3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00
This commit is contained in:
Nikolaj Bjorner 2018-09-24 16:53:41 -07:00
commit b4b9da9d8b
9 changed files with 104 additions and 80 deletions

View file

@ -6605,7 +6605,12 @@ class Solver(Z3PPObject):
_handle_parse_error(e, self.ctx)
def cube(self, vars = None):
"""Get set of cubes"""
"""Get set of cubes
The method takes an optional set of variables that restrict which
variables may be used as a starting point for cubing.
If vars is not None, then the first case split is based on a variable in
this set.
"""
self.cube_vs = AstVector(None, self.ctx)
if vars is not None:
for v in vars:
@ -6621,6 +6626,10 @@ class Solver(Z3PPObject):
return
def cube_vars(self):
"""Access the set of variables that were touched by the most recently generated cube.
This set of variables can be used as a starting point for additional cubes.
The idea is that variables that appear in clauses that are reduced by the most recent
cube are likely more useful to cube on."""
return self.cube_vs
def proof(self):

View file

@ -16,6 +16,8 @@ Author:
Notes:
--*/
#include <cmath>

View file

@ -50,17 +50,39 @@ def_module_params('sat',
('unit_walk', BOOL, False, 'use unit-walk search instead of CDCL'),
('unit_walk_threads', UINT, 0, 'number of unit-walk search threads to find satisfiable solution'),
('lookahead.cube.cutoff', SYMBOL, 'depth', 'cutoff type used to create lookahead cubes: depth, freevars, psat, adaptive_freevars, adaptive_psat'),
# - depth: the maximal cutoff is fixed to the value of lookahead.cube.depth.
# So if the value is 10, at most 1024 cubes will be generated of length 10.
# - freevars: cutoff based on a variable fraction of lookahead.cube.freevars.
# Cut if the number of current unassigned variables drops below a fraction of number of initial variables.
# - psat: Let psat_heur := (Sum_{clause C} (psat.clause_base ^ {-|C|+1})) / |freevars|^psat.var_exp
# Cut if the value of psat_heur exceeds psat.trigger
# - adaptive_freevars: Cut if the number of current unassigned variables drops below a fraction of free variables
# at the time of the last conflict. The fraction is increased every time the a cutoff is created.
# - adative_psat: Cut based on psat_heur in an adaptive way.
('lookahead.cube.fraction', DOUBLE, 0.4, 'adaptive fraction to create lookahead cubes. Used when lookahead.cube.cutoff is adaptive_freevars or adaptive_psat'),
('lookahead.cube.depth', UINT, 1, 'cut-off depth to create cubes. Used when lookahead.cube.cutoff is depth.'),
('lookahead.cube.freevars', DOUBLE, 0.8, 'cube free fariable fraction. Used when lookahead.cube.cutoff is freevars'),
('lookahead.cube.freevars', DOUBLE, 0.8, 'cube free variable fraction. Used when lookahead.cube.cutoff is freevars'),
('lookahead.cube.psat.var_exp', DOUBLE, 1, 'free variable exponent for PSAT cutoff'),
('lookahead.cube.psat.clause_base', DOUBLE, 2, 'clause base for PSAT cutoff'),
('lookahead.cube.psat.trigger', DOUBLE, 5, 'trigger value to create lookahead cubes for PSAT cutoff. Used when lookahead.cube.cutoff is psat'),
('lookahead_search', BOOL, False, 'use lookahead solver'),
('lookahead.preselect', BOOL, False, 'use pre-selection of subset of variables for branching'),
('lookahead_simplify', BOOL, False, 'use lookahead solver during simplification'),
('lookahead.use_learned', BOOL, False, 'use learned clauses when selecting lookahead literal'),
('lookahead_simplify.bca', BOOL, True, 'add learned binary clauses as part of lookahead simplification'),
('lookahead.global_autarky', BOOL, False, 'prefer to branch on variables that occur in clauses that are reduced'),
('lookahead.reward', SYMBOL, 'march_cu', 'select lookahead heuristic: ternary, heule_schur (Heule Schur), heuleu (Heule Unit), unit, or march_cu')))
('lookahead.reward', SYMBOL, 'march_cu', 'select lookahead heuristic: ternary, heule_schur (Heule Schur), heuleu (Heule Unit), unit, or march_cu'))
# reward function used to determine which literal to cube on.
# - ternary: reward function useful for random 3-SAT instances. Used by Heule and Knuth in March.
# - heule_schur: reward function based on "Schur Number 5", Heule, AAAI 2018
# The score of a literal lit is:
# Sum_{C in Clauses | lit in C} 2 ^ (- |C|+1)
# * Sum_{lit' in C | lit' != lit} lit_occs(~lit')
# / | C |
# where lit_occs(lit) is the number of clauses containing lit.
# - heuleu: The score of a literal lit is: Sum_{C in Clauses | lit in C} 2 ^ (-|C| + 1)
# - unit: heule_schur + also counts number of unit clauses.
# - march_cu: default reward function used in a version of March
# Each reward function also comes with its own variant of "mix_diff", which
# is the function for combining reward metrics for the positive and negative variant of a literal.
)

View file

@ -69,16 +69,6 @@ public:
m_column_index(static_cast<unsigned>(-1))
{}
column_info(unsigned column_index) :
m_lower_bound_is_set(false),
m_lower_bound_is_strict(false),
m_upper_bound_is_set (false),
m_upper_bound_is_strict (false),
m_is_fixed(false),
m_cost(numeric_traits<T>::zero()),
m_column_index(column_index) {
}
column_info(const column_info & ci) {
m_name = ci.m_name;
m_lower_bound_is_set = ci.m_lower_bound_is_set;

View file

@ -27,11 +27,15 @@ class gomory::imp {
lar_term & m_t; // the term to return in the cut
mpq & m_k; // the right side of the cut
explanation& m_ex; // the conflict explanation
unsigned m_inf_col; // a basis column which has to be an integer but has a not integral value
unsigned m_inf_col; // a basis column which has to be an integer but has a non integral value
const row_strip<mpq>& m_row;
const int_solver& m_int_solver;
const int_solver& m_int_solver;
mpq m_lcm_den;
mpq m_f;
mpq m_one_minus_f;
mpq m_fj;
mpq m_one_minus_fj;
const impq & get_value(unsigned j) const { return m_int_solver.get_value(j); }
bool is_real(unsigned j) const { return m_int_solver.is_real(j); }
bool at_lower(unsigned j) const { return m_int_solver.at_lower(j); }
@ -42,66 +46,60 @@ class gomory::imp {
constraint_index column_upper_bound_constraint(unsigned j) const { return m_int_solver.column_upper_bound_constraint(j); }
bool column_is_fixed(unsigned j) const { return m_int_solver.m_lar_solver->column_is_fixed(j); }
void int_case_in_gomory_cut(const mpq & a, unsigned j,
mpq & lcm_den, const mpq& f0, const mpq& one_minus_f0) {
lp_assert(is_int(j) && !a.is_int());
mpq fj = fractional_part(a);
void int_case_in_gomory_cut(unsigned j) {
lp_assert(is_int(j) && m_fj.is_pos());
TRACE("gomory_cut_detail",
tout << a << " j=" << j << " k = " << m_k;
tout << ", fj: " << fj << ", ";
tout << "a - fj = " << a - fj << ", ";
tout << " k = " << m_k;
tout << ", fj: " << m_fj << ", ";
tout << (at_lower(j)?"at_lower":"at_upper")<< std::endl;
);
lp_assert(fj.is_pos() && (a - fj).is_int());
mpq new_a;
if (at_lower(j)) {
new_a = fj <= one_minus_f0 ? fj / one_minus_f0 : ((1 - fj) / f0);
new_a = m_fj <= m_one_minus_f ? m_fj / m_one_minus_f : ((1 - m_fj) / m_f);
lp_assert(new_a.is_pos());
m_k.addmul(new_a, lower_bound(j).x);
m_ex.push_justification(column_lower_bound_constraint(j), new_a);
m_ex.push_justification(column_lower_bound_constraint(j));
}
else {
lp_assert(at_upper(j));
// the upper terms are inverted: therefore we have the minus
new_a = - (fj <= f0 ? fj / f0 : ((1 - fj) / one_minus_f0));
new_a = - (m_fj <= m_f ? m_fj / m_f : ((1 - m_fj) / m_one_minus_f));
lp_assert(new_a.is_neg());
m_k.addmul(new_a, upper_bound(j).x);
m_ex.push_justification(column_upper_bound_constraint(j), new_a);
m_ex.push_justification(column_upper_bound_constraint(j));
}
m_t.add_monomial(new_a, j);
lcm_den = lcm(lcm_den, denominator(new_a));
TRACE("gomory_cut_detail", tout << "v" << j << " new_a = " << new_a << ", k = " << m_k << ", lcm_den = " << lcm_den << "\n";);
m_lcm_den = lcm(m_lcm_den, denominator(new_a));
TRACE("gomory_cut_detail", tout << "v" << j << " new_a = " << new_a << ", k = " << m_k << ", m_lcm_den = " << m_lcm_den << "\n";);
}
void real_case_in_gomory_cut(const mpq & a, unsigned x_j, const mpq& f0, const mpq& one_minus_f0) {
void real_case_in_gomory_cut(const mpq & a, unsigned j) {
TRACE("gomory_cut_detail_real", tout << "real\n";);
mpq new_a;
if (at_lower(x_j)) {
if (at_lower(j)) {
if (a.is_pos()) {
new_a = a / one_minus_f0;
new_a = a / m_one_minus_f;
}
else {
new_a = a / f0;
new_a.neg();
new_a = - a / m_f;
}
m_k.addmul(new_a, lower_bound(x_j).x); // is it a faster operation than
// k += lower_bound(x_j).x * new_a;
m_ex.push_justification(column_lower_bound_constraint(x_j), new_a);
m_k.addmul(new_a, lower_bound(j).x); // is it a faster operation than
// k += lower_bound(j).x * new_a;
m_ex.push_justification(column_lower_bound_constraint(j));
}
else {
lp_assert(at_upper(x_j));
lp_assert(at_upper(j));
