3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-04 06:15:46 +00:00

Connect conflict2

This commit is contained in:
Jakob Rath 2022-09-21 12:12:57 +02:00
parent a978604a7e
commit b43971bb4a
9 changed files with 420 additions and 293 deletions

View file

@ -29,9 +29,19 @@ TODO: improve management of the fallback univariate solvers:
#include "util/debug.h"
#include "math/polysat/viable.h"
#include "math/polysat/solver.h"
#include "math/polysat/univariate/univariate_solver.h"
namespace polysat {
struct inf_fi : public inference {
viable& v;
pvar var;
inf_fi(viable& v, pvar var) : v(v), var(var) {}
std::ostream& display(std::ostream& out) const override {
return out << "Forbidden intervals for v" << var << ": " << viable::var_pp(v, var);
}
};
viable::viable(solver& s):
s(s),
m_forbidden_intervals(s) {
@ -54,7 +64,7 @@ namespace polysat {
m_diseq_lin.pop_back();
}
viable::entry* viable::alloc_entry() {
viable::entry* viable::alloc_entry() {
if (m_alloc.empty())
return alloc(entry);
auto* e = m_alloc.back();
@ -68,21 +78,21 @@ namespace polysat {
auto& [v, k, e] = m_trail.back();
SASSERT(well_formed(m_units[v]));
switch (k) {
case entry_kind::unit_e:
e->remove_from(m_units[v], e);
case entry_kind::unit_e:
e->remove_from(m_units[v], e);
SASSERT(well_formed(m_units[v]));
break;
case entry_kind::equal_e:
e->remove_from(m_equal_lin[v], e);
case entry_kind::equal_e:
e->remove_from(m_equal_lin[v], e);
break;
case entry_kind::diseq_e:
e->remove_from(m_diseq_lin[v], e);
e->remove_from(m_diseq_lin[v], e);
break;
default:
UNREACHABLE();
break;
}
m_alloc.push_back(e);
m_alloc.push_back(e);
m_trail.pop_back();
}
@ -98,12 +108,12 @@ namespace polysat {
if (e->interval.lo_val() < m_units[v]->interval.lo_val())
m_units[v] = e;
}
else
m_units[v] = e;
else
m_units[v] = e;
SASSERT(well_formed(m_units[v]));
m_trail.pop_back();
}
bool viable::intersect(pdd const & p, pdd const & q, signed_constraint const& sc) {
pvar v = null_var;
bool first = true;
@ -124,7 +134,7 @@ namespace polysat {
prop = true;
break;
case dd::find_t::empty:
s.set_conflict(v);
s.set_conflict(v, false);
return true;
default:
break;
@ -136,7 +146,7 @@ namespace polysat {
goto try_viable;
}
return prop;
}
}
bool viable::intersect(pvar v, signed_constraint const& c) {
entry* ne = alloc_entry();
@ -184,12 +194,11 @@ namespace polysat {
m_alloc.push_back(ne);
return false;
}
auto create_entry = [&]() {
m_trail.push_back({ v, entry_kind::unit_e, ne });
s.m_trail.push_back(trail_instr_t::viable_add_i);
ne->init(ne);
ne->init(ne);
return ne;
};
@ -200,13 +209,13 @@ namespace polysat {
};
if (ne->interval.is_full()) {
while (m_units[v])
while (m_units[v])
remove_entry(m_units[v]);
m_units[v] = create_entry();
return true;
}
if (!e)
if (!e)
m_units[v] = create_entry();
else {
entry* first = e;
@ -222,10 +231,10 @@ namespace polysat {
m_units[v] = create_entry();
return true;
}
if (e == first)
first = n;
if (e == first)
first = n;
e = n;
}
}
SASSERT(e->interval.lo_val() != ne->interval.lo_val());
if (e->interval.lo_val() > ne->interval.lo_val()) {
if (first->prev()->interval.currently_contains(ne->interval)) {
@ -239,7 +248,7 @@ namespace polysat {
return true;
}
e = e->next();
}
}
while (e != first);
// otherwise, append to end of list
first->insert_before(create_entry());
@ -255,10 +264,10 @@ namespace polysat {
/**
* Traverse all interval constraints with coefficients to check whether current value 'val' for
* 'v' is feasible. If not, extract a (maximal) interval to block 'v' from being assigned val.
