout, b);); rational a, b;
update_lower_for_intersection(a, b, i); lp::lar_term norm_t = expression_to_normalized_term(&e.to_sum(), a, b);
TRACE("nla_interval_compare", tout << "i="; display(tout, i) << "\n";); lp::explanation exp;
update_upper_for_intersection(a, b, i); if (m_core->explain_by_equiv(norm_t, exp)) {
TRACE("nla_interval_compare", tout << "i="; display(tout, i) << "\n";); set_zero_interval(i);
return i; TRACE("nla_intervals", tout << "explain_by_equiv\n";);
return true;
}
lpvar j = find_term_column(norm_t, a);
if (j + 1 == 0)
return false;
set_var_interval<without_deps>(j, i);
interv bi;
mul<wd>(a, i, bi);
add(b, bi);
set<wd>(i, bi);
TRACE("nla_intervals",
m_core->m_lar_solver.print_column_info(j, tout) << "\n";
tout << "a=" << a << ", b=" << b << "\n";
tout << e << ", interval = "; display(tout, i););
return true;
}
template <enum with_deps_t wd>
interval interval_of_sum_no_term(const nex_sum& e) {
const nex* inf_e = get_inf_interval_child(e);
if (inf_e) {
return interv();
}
interv a = interval_of_expr<wd>(e[0], 1);
for (unsigned k = 1; k < e.size(); k++) {
TRACE("nla_intervals_details_sum", tout << "e[" << k << "]= " << *e[k] << "\n";);
interv b = interval_of_expr<wd>(e[k], 1);
interv c;
TRACE("nla_intervals_details_sum", tout << "a = "; display(tout, a) << "\nb = "; display(tout, b) << "\n";);
if (wd == with_deps) {
interval_deps_combine_rule combine_rule;
add(a, b, c, combine_rule);
combine_deps(a, b, combine_rule, c);
}
else {
add(a, b, c);
}
set<wd>(a, c);
TRACE("nla_intervals_details_sum", tout << *e[k] << ", ";
display(tout, a); tout << "\n";);
}
TRACE("nla_intervals_details", tout << "e=" << e << "\n";
tout << " interv = "; display(tout, a););
return a;
}
template <enum with_deps_t wd>
interval interval_of_sum(const nex_sum& e) {
TRACE("nla_intervals_details", tout << "e=" << e << "\n";);
interv i_e = interval_of_sum_no_term<wd>(e);
if (e.is_a_linear_term()) {
SASSERT(e.is_sum() && e.size() > 1);
interv i_from_term;
if (interval_from_term<wd>(e, i_from_term)) {
interv r = intersect<wd>(i_e, i_from_term);
TRACE("nla_intervals_details", tout << "intersection="; display(tout, r) << "\n";);
if (is_empty(r)) {
SASSERT(false); // not implemented
}
return r;
}
}
return i_e;
}
template <enum with_deps_t wd>
interval interval_of_mul(const nex_mul& e) {
TRACE("nla_intervals_details", tout << "e = " << e << "\n";);
const nex* zero_interval_child = get_zero_interval_child(e);
if (zero_interval_child) {
interv a = interval_of_expr<wd>(zero_interval_child, 1);
set_zero_interval_deps_for_mult(a);
TRACE("nla_intervals_details", tout << "zero_interval_child = " << *zero_interval_child << std::endl << "a = "; display(tout, a); );
return a;
}
interv a;
set_interval_for_scalar(a, e.coeff());
TRACE("nla_intervals_details", tout << "a = "; display(tout, a); );
for (const auto& ep : e) {
interv b = interval_of_expr<wd>(ep.e(), ep.pow());
TRACE("nla_intervals_details", tout << "ep = " << ep << ", "; display(tout, b); );
interv c;
interval_deps_combine_rule comb_rule;
mul_two_intervals(a, b, c, comb_rule);
TRACE("nla_intervals_details", tout << "c before combine_deps() "; display(tout, c););
combine_deps(a, b, comb_rule, c);
TRACE("nla_intervals_details", tout << "a "; display(tout, a););
TRACE("nla_intervals_details", tout << "c "; display(tout, c););
set<wd>(a, c);
TRACE("nla_intervals_details", tout << "part mult "; display(tout, a););
}
TRACE("nla_intervals_details", tout << "e=" << e << "\n";
tout << " return "; display(tout, a););
return a;
}
template <enum with_deps_t wd>
interval interval_of_expr(const nex* e, unsigned p) {
interv a;
switch (e->type()) {
case expr_type::SCALAR:
set_interval_for_scalar(a, to_scalar(e)->value());
if (p != 1) {
return power<wd>(a, p);
}
return a;
case expr_type::SUM: {
interv b = interval_of_sum<wd>(e->to_sum());
if (p != 1)
return power<wd>(b, p);
return b;
}
case expr_type::MUL: {