if (a.is_pos()) {
new_a = a / f0;
new_a.neg(); // the upper terms are inverted.
new_a = - a / m_f;
}
else {
new_a = a / one_minus_f0;
new_a = a / m_one_minus_f;
}
m_k.addmul(new_a, upper_bound(x_j).x); // k += upper_bound(x_j).x * new_a;
m_ex.push_justification(column_upper_bound_constraint(x_j), new_a);
m_k.addmul(new_a, upper_bound(j).x); // k += upper_bound(j).x * new_a;
m_ex.push_justification(column_upper_bound_constraint(j));
}
TRACE("gomory_cut_detail_real", tout << a << "*v" << x_j << " k: " << m_k << "\n";);
m_t.add_monomial(new_a, x_j);
TRACE("gomory_cut_detail_real", tout << a << "*v" << j << " k: " << m_k << "\n";);
m_t.add_monomial(new_a, j);
}
lia_move report_conflict_from_gomory_cut() {
@ -111,7 +109,7 @@ class gomory::imp {
return lia_move::conflict;
}
void adjust_term_and_k_for_some_ints_case_gomory(mpq &lcm_den) {
void adjust_term_and_k_for_some_ints_case_gomory() {
lp_assert(!m_t.is_empty());
// k = 1 + sum of m_t at bounds
auto pol = m_t.coeffs_as_vector();
@ -134,16 +132,16 @@ class gomory::imp {
m_t.add_monomial(mpq(1), v);
}
} else {
lcm_den = lcm(lcm_den, denominator(m_k));
lp_assert(lcm_den.is_pos());
TRACE("gomory_cut_detail", tout << "pol.size() > 1 den: " << lcm_den << std::endl;);
if (!lcm_den.is_one()) {
m_lcm_den = lcm(m_lcm_den, denominator(m_k));
lp_assert(m_lcm_den.is_pos());
TRACE("gomory_cut_detail", tout << "pol.size() > 1 den: " << m_lcm_den << std::endl;);
if (!m_lcm_den.is_one()) {
// normalize coefficients of integer parameters to be integers.
for (auto & pi: pol) {
pi.first *= lcm_den;
pi.first *= m_lcm_den;
SASSERT(!is_int(pi.second) || pi.first.is_int());
}
m_k *= lcm_den;
m_k *= m_lcm_den;
}
// negate everything to return -pol <= -m_k
for (const auto & pi: pol) {
@ -275,14 +273,14 @@ public:
// gomory will be t <= k and the current solution has a property t > k
m_k = 1;
m_t.clear();
mpq lcm_den(1);
mpq m_lcm_den(1);
bool some_int_columns = false;
mpq f0 = fractional_part(get_value(m_inf_col));
TRACE("gomory_cut_detail", tout << "f0: " << f0 << ", ";
tout << "1 - f0: " << 1 - f0 << ", get_value(m_inf_col).x - f0 = " << get_value(m_inf_col).x - f0;);
lp_assert(f0.is_pos() && (get_value(m_inf_col).x - f0).is_int());
mpq m_f = fractional_part(get_value(m_inf_col));
TRACE("gomory_cut_detail", tout << "m_f: " << m_f << ", ";
tout << "1 - m_f: " << 1 - m_f << ", get_value(m_inf_col).x - m_f = " << get_value(m_inf_col).x - m_f;);
lp_assert(m_f.is_pos() && (get_value(m_inf_col).x - m_f).is_int());
mpq one_min_f0 = 1 - f0;
mpq one_min_m_f = 1 - m_f;
for (const auto & p : m_row) {
unsigned j = p.var();
if (j == m_inf_col) {
@ -290,20 +288,26 @@ public:
TRACE("gomory_cut_detail", tout << "seeing basic var";);
continue;
}
// make the format compatible with the format used in: Integrating Simplex with DPLL(T)
mpq a = - p.coeff();
if (is_real(j))
real_case_in_gomory_cut(a, j, f0, one_min_f0);
else if (!a.is_int()) { // fj will be zero and no monomial will be added
// use -p.coeff() to make the format compatible with the format used in: Integrating Simplex with DPLL(T)
if (is_real(j)) {
real_case_in_gomory_cut(- p.coeff(), j);
} else {
if (p.coeff().is_int()) {
// m_fj will be zero and no monomial will be added
continue;
}
some_int_columns = true;
int_case_in_gomory_cut(a, j, lcm_den, f0, one_min_f0);
m_fj = fractional_part(-p.coeff());
m_one_minus_fj = 1 - m_fj;
int_case_in_gomory_cut(j);
}
}
if (m_t.is_empty())
return report_conflict_from_gomory_cut();
if (some_int_columns)
adjust_term_and_k_for_some_ints_case_gomory(lcm_den);
adjust_term_and_k_for_some_ints_case_gomory();
lp_assert(m_int_solver.current_solution_is_inf_on_cut());
TRACE("gomory_cut_detail", dump_cut_and_constraints_as_smt_lemma(tout););
m_int_solver.m_lar_solver->subs_term_columns(m_t);
@ -317,9 +321,10 @@ public:
m_ex(ex),
m_inf_col(basic_inf_int_j),
m_row(row),
m_int_solver(int_slv)
{
}
m_int_solver(int_slv),
m_lcm_den(1),
m_f(fractional_part(get_value(basic_inf_int_j).x)),
m_one_minus_f(1 - m_f) {}
};

View file

@ -909,13 +909,8 @@ bool lar_solver::try_to_set_fixed(column_info<mpq> & ci) {
return false;
}
column_type lar_solver::get_column_type(const column_info<mpq> & ci) {
auto ret = ci.get_column_type_no_flipping();
if (ret == column_type::boxed) { // changing boxed to fixed because of the no span
if (ci.get_lower_bound() == ci.get_upper_bound())
ret = column_type::fixed;
}
return ret;
column_type lar_solver::get_column_type(unsigned j) const{
return m_mpq_lar_core_solver.m_column_types[j];
}
std::string lar_solver::get_column_name(unsigned j) const {

View file

@ -395,7 +395,7 @@ public:
bool try_to_set_fixed(column_info<mpq> & ci);
column_type get_column_type(const column_info<mpq> & ci);
column_type get_column_type(unsigned j) const;
std::string get_column_name(unsigned j) const;

View file

@ -1238,6 +1238,7 @@ template <typename T, typename X> void lp_primal_core_solver<T, X>::print_column
break;
case column_type::free_column:
out << "( _" << this->m_x[j] << "_)" << std::endl;
break;
default:
lp_unreachable();
}

View file

@ -24,7 +24,7 @@ Revision History:
namespace lp {
template <typename T, typename X> column_info<T> * lp_solver<T, X>::get_or_create_column_info(unsigned column) {
auto it = m_map_from_var_index_to_column_info.find(column);
return (it == m_map_from_var_index_to_column_info.end())? (m_map_from_var_index_to_column_info[column] = new column_info<T>(static_cast<unsigned>(-1))) : it->second;
return (it == m_map_from_var_index_to_column_info.end())? (m_map_from_var_index_to_column_info[column] = new column_info<T>()) : it->second;
}
template <typename T, typename X>