mirror of
https://github.com/Z3Prover/z3
synced 2025-04-30 12:25:51 +00:00
extend monomial bounds to handle powers
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
73fa5995d4
commit
b43ed70874
4 changed files with 151 additions and 99 deletions
|
@ -11,53 +11,56 @@
|
|||
|
||||
namespace nla {
|
||||
|
||||
struct tangent_imp {
|
||||
point m_a;
|
||||
point m_b;
|
||||
point m_xy;
|
||||
rational m_correct_v;
|
||||
class tangent_imp {
|
||||
point m_a;
|
||||
point m_b;
|
||||
point m_xy;
|
||||
rational m_correct_v;
|
||||
// "below" means that the incorrect value is less than the correct one, that is m_v < m_correct_v
|
||||
bool m_below;
|
||||
rational m_v; // the monomial value
|
||||
lpvar m_j; // the monic variable
|
||||
const monic& m_m;
|
||||
bool m_below;
|
||||
rational m_v; // the monomial value
|
||||
lpvar m_j; // the monic variable
|
||||
const monic& m_m;
|
||||
const factor& m_x;
|
||||
const factor& m_y;
|
||||
lpvar m_jx;
|
||||
lpvar m_jy;
|
||||
tangents& m_tang;
|
||||
bool m_is_mon;
|
||||
lpvar m_jx;
|
||||
lpvar m_jy;
|
||||
tangents& m_tang;
|
||||
bool m_is_mon;
|
||||
|
||||
public:
|
||||
tangent_imp(point xy,
|
||||
const rational& v,
|
||||
lpvar j, // the monic variable
|
||||
const monic& m,
|
||||
const factorization& f,
|
||||
tangents& tang) : m_xy(xy),
|
||||
m_correct_v(xy.x * xy.y),
|
||||
m_below(v < m_correct_v),
|
||||
m_v(v),
|
||||
m_j(tang.var(m)),
|
||||
m_j(m.var()),
|
||||
m_m(m),
|
||||
m_x(f[0]),
|
||||
m_y(f[1]),
|
||||
m_jx(tang.var(m_x)),
|
||||
m_jy(tang.var(m_y)),
|
||||
m_jx(m_x.var()),
|
||||
m_jy(m_y.var()),
|
||||
m_tang(tang),
|
||||
m_is_mon(f.is_mon()) {
|
||||
SASSERT(f.size() == 2);
|
||||
}
|
||||
|
||||
|
||||
core & c() { return m_tang.c(); }
|
||||
|
||||
void tangent_lemma_on_bf() {
|
||||
get_tang_points();
|
||||
TRACE("nla_solver", tout << "tang domain = "; print_tangent_domain(tout) << std::endl;);
|
||||
generate_two_tang_lines();
|
||||
generate_tang_plane(m_a);
|
||||
generate_tang_plane(m_b);
|
||||
|
||||
void operator()() {
|
||||
get_points();
|
||||
TRACE("nla_solver", print_tangent_domain(tout << "tang domain = ") << std::endl;);
|
||||
generate_line1();
|
||||
generate_line2();
|
||||
generate_plane(m_a);
|
||||
generate_plane(m_b);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
core & c() { return m_tang.c(); }
|
||||
|
||||
void explain(new_lemma& lemma) {
|
||||
if (!m_is_mon) {
|
||||
lemma &= m_m;
|
||||
|
@ -66,7 +69,7 @@ struct tangent_imp {
|
|||
}
|
||||
}
|
||||
|
||||
void generate_tang_plane(const point & pl) {
|
||||
void generate_plane(const point & pl) {
|
||||
new_lemma lemma(c(), "generate tangent plane");
|
||||
c().negate_relation(lemma, m_jx, m_x.rat_sign()*pl.x);
|
||||
c().negate_relation(lemma, m_jy, m_y.rat_sign()*pl.y);
|
||||
|
@ -86,24 +89,24 @@ struct tangent_imp {
|
|||
lemma |= ineq(t, m_below? llc::GT : llc::LT, - pl.x*pl.y);
|
||||
explain(lemma);
|
||||
}
|
||||
|
||||
void generate_two_tang_lines() {
|
||||
{
|
||||
new_lemma lemma(c(), "two tangent planes 1");
|
||||
// Should be v = val(m_x)*val(m_y), and val(factor) = factor.rat_sign()*var(factor.var())
|
||||
lemma |= ineq(m_jx, llc::NE, c().val(m_jx));
|
||||
lemma |= ineq(lp::lar_term(m_j, - m_y.rat_sign() * m_xy.x, m_jy), llc::EQ, 0);
|
||||
explain(lemma);
|
||||
}
|
||||
{
|
||||
new_lemma lemma(c(), "two tangent planes 2");
|
||||
lemma |= ineq(m_jy, llc::NE, c().val(m_jy));
|
||||
lemma |= ineq(lp::lar_term(m_j, - m_x.rat_sign() * m_xy.y, m_jx), llc::EQ, 0);
|
||||
explain(lemma);
|
||||
}
|
||||
|
||||
void generate_line1() {
|
||||
new_lemma lemma(c(), "tangent line 1");
|
||||
// Should be v = val(m_x)*val(m_y), and val(factor) = factor.rat_sign()*var(factor.var())
|
||||
lemma |= ineq(m_jx, llc::NE, c().val(m_jx));
|
||||
lemma |= ineq(lp::lar_term(m_j, - m_y.rat_sign() * m_xy.x, m_jy), llc::EQ, 0);
|
||||
explain(lemma);
|
||||
}
|
||||
|
||||
void generate_line2() {
|
||||
new_lemma lemma(c(), "tangent line 2");
|
||||