*
*
* To investigate:
* - side conditions are stronger than for unit intervals. They constrain the lower and upper bounds to
* be precisely the assigned values. This is to ensure that lo/hi that are computed based on lo_val
* be precisely the assigned values. This is to ensure that lo/hi that are computed based on lo_val
* and division with coeff are valid. Is there a more relaxed scheme?
*/
bool viable::refine_equal_lin(pvar v, rational const& val) {
@ -330,7 +339,7 @@ namespace polysat {
if (e->interval.lo_val() < e->interval.hi_val()) {
increase_hi(hi);
decrease_lo(lo);
decrease_lo(lo);
}
else if (e->interval.lo_val() <= coeff_val) {
rational lambda_u = floor((max_value - coeff_val) / e->coeff);
@ -342,13 +351,13 @@ namespace polysat {
else {
SASSERT(coeff_val < e->interval.hi_val());
rational lambda_l = floor(coeff_val / e->coeff);
lo = val - lambda_l;
lo = val - lambda_l;
increase_hi(hi);
}
LOG("forbidden interval v" << v << " " << val << " " << e->coeff << " * " << e->interval << " [" << lo << ", " << hi << "[");
SASSERT(hi <= mod_value);
bool full = (lo == 0 && hi == mod_value);
if (hi == mod_value)
bool full = (lo == 0 && hi == mod_value);
if (hi == mod_value)
hi = 0;
pdd lop = s.var2pdd(v).mk_val(lo);
pdd hip = s.var2pdd(v).mk_val(hi);
@ -358,13 +367,13 @@ namespace polysat {
ne->coeff = 1;
if (full)
ne->interval = eval_interval::full();
else
else
ne->interval = eval_interval::proper(lop, lo, hip, hi);
intersect(v, ne);
return false;
}
e = e->next();
}
}
while (e != first);
return true;
}
@ -453,7 +462,7 @@ namespace polysat {
return true;
}
bool viable::has_viable(pvar v) {
bool viable::has_viable(pvar v) {
refined:
auto* e = m_units[v];
@ -468,9 +477,9 @@ namespace polysat {
return false;
// quick check: last interval doesn't wrap around, so hi_val
// has not been covered
if (last->interval.lo_val() < last->interval.hi_val())
if (last->interval.lo_val() < last->interval.hi_val())
CHECK_RETURN(last->interval.hi_val());
do {
if (e->interval.is_full())
return false;
@ -482,16 +491,16 @@ namespace polysat {
if (n == first) {
if (e->interval.lo_val() > e->interval.hi_val())
return false;
CHECK_RETURN(e->interval.hi_val());
CHECK_RETURN(e->interval.hi_val());
}
e = n;
}
}
while (e != first);
return false;
#undef CHECK_RETURN
}
bool viable::is_viable(pvar v, rational const& val) {
bool viable::is_viable(pvar v, rational const& val) {
auto* e = m_units[v];
if (!e)
return refine_viable(v, val);
@ -499,17 +508,17 @@ namespace polysat {
entry* last = first->prev();
if (last->interval.currently_contains(val))
return false;
for (; e != last; e = e->next()) {
for (; e != last; e = e->next()) {
if (e->interval.currently_contains(val))
return false;
if (val < e->interval.lo_val())
return refine_viable(v, val);
}
if (val < e->interval.lo_val())
return refine_viable(v, val);
}
return refine_viable(v, val);
}
rational viable::min_viable(pvar v) {
rational viable::min_viable(pvar v) {
refined:
rational lo(0);
auto* e = m_units[v];
@ -521,20 +530,20 @@ namespace polysat {
entry* last = first->prev();
if (last->interval.currently_contains(lo))
lo = last->interval.hi_val();
do {
do {
if (!e->interval.currently_contains(lo))
break;
lo = e->interval.hi_val();
e = e->next();
}
}
while (e != first);
if (!refine_viable(v, lo))
goto refined;
SASSERT(is_viable(v, lo));
SASSERT(is_viable(v, lo));
return lo;
}
rational viable::max_viable(pvar v) {
rational viable::max_viable(pvar v) {
refined:
rational hi = s.var2pdd(v).max_value();
auto* e = m_units[v];
@ -549,7 +558,7 @@ namespace polysat {
break;
hi = e->interval.lo_val() - 1;
e = e->prev();
}
}
while (e != last);
if (!refine_viable(v, hi))
goto refined;
@ -557,7 +566,7 @@ namespace polysat {
return hi;
}
dd::find_t viable::find_viable(pvar v, rational& lo) {
dd::find_t viable::find_viable(pvar v, rational& lo) {
refined:
lo = 0;
auto* e = m_units[v];
@ -594,7 +603,7 @@ namespace polysat {
break;
lo = e->interval.hi_val();
e = e->next();
}
}
while (e != first);
if (e->interval.currently_contains(lo))
@ -608,7 +617,7 @@ namespace polysat {
break;
hi = e->interval.lo_val() - 1;
e = e->prev();
}
}
while (e != last);
if (!refine_viable(v, lo))
goto refined;
@ -620,20 +629,6 @@ namespace polysat {
return dd::find_t::multiple;
}
struct inference_fi : public inference {
viable& v;
pvar var;
inference_fi(viable& v, pvar var) : v(v), var(var) {}
std::ostream& display(std::ostream& out) const override {
return out << "Forbidden intervals for v" << var << ": " << viable::var_pp(v, var);
}
};
bool viable::resolve(pvar v, conflict2& core) {
NOT_IMPLEMENTED_YET();
return false;
}
bool viable::resolve(pvar v, conflict& core) {
if (has_viable(v))
return false;
@ -652,7 +647,7 @@ namespace polysat {
auto lhs = hi - next_lo;
auto rhs = next_hi - next_lo;
signed_constraint c = s.m_constraints.ult(lhs, rhs);
core.propagate(c);
core.insert_eval(c);
#if 0
if (n != first) {
while {
@ -666,21 +661,26 @@ namespace polysat {
}
#endif
}
for (auto sc : e->side_cond)
core.propagate(sc);
for (auto sc : e->side_cond)
core.insert_eval(sc);
core.insert(e->src);
e = n;
}
}
while (e != first);
core.logger().log(inf_fi(*this, v));
// TODO: should not be here, too general
/*
for (auto c : core) {
if (c.bvalue(s) == l_false) {
core.reset();
core.set(~c);
core.logger().log("");
break;
}
}
core.log_inference(inference_fi(*this, v));
*/
return true;
}
@ -694,7 +694,7 @@ namespace polysat {
do {
LOG("v" << v << ": " << e->interval << " " << e->side_cond << " " << e->src);
e = e->next();
}
}
while (e != first);
}
@ -712,7 +712,7 @@ namespace polysat {
out << e->coeff << " * v" << v << " ";
out << e->interval << " " << e->side_cond << " " << e->src << "; ";
e = e->next();
}
}
while (e != first);
return out;
}
@ -732,7 +732,7 @@ namespace polysat {
/*
* Lower bounds are strictly ascending.
* intervals don't contain each-other (since lower bounds are ascending,
* intervals don't contain each-other (since lower bounds are ascending,
* it suffices to check containment in one direction).
*/
bool viable::well_formed(entry* e) {
@ -742,15 +742,15 @@ namespace polysat {
while (true) {
if (e->interval.is_full())
return e->next() == e;
if (e->interval.is_currently_empty())
if (e->interval.is_currently_empty())
return false;
auto* n = e->next();
if (n != e && e->interval.currently_contains(n->interval))
return false;
if (n == first)
break;
break;
if (e->interval.lo_val() >= n->interval.lo_val())
return false;
e = n;