interv b = interval_of_mul<with_deps>(e->to_mul());
if (p != 1)
return power<wd>(b, p);
return b;
}
case expr_type::VAR:
set_var_interval<wd>(e->to_var().var(), a);
if (p != 1)
return power<wd>(a, p);;
return a;
default:
TRACE("nla_intervals_details", tout << e->type() << "\n";);
UNREACHABLE();
return interval();
}
} }
bool upper_is_inf(const interval& a) const { return m_config.upper_is_inf(a); } bool upper_is_inf(const interval& a) const { return m_config.upper_is_inf(a); }
bool lower_is_inf(const interval& a) const { return m_config.lower_is_inf(a); } bool lower_is_inf(const interval& a) const { return m_config.lower_is_inf(a); }
void set_var_interval_with_deps(lpvar, interval &) const;
void set_zero_interval_deps_for_mult(interval&); void set_zero_interval_deps_for_mult(interval&);
void set_zero_interval_with_explanation(interval&, const lp::explanation& exp) const; void set_zero_interval_with_explanation(interval&, const lp::explanation& exp) const;
void set_zero_interval(interval&) const; void set_zero_interval(interval&) const;
@ -439,11 +529,9 @@ public:
bool check_interval_for_conflict_on_zero_upper(const interval& i, ci_dependency*); bool check_interval_for_conflict_on_zero_upper(const interval& i, ci_dependency*);
mpq const& lower(interval const& a) const { return m_config.lower(a); } mpq const& lower(interval const& a) const { return m_config.lower(a); }
mpq const& upper(interval const& a) const { return m_config.upper(a); } mpq const& upper(interval const& a) const { return m_config.upper(a); }
inline inline bool is_empty(interval const& a) const {
bool is_empty(interval const & a) const {
if (a.m_lower_inf || a.m_upper_inf) if (a.m_lower_inf || a.m_upper_inf)
return false; return false;
if (m_num_manager.gt(a.m_lower, a.m_upper)) if (m_num_manager.gt(a.m_lower, a.m_upper))
return true; return true;
if (m_num_manager.lt(a.m_lower, a.m_upper)) if (m_num_manager.lt(a.m_lower, a.m_upper))
@ -454,24 +542,13 @@ public:
} }
void reset() { m_alloc.reset(); } void reset() { m_alloc.reset(); }
bool check_nex(const nex*, ci_dependency*); bool check_nex(const nex*, ci_dependency*);
interval interval_of_expr_with_deps(const nex* e, unsigned power);
interval interval_of_expr(const nex* e, unsigned power);
interval interval_of_sum(const nex_sum*);
interval interval_of_sum_no_term(const nex_sum*);
interval interval_of_mul(const nex_mul*);
interval interval_of_sum_no_term_with_deps(const nex_sum* e);
bool interval_from_term_with_deps(const nex* e, interval & i) const;
bool interval_from_term(const nex* e, interval & i) const;
interval interval_of_sum_with_deps(const nex_sum* e);
typedef interval interv; typedef interval interv;
void set_interval_for_scalar(interv&, const rational&); void set_interval_for_scalar(interv&, const rational&);
interv power_with_deps(const interv& a, unsigned); const nex* get_zero_interval_child(const nex_mul&) const;
interv interval_of_mul_with_deps(const nex_mul*); const nex* get_inf_interval_child(const nex_sum&) const;
const nex* get_zero_interval_child(const nex_mul*) const; bool has_zero_interval(const nex&) const;
const nex* get_inf_interval_child(const nex_sum*) const; bool has_inf_interval(const nex&) const;
bool has_zero_interval(const nex* ) const; bool mul_has_inf_interval(const nex_mul&) const;
bool has_inf_interval(const nex* ) const;
bool mul_has_inf_interval(const nex_mul* ) const;
static lp::lar_term expression_to_normalized_term(const nex_sum*, rational& a, rational& b); static lp::lar_term expression_to_normalized_term(const nex_sum*, rational& a, rational& b);
static void add_linear_to_vector(const nex*, vector<std::pair<rational, lpvar>>&); static void add_linear_to_vector(const nex*, vector<std::pair<rational, lpvar>>&);
static void add_mul_of_degree_one_to_vector(const nex_mul*, vector<std::pair<rational, lpvar>>&); static void add_mul_of_degree_one_to_vector(const nex_mul*, vector<std::pair<rational, lpvar>>&);