lemma |= ineq(m_jy, llc::NE, c().val(m_jy));
|
||||
lemma |= ineq(lp::lar_term(m_j, - m_x.rat_sign() * m_xy.y, m_jx), llc::EQ, 0);
|
||||
explain(lemma);
|
||||
}
|
||||
|
||||
// Get two planes tangent to surface z = xy, one at point a, and another at point b, creating a cut
|
||||
void get_initial_tang_points() {
|
||||
void get_initial_points() {
|
||||
const rational& x = m_xy.x;
|
||||
const rational& y = m_xy.y;
|
||||
bool all_ints = m_v.is_int() && x.is_int() && y.is_int();
|
||||
|
@ -130,7 +133,7 @@ struct tangent_imp {
|
|||
}
|
||||
}
|
||||
|
||||
void push_tang_point(point & a) {
|
||||
void push_point(point & a) {
|
||||
SASSERT(plane_is_correct_cut(a));
|
||||
int steps = 10;
|
||||
point del = a - m_xy;
|
||||
|
@ -139,7 +142,7 @@ struct tangent_imp {
|
|||
point na = m_xy + del;
|
||||
TRACE("nla_solver_tp", tout << "del = " << del << std::endl;);
|
||||
if (!plane_is_correct_cut(na)) {
|
||||
TRACE("nla_solver_tp", tout << "exit";tout << std::endl;);
|
||||
TRACE("nla_solver_tp", tout << "exit\n";);
|
||||
return;
|
||||
}
|
||||
a = na;
|
||||
|
@ -147,25 +150,24 @@ struct tangent_imp {
|
|||
}
|
||||
|
||||
rational tang_plane(const point& a) const {
|
||||
return a.x * m_xy.y + a.y * m_xy.x - a.x * a.y;
|
||||
return a.x * m_xy.y + a.y * m_xy.x - a.x * a.y;
|
||||
}
|
||||
|
||||
void get_tang_points() {
|
||||
get_initial_tang_points();
|
||||
void get_points() {
|
||||
get_initial_points();
|
||||
TRACE("nla_solver", tout << "xy = " << m_xy << ", correct val = " << m_correct_v;
|
||||
tout << "\ntang points:"; print_tangent_domain(tout);tout << std::endl;);
|
||||
push_tang_point(m_a);
|
||||
TRACE("nla_solver", tout << "pushed a = " << m_a << std::endl;);
|
||||
|
||||
push_tang_point(m_b);
|
||||
TRACE("nla_solver", tout << "pushed b = " << m_b << std::endl;);
|
||||
print_tangent_domain(tout << "\ntang points:") << std::endl;);
|
||||
push_point(m_a);
|
||||
push_point(m_b);
|
||||
TRACE("nla_solver",
|
||||
tout << "tang_plane(a) = " << tang_plane(m_a) << " , val = " << m_v << ", tang_plane(b) = " << tang_plane(m_b) << " , val = " << std::endl;);
|
||||
tout << "pushed a = " << m_a << std::endl
|
||||
<< "pushed b = " << m_b << std::endl
|
||||
<< "tang_plane(a) = " << tang_plane(m_a) << " , val = " << m_a << ", "
|
||||
<< "tang_plane(b) = " << tang_plane(m_b) << " , val = " << m_b << std::endl;);
|
||||
}
|
||||
|
||||
std::ostream& print_tangent_domain(std::ostream& out) {
|
||||
out << "(" << m_a << ", " << m_b << ")";
|
||||
return out;
|
||||
return out << "(" << m_a << ", " << m_b << ")";
|
||||
}
|
||||
|
||||
bool plane_is_correct_cut(const point& plane) const {
|
||||
|
@ -173,7 +175,7 @@ struct tangent_imp {
|
|||
tout << "tang_plane() = " << tang_plane(plane) << ", v = " << m_v << ", correct_v = " << m_correct_v << "\n";);
|
||||
SASSERT((m_below && m_v < m_correct_v) ||
|
||||
((!m_below) && m_v > m_correct_v));
|
||||
rational sign = m_below? rational(1) : rational(-1);
|
||||
rational sign = rational(m_below ? 1 : -1);
|
||||
rational px = tang_plane(plane);
|
||||
return ((m_correct_v - px)*sign).is_pos() && !((px - m_v)*sign).is_neg();
|
||||
}
|
||||
|
@ -182,21 +184,12 @@ struct tangent_imp {
|
|||
tangents::tangents(core * c) : common(c) {}
|
||||
|
||||
void tangents::tangent_lemma() {
|
||||
if (!c().m_nla_settings.run_tangents()) {
|
||||
TRACE("nla_solver", tout << "not generating tangent lemmas\n";);
|
||||
return;
|
||||
}
|
||||
factorization bf(nullptr);
|
||||
const monic* m;
|
||||
if (c().find_bfc_to_refine(m, bf)) {
|
||||
unsigned j = m->var();
|
||||
tangent_imp i(point(val(bf[0]), val(bf[1])),
|
||||
c().val(j),
|
||||
j,
|
||||
*m,
|
||||
bf,
|
||||
*this);
|
||||
i.tangent_lemma_on_bf();
|
||||
const monic* m = nullptr;
|
||||
if (c().m_nla_settings.run_tangents() && c().find_bfc_to_refine(m, bf)) {
|
||||
lpvar j = m->var();
|
||||
tangent_imp tangent(point(val(bf[0]), val(bf[1])), c().val(j), *m, bf, *this);
|
||||
tangent();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue