mirror of
https://github.com/Z3Prover/z3
synced 2025-04-30 12:25:51 +00:00
extend monomial bounds to handle powers
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
73fa5995d4
commit
b43ed70874
4 changed files with 151 additions and 99 deletions
|
@ -21,8 +21,7 @@ namespace nla {
|
|||
bool propagated = false;
|
||||
for (lpvar v : c().m_to_refine) {
|
||||
monic const& m = c().emons()[v];
|
||||
if (propagate(m))
|
||||
propagated = true;
|
||||
propagated |= propagate(m);
|
||||
}
|
||||
return propagated;
|
||||
}
|
||||
|
@ -32,14 +31,12 @@ namespace nla {
|
|||
*/
|
||||
void monomial_bounds::compute_product(unsigned start, monic const& m, scoped_dep_interval& product) {
|
||||
scoped_dep_interval vi(dep);
|
||||
unsigned power = 1;
|
||||
for (unsigned i = start; i < m.size(); ) {
|
||||
lpvar v = m.vars()[i];
|
||||
unsigned power = 1;
|
||||
var2interval(v, vi);
|
||||
++i;
|
||||
for (; i < m.size() && m.vars()[i] == v; ++i) {
|
||||
++power;
|
||||
}
|
||||
for (power = 1; i < m.size() && m.vars()[i] == v; ++i, ++power);
|
||||
dep.power<dep_intervals::with_deps>(vi, power, vi);
|
||||
dep.mul<dep_intervals::with_deps>(product, vi, product);
|
||||
}
|
||||
|
@ -79,6 +76,68 @@ namespace nla {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* val(v)^p should be in range.
|
||||
* if val(v)^p > upper(range) add
|
||||
* v <= root(p, upper(range)) and v >= -root(p, upper(range)) if p is even
|
||||
* v <= root(p, upper(range)) if p is odd
|
||||
* if val(v)^p < lower(range) add
|
||||
* v >= root(p, lower(range)) or v <= -root(p, lower(range)) if p is even
|
||||
* v >= root(p, lower(range)) if p is odd
|
||||
*/
|
||||
|
||||
bool monomial_bounds::propagate_value(dep_interval& range, lpvar v, unsigned p) {
|
||||
SASSERT(p > 0);
|
||||
if (p == 1)
|
||||
return propagate_value(range, v);
|
||||
auto val = c().val(v);
|
||||
val = power(val, p);
|
||||
rational r;
|
||||
if (dep.is_below(range, val)) {
|
||||
lp::explanation ex;
|
||||
dep.get_upper_dep(range, ex);
|
||||
if (p % 2 == 0 && rational(dep.upper(range)).is_neg()) {
|
||||
new_lemma lemma(c(), "range requires a non-negative upper bound");
|
||||
lemma &= ex;
|
||||
return true;
|
||||
}
|
||||
if (rational(dep.upper(range)).root(p, r)) {
|
||||
{
|
||||
auto le = dep.upper_is_open(range) ? llc::LT : llc::LE;
|
||||
new_lemma lemma(c(), "propagate value - root case - lower bound of range is below value");
|
||||
lemma &= ex;
|
||||
lemma |= ineq(v, le, r);
|
||||
}
|
||||
if (p % 2 == 0) {
|
||||
SASSERT(!r.is_neg());
|
||||
auto ge = dep.upper_is_open(range) ? llc::GT : llc::GE;
|
||||
new_lemma lemma(c(), "propagate value - root case - lower bound of range is below value");
|
||||
lemma &= ex;
|
||||
lemma |= ineq(v, ge, -r);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
// TBD: add bounds as long as difference to val is above some epsilon.
|
||||
}
|
||||
else if (dep.is_above(range, val)) {
|
||||
if (rational(dep.lower(range)).root(p, r)) {
|
||||
lp::explanation ex;
|
||||
dep.get_lower_dep(range, ex);
|
||||
auto ge = dep.lower_is_open(range) ? llc::GT : llc::GE;
|
||||
auto le = dep.lower_is_open(range) ? llc::LT : llc::LE;
|
||||
new_lemma lemma(c(), "propagate value - root case - lower bound of range is above value");
|
||||
lemma &= ex;
|
||||
lemma |= ineq(v, ge, r);
|
||||
if (p % 2 == 0) {
|
||||
lemma |= ineq(v, le, -r);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
// TBD: add bounds as long as difference to val is above some epsilon.
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void monomial_bounds::var2interval(lpvar v, scoped_dep_interval& i) {
|
||||
lp::constraint_index ci;
|
||||
rational bound;
|
||||
|
@ -114,14 +173,10 @@ namespace nla {
|
|||
unsigned num_free, power;
|
||||
lpvar free_var;
|
||||
analyze_monomial(m, num_free, free_var, power);
|
||||
bool m_is_free = is_free(m.var());
|
||||
if (num_free >= 2)
|
||||
return false;
|
||||
if (num_free >= 1 && m_is_free)
|
||||
return false;
|
||||
SASSERT(num_free == 0 || !m_is_free);
|
||||
bool do_propagate_up = num_free == 0;
|
||||
bool do_propagate_down = !m_is_free;
|
||||
bool do_propagate_down = !is_free(m.var()) && num_free <= 1;
|
||||
if (!do_propagate_up && !do_propagate_down)
|
||||
return false;
|
||||
scoped_dep_interval product(dep);
|
||||
scoped_dep_interval vi(dep), mi(dep);
|
||||
scoped_dep_interval other_product(dep);
|
||||
|
@ -130,16 +185,14 @@ namespace nla {
|
|||
for (unsigned i = 0; i < m.size(); ) {
|
||||
lpvar v = m.vars()[i];
|
||||
++i;
|
||||
unsigned power = 1;
|
||||
for (; i < m.size() && v == m.vars()[i]; ++i)
|
||||
++power;
|
||||
for (power = 1; i < m.size() && v == m.vars()[i]; ++i, ++power);
|
||||
var2interval(v, vi);
|
||||
dep.power<dep_intervals::with_deps>(vi, power, vi);
|
||||
|
||||
if (power == 1 && do_propagate_down && (num_free == 0 || free_var == v)) {
|
||||
if (do_propagate_down && (num_free == 0 || free_var == v)) {
|
||||
dep.set<dep_intervals::with_deps>(other_product, product);
|
||||
compute_product(i, m, other_product);
|
||||
if (propagate_down(m, mi, v, other_product))
|
||||
if (propagate_down(m, mi, v, power, other_product))
|
||||
return true;
|
||||
}
|
||||
dep.mul<dep_intervals::with_deps>(product, vi, product);
|
||||
|
@ -147,12 +200,12 @@ namespace nla {
|
|||
return do_propagate_up && propagate_value(product, m.var());
|
||||
}
|
||||
|
||||
bool monomial_bounds::propagate_down(monic const& m, dep_interval& mi, lpvar v, dep_interval& product) {
|
||||
bool monomial_bounds::propagate_down(monic const& m, dep_interval& mi, lpvar v, unsigned power, dep_interval& product) {
|
||||
if (!dep.separated_from_zero(product))
|
||||
return false;
|
||||
scoped_dep_interval range(dep);
|
||||
dep.div<dep_intervals::with_deps>(mi, product, range);
|
||||
return propagate_value(range, v);
|
||||
return propagate_value(range, v, power);
|
||||
}
|
||||
|
||||
bool monomial_bounds::is_free(lpvar v) const {
|
||||
|
@ -164,19 +217,24 @@ namespace nla {
|
|||
c().has_lower_bound(v) &&
|
||||
c().has_upper_bound(v) &&
|
||||
c().get_lower_bound(v).is_zero() &&
|
||||
c().get_lower_bound(v) == c().get_upper_bound(v);
|
||||
c().get_upper_bound(v).is_zero();
|
||||
}
|
||||
|
||||
/**
|
||||
* Count the number of unbound (free) variables.
|
||||
* Variables with no lower and no upper bound multiplied
|
||||
* to an odd degree have unbound ranges when it comes to
|
||||
* bounds propagation.
|
||||
*/
|
||||
void monomial_bounds::analyze_monomial(monic const& m, unsigned& num_free, lpvar& fv, unsigned& fv_power) const {
|
||||
unsigned power = 0;
|
||||
unsigned power = 1;
|
||||
num_free = 0;
|
||||
fv = null_lpvar;
|
||||
fv_power = 0;
|
||||
for (unsigned i = 0; i < m.vars().size(); ) {
|
||||
lpvar v = m.vars()[i];
|
||||
unsigned power = 1;
|
||||
++i;
|
||||
for (; i < m.vars().size() && m.vars()[i] == v; ++i, ++power);
|
||||
for (power = 1; i < m.vars().size() && m.vars()[i] == v; ++i, ++power);
|
||||
if (is_zero(v)) {
|
||||
num_free = 0;
|
||||
return;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue