3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 09:35:32 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-07-05 14:32:13 -07:00
parent 5262248823
commit b419a0e4a4
4 changed files with 288 additions and 68 deletions

View file

@ -325,6 +325,7 @@ namespace sat {
// -------------------
// pb
static unsigned _bad_id = 11111111; // 2759; //
// watch a prefix of literals, such that the slack of these is >= k
bool ba_solver::init_watch(pb& p, bool is_true) {
@ -343,7 +344,7 @@ namespace sat {
if (j != i) {
p.swap(i, j);
}
if (slack < bound) {
if (slack <= bound) {
slack += p[j].first;
++num_watch;
}
@ -353,6 +354,9 @@ namespace sat {
++j;
}
}
if (p.id() == _bad_id) {
std::cout << "watch " << num_watch << " out of " << sz << "\n";
}
DEBUG_CODE(
bool is_false = false;
for (unsigned k = 0; k < sz; ++k) {
@ -379,6 +383,8 @@ namespace sat {
p.set_slack(slack);
p.set_num_watch(num_watch);
validate_watch(p);
TRACE("sat", display(tout << "init watch: ", p, true););
// slack is tight:
@ -424,7 +430,6 @@ namespace sat {
}
}
static unsigned _bad_id = 62390000;
#define BADLOG(_cmd_) if (p.id() == _bad_id) { _cmd_; }
@ -462,13 +467,17 @@ namespace sat {
}
if (index == num_watch) {
_bad_id = p.id();
std::cout << p.id() << "\n";
std::cout << "BAD: " << p.id() << "\n";
display(std::cout, p, true);
std::cout << "alit: " << alit << "\n";
std::cout << "num watch " << num_watch << "\n";
exit(0);
return l_undef;
}
validate_watch(p);
SASSERT(index < num_watch);
unsigned index1 = index + 1;
for (; m_a_max == 0 && index1 < num_watch; ++index1) {
@ -485,6 +494,9 @@ namespace sat {
literal lit = p[j].second;
if (value(lit) != l_false) {
slack += p[j].first;
if (is_watched(p[j].second, p)) {
std::cout << "Swap literal already watched: " << p[j].second << "\n";
}
watch_literal(p[j], p);
p.swap(num_watch, j);
add_index(p, num_watch, lit);
@ -501,6 +513,7 @@ namespace sat {
slack += val;
p.set_slack(slack);
p.set_num_watch(num_watch);
validate_watch(p);
BADLOG(display(std::cout << "conflict: " << alit << " watch: " << p.num_watch() << " size: " << p.size(), p, true));
SASSERT(bound <= slack);
TRACE("sat", tout << "conflict " << alit << "\n";);
@ -520,8 +533,6 @@ namespace sat {
p.set_num_watch(num_watch);
p.swap(num_watch, index);
BADLOG(std::cout << "swap watched: " << alit << " watch: " << p.num_watch() << " size: " << p.size() << " slack: " << p.slack() << "\n");
//
// slack >= bound, but slack - w(l) < bound
// l must be true.
@ -544,6 +555,8 @@ namespace sat {
TRACE("sat", display(tout << "assign: " << alit << "\n", p, true););
BADLOG(std::cout << "unwatch " << alit << " watch: " << p.num_watch() << " size: " << p.size() << " slack: " << p.slack() << " " << inconsistent() << "\n");
return l_undef;
}
@ -552,7 +565,12 @@ namespace sat {
}
void ba_solver::clear_watch(pb& p) {
for (wliteral wl : p) unwatch_literal(wl.second, p);
validate_watch(p);
for (unsigned i = 0; i < p.num_watch(); ++i) {
unwatch_literal(p[i].second, p);
}
p.set_num_watch(0);
validate_watch(p);
}
/*
@ -583,6 +601,7 @@ namespace sat {
void ba_solver::simplify2(pb& p) {
return;
if (p.is_cardinality()) {
literal_vector lits(p.literals());
unsigned k = (p.k() + p[0].first - 1) / p[0].first;
@ -605,11 +624,12 @@ namespace sat {
void ba_solver::simplify(pb_base& p) {
if (p.lit() != null_literal && value(p.lit()) == l_false) {
TRACE("sat", tout << "pb: flip sign " << p << "\n";);
IF_VERBOSE(0, verbose_stream() << "signed is flipped " << p << "\n";);
IF_VERBOSE(0, verbose_stream() << "sign is flipped " << p << "\n";);
return;
init_watch(p, !p.lit().sign());
}
if (p.lit() != null_literal && value(p.lit()) == l_true) {
bool nullify = p.lit() != null_literal && value(p.lit()) == l_true;
if (nullify) {
SASSERT(lvl(p.lit()) == 0);
nullify_tracking_literal(p);
}
@ -625,7 +645,9 @@ namespace sat {
}
}
if (true_val == 0 && num_false == 0) {
// no op
if (nullify) {
init_watch(p, true);
}
}
else if (true_val >= p.k()) {
if (p.lit() != null_literal) {
@ -658,8 +680,10 @@ namespace sat {
--i;
}
}
if (p.id() == _bad_id) display(std::cout << "simplify ", p, true);
p.set_size(sz);
p.set_k(p.k() - true_val);
if (p.id() == _bad_id) display(std::cout << "simplified ", p, true);
// display(verbose_stream(), c, true);
if (p.lit() == null_literal) {
init_watch(p, true);
@ -1307,6 +1331,7 @@ namespace sat {
}
ba_solver::card& ba_solver::add_at_least(literal lit, literal_vector const& lits, unsigned k, bool learned) {
if (k == 1) UNREACHABLE();
void * mem = m_allocator.allocate(card::get_obj_size(lits.size()));
card* c = new (mem) card(next_id(), lit, lits, k);
c->set_learned(learned);
@ -1326,7 +1351,7 @@ namespace sat {
m_constraints.push_back(c);
}
literal lit = c->lit();
if (c->learned()) {
if (c->learned() && !s().at_base_lvl()) {
SASSERT(lit == null_literal);
// gets initialized after backjump.
m_constraint_to_reinit.push_back(c);
@ -1402,7 +1427,7 @@ namespace sat {
return true;
}
else if (c.lit() != null_literal && value(c.lit()) != l_true) {
return false;
return true;
}
else {
return l_undef != add_assign(c, ~l);
@ -1632,12 +1657,26 @@ namespace sat {
void ba_solver::get_antecedents(literal l, ext_justification_idx idx, literal_vector & r) {
get_antecedents(l, index2constraint(idx), r);
}
bool ba_solver::is_watched(literal lit, constraint const& c) const {
return get_wlist(~lit).contains(watched(c.index()));
}
void ba_solver::unwatch_literal(literal lit, constraint& c) {
if (c.id() == _bad_id) { std::cout << "unwatch " << lit << "\n"; }
get_wlist(~lit).erase(watched(c.index()));
if (is_watched(lit, c)) {
std::cout << "Not deleted " << lit << "\n";
}
}
void ba_solver::watch_literal(literal lit, constraint& c) {
if (is_watched(lit, c)) {
std::cout << "Already watched " << lit << "\n";
UNREACHABLE();
exit(0);
}
if (c.id() == _bad_id) { std::cout << "watch " << lit << "\n"; }
get_wlist(~lit).push_back(watched(c.index()));
}
@ -1757,11 +1796,18 @@ namespace sat {
}
void ba_solver::validate() {
if (validate_watch_literals()) {
for (constraint* c : m_constraints) {
if (!validate_watched_constraint(*c)) break;
}
if (!validate_watch_literals()) {
return;
}
for (constraint* c : m_constraints) {
if (!validate_watched_constraint(*c))
return;
}
for (constraint* c : m_learned) {
if (!validate_watched_constraint(*c))
return;
}
}
bool ba_solver::validate_watch_literals() const {
@ -1791,9 +1837,12 @@ namespace sat {
}
bool ba_solver::validate_watched_constraint(constraint const& c) const {
if (c.is_pb() && !validate_watch(c.to_pb())) {
return false;
}
if (c.lit() != null_literal && value(c.lit()) != l_true) return true;
if (c.lit() != null_literal && lvl(c.lit()) != 0) {
if (!is_watching(c.lit(), c) || !is_watching(~c.lit(), c)) {
if (!is_watched(c.lit(), c) || !is_watched(~c.lit(), c)) {
std::cout << "Definition literal is not watched " << c.lit() << " " << c << "\n";
display_watch_list(std::cout, s().m_cls_allocator, get_wlist(c.lit())) << "\n";
display_watch_list(std::cout, s().m_cls_allocator, get_wlist(~c.lit())) << "\n";
@ -1806,9 +1855,10 @@ namespace sat {
literal_vector lits(c.literals());
for (literal l : lits) {
if (lvl(l) == 0) continue;
bool found = is_watching(l, c);
bool found = is_watched(l, c);
if (found != c.is_watching(l)) {
std::cout << "Discrepancy of watched literal: " << l << ": " << c.id() << " " << c << (found?" is watched, but shouldn't be":" not watched, but should be") << "\n";
std::cout << "Discrepancy of watched literal: " << l << " id: " << c.id() << " clause: " << c << (found?" is watched, but shouldn't be":" not watched, but should be") << "\n";
display_watch_list(std::cout << l << ": ", s().m_cls_allocator, get_wlist(l)) << "\n";
display_watch_list(std::cout << ~l << ": ", s().m_cls_allocator, get_wlist(~l)) << "\n";
std::cout << "value: " << value(l) << " level: " << lvl(l) << "\n";
@ -1821,15 +1871,21 @@ namespace sat {
}
return true;
}
bool ba_solver::is_watching(literal lit, constraint const& c) const {
for (auto w : get_wlist(~lit)) {
if (w.get_kind() == watched::EXT_CONSTRAINT && w.get_ext_constraint_idx() == c.index())
return true;
bool ba_solver::validate_watch(pb const& p) const {
for (unsigned i = 0; i < p.size(); ++i) {
literal l = p[i].second;
if (lvl(l) != 0 && is_watched(l, p) != i < p.num_watch()) {
std::cout << "DISCREPANCY: " << l << " at " << i << " for " << p.num_watch() << " index: " << p.id() << "\n";
display(std::cout, p, true);
UNREACHABLE();
return false;
}
}
return false;
return true;
}
/**
\brief Lex on (glue, size)
*/
@ -1844,7 +1900,7 @@ namespace sat {
void ba_solver::gc() {
std::stable_sort(m_learned.begin(), m_learned.end(), constraint_glue_lt());
gc_half("glue");
cleanup_constraints(m_learned);
cleanup_constraints(m_learned, true);
}
void ba_solver::gc_half(char const* st_name) {
@ -1942,7 +1998,7 @@ namespace sat {
// if (sz < m_constraint_to_reinit.size()) std::cout << "REINIT " << s().scope_lvl() << " " << m_constraint_to_reinit.size() - sz << "\n";
for (unsigned i = sz; i < m_constraint_to_reinit.size(); ++i) {
constraint* c = m_constraint_to_reinit[i];
if (!init_watch(*c, true)) {
if (!init_watch(*c, true) && !s().at_base_lvl()) {
m_constraint_to_reinit[sz++] = c;
}
}
@ -2145,6 +2201,9 @@ namespace sat {
for (constraint* c : m_constraints) {
flush_roots(*c);
}
for (constraint* c : m_learned) {
flush_roots(*c);
}
cleanup_constraints();
// validate();
@ -2170,6 +2229,7 @@ namespace sat {
}
void ba_solver::recompile(card& c) {
if (c.id() == _bad_id) std::cout << "recompile: " << c << "\n";
// IF_VERBOSE(0, verbose_stream() << "re: " << c << "\n";);
m_weights.resize(2*s().num_vars(), 0);
for (literal l : c) {
@ -2220,8 +2280,15 @@ namespace sat {
return;
}
if (k == 1) {
literal_vector lits(c.size(), c.begin());
s().mk_clause(lits.size(), lits.c_ptr(), c.learned());
remove_constraint(c);
return;
}
c.set_size(sz);
c.set_k(k);
c.set_k(k);
if (!is_card) {
TRACE("sat", tout << "replacing by pb: " << c << "\n";);
@ -2236,16 +2303,125 @@ namespace sat {
}
else {
// IF_VERBOSE(1, verbose_stream() << "new: " << c << "\n";);
if (c.id() == _bad_id) std::cout << "init: " << c << "\n";
if (c.lit() == null_literal || value(c.lit()) == l_true) {
init_watch(c, true);
}
SASSERT(c.well_formed());
}
}
void ba_solver::split_root(constraint& c) {
switch (c.tag()) {
case card_t: split_root(c.to_card()); break;
case pb_t: split_root(c.to_pb()); break;
case xor_t: NOT_IMPLEMENTED_YET(); break;
}
}
/*
\brief slit PB constraint into two because root is reused in arguments.
x <=> a*x + B*y >= k
x => a*x + By >= k
~x => a*x + By < k
k*~x + a*x + By >= k
(B+a-k + 1)*x + a*~x + B*~y >= B + a - k + 1
(k - a) * ~x + By >= k - a
k' * x + B'y >= k'
*/
void ba_solver::split_root(pb_base& p) {
SASSERT(p.lit() != null_literal);
SASSERT(!p.learned());
m_weights.resize(2*s().num_vars(), 0);
unsigned k = p.k();
unsigned w, w1, w2;
literal root = p.lit();
m_weights[(~root).index()] = k;
for (unsigned i = 0; i < p.size(); ++i) {
literal l = p.get_lit(i);
m_weights[l.index()] += p.get_coeff(i);
}
for (unsigned i = 0; i < p.size(); ++i) {
literal l = p.get_lit(i);
w1 = m_weights[l.index()];
w2 = m_weights[(~l).index()];
if (w1 > w2) {
if (w2 > k) {
// constraint is true
return;
}
k -= w2;
m_weights[(~l).index()] = 0;
m_weights[l.index()] = w1 - w2;
}
}
w1 = m_weights[(~root).index()];
w2 = m_weights[root.index()];
if (w1 > w2) {
if (w2 > k) {
return;
}
k -= w2;
m_weights[(~root).index()] = 0;
m_weights[root.index()] = w1 - w2;
}
if (k == 0) {
return;
}
// ~root * (k - a) + p >= k - a
svector<wliteral> wlits;
bool units = true;
for (unsigned i = 0; i < p.size(); ++i) {
literal l = p.get_lit(i);
w = m_weights[l.index()];
if (w != 0) {
wlits.push_back(wliteral(w, l));
units &= w == 1;
}
m_weights[l.index()] = 0;
}
w = m_weights[(~root).index()];
if (w != 0) {
wlits.push_back(wliteral(w, ~root));
units &= w == 1;
}
m_weights[(~root).index()] = 0;
for (wliteral wl : wlits) {
std::cout << wl.first << " * " << wl.second << " ";
}
std::cout << " >= " << k << "\n";
if (k == 1) {
std::cout << "CLAUSE\n";
}
if (units) {
literal_vector lits;
for (wliteral wl : wlits) lits.push_back(wl.second);
add_at_least(null_literal, lits, k, false);
}
else {
add_pb_ge(null_literal, wlits, k, false);
}
DEBUG_CODE(
for (unsigned i = 0; i < p.size(); ++i) {
SASSERT(m_weights[p.get_lit(i).index()] == 0);
});
SASSERT(m_weights[(~root).index()] == 0);
}
void ba_solver::recompile(pb& p) {
// IF_VERBOSE(2, verbose_stream() << "re: " << p << "\n";);
SASSERT(p.num_watch() == 0);
m_weights.resize(2*s().num_vars(), 0);
for (wliteral wl : p) {
m_weights[wl.second.index()] += wl.first;
@ -2296,8 +2472,13 @@ namespace sat {
p.set_k(k);
SASSERT(p.well_formed());
if (p.id() == _bad_id) {
display(std::cout << "recompile: ", p, true);
}
IF_VERBOSE(20, verbose_stream() << "new: " << p << "\n";);
// this could become a cardinality constraint by now.
if (p.lit() == null_literal || value(p.lit()) == l_true) {
init_watch(p, true);
}
@ -2316,15 +2497,17 @@ namespace sat {
c.set_lit(i, m_roots[c.get_lit(i).index()]);
}
literal root = null_literal;
if (c.lit() != null_literal && m_roots[c.lit().index()] != c.lit()) {
literal r = m_roots[c.lit().index()];
root = m_roots[c.lit().index()];
nullify_tracking_literal(c);
c.update_literal(r);
get_wlist(r).push_back(c.index());
get_wlist(~r).push_back(c.index());
c.update_literal(root);
get_wlist(root).push_back(c.index());
get_wlist(~root).push_back(c.index());
}
bool found_dup = false;
bool found_root = false;
for (unsigned i = 0; i < c.size(); ++i) {
literal l = c.get_lit(i);
if (is_marked(l)) {
@ -2340,18 +2523,27 @@ namespace sat {
literal l = c.get_lit(i);
unmark_visited(l);
unmark_visited(~l);
found_root |= l.var() == root.var();
}
if (found_dup) {
// std::cout << "FOUND DUP " << p << "\n";
if (found_root) {
display(std::cout << "the root was found within the list of literals " << c.id() << "\n", c, true);
split_root(c);
c.negate();
split_root(c);
remove_constraint(c);
}
else if (found_dup) {
if (c.id() == _bad_id) { std::cout << "FOUND DUP " << c << "\n"; }
recompile(c);
return;
}
// review for potential incompleteness: if c.lit() == l_false, do propagations happen?
if (c.lit() == null_literal || value(c.lit()) == l_true) {
init_watch(c, true);
else {
// review for potential incompleteness: if c.lit() == l_false, do propagations happen?
if (c.lit() == null_literal || value(c.lit()) == l_true) {
init_watch(c, true);
}
SASSERT(c.well_formed());
}
SASSERT(c.well_formed());
}
unsigned ba_solver::get_num_non_learned_bin(literal l) {
@ -2480,22 +2672,24 @@ namespace sat {
unsigned bin_sub = m_stats.m_num_bin_subsumes;
unsigned clause_sub = m_stats.m_num_clause_subsumes;
unsigned card_sub = m_stats.m_num_card_subsumes;
for (constraint* cp : m_constraints) {
if (cp->was_removed()) continue;
switch (cp->tag()) {
case card_t: {
card& c = cp->to_card();
if (c.k() > 1) subsumption(c);
break;
}
default:
break;
}
}
for (constraint* c : m_constraints) subsumption(*c);
for (constraint* c : m_learned) subsumption(*c);
IF_VERBOSE(1, verbose_stream() << "binary subsumes: " << m_stats.m_num_bin_subsumes - bin_sub << "\n";);
IF_VERBOSE(1, verbose_stream() << "clause subsumes: " << m_stats.m_num_clause_subsumes - clause_sub << "\n";);
IF_VERBOSE(1, verbose_stream() << "card subsumes: " << m_stats.m_num_card_subsumes - card_sub << "\n";);
}
void ba_solver::subsumption(constraint& cnstr) {
if (cnstr.was_removed()) return;
switch (cnstr.tag()) {
case card_t: {
card& c = cnstr.to_card();
if (c.k() > 1) subsumption(c);
break;
}
default:
break;
}
}
void ba_solver::cleanup_clauses() {
@ -2524,12 +2718,12 @@ namespace sat {
void ba_solver::cleanup_constraints() {
if (!m_constraint_removed) return;
cleanup_constraints(m_constraints);
cleanup_constraints(m_learned);
cleanup_constraints(m_constraints, false);
cleanup_constraints(m_learned, true);
m_constraint_removed = false;
}
void ba_solver::cleanup_constraints(ptr_vector<constraint>& cs) {
void ba_solver::cleanup_constraints(ptr_vector<constraint>& cs, bool learned) {
ptr_vector<constraint>::iterator it = cs.begin();
ptr_vector<constraint>::iterator it2 = it;
ptr_vector<constraint>::iterator end = cs.end();
@ -2538,6 +2732,9 @@ namespace sat {
if (c.was_removed()) {
m_allocator.deallocate(c.obj_size(), &c);
}
else if (learned && !c.learned()) {
m_constraints.push_back(&c);
}
else {
if (it != it2) {
*it2 = *it;
@ -2629,6 +2826,7 @@ namespace sat {
TRACE("sat", tout << "subsume cardinality\n" << c1.index() << ":" << c1 << "\n" << c2.index() << ":" << c2 << "\n";);
remove_constraint(c2);
++m_stats.m_num_card_subsumes;
c1.set_learned(false);
}
else {
TRACE("sat", tout << "self subsume cardinality\n";);
@ -2664,6 +2862,7 @@ namespace sat {
TRACE("sat", tout << "remove\n" << c1 << "\n" << c2 << "\n";);
removed_clauses.push_back(&c2);
++m_stats.m_num_clause_subsumes;
c1.set_learned(false);
}
else {
IF_VERBOSE(0, verbose_stream() << "self-subsume clause is TBD\n";);
@ -2688,6 +2887,9 @@ namespace sat {
if (w.is_binary_clause() && is_marked(w.get_literal())) {
++m_stats.m_num_bin_subsumes;
// IF_VERBOSE(10, verbose_stream() << c1 << " subsumes (" << lit << " " << w.get_literal() << ")\n";);
if (!w.is_binary_non_learned_clause()) {
c1.set_learned(false);
}
}
else {
if (it != it2) {
@ -2868,6 +3070,12 @@ namespace sat {
for (constraint const* c : m_constraints) {
out << (*c) << "\n";
}
if (!m_learned.empty()) {
out << "learned:\n";
}
for (constraint const* c : m_learned) {
out << (*c) << "\n";
}
return out;
}
@ -2985,16 +3193,14 @@ namespace sat {
}
if (sum >= UINT_MAX/2) return 0;
if (all_one) {
card& c = add_at_least(null_literal, lits, m_bound, true);
return &c;
return &add_at_least(null_literal, lits, m_bound, true);
}
else {
svector<wliteral> wlits;
for (unsigned i = 0; i < lits.size(); ++i) {
wlits.push_back(wliteral(coeffs[i], lits[i]));
}
pb& p = add_pb_ge(null_literal, wlits, m_bound, true);
return &p;
return &add_pb_ge(null_literal, wlits, m_bound, true);
}
}

View file

@ -98,6 +98,7 @@ namespace sat {
virtual literal get_lit(unsigned i) const { UNREACHABLE(); return null_literal; }
virtual void set_lit(unsigned i, literal l) { UNREACHABLE(); }
virtual bool well_formed() const { return true; }
virtual void negate() { UNREACHABLE(); }
};
friend std::ostream& operator<<(std::ostream& out, constraint const& c);
@ -123,7 +124,7 @@ namespace sat {
literal& operator[](unsigned i) { return m_lits[i]; }
literal const* begin() const { return m_lits; }
literal const* end() const { return static_cast<literal const*>(m_lits) + m_size; }
void negate();
virtual void negate();
virtual void swap(unsigned i, unsigned j) { std::swap(m_lits[i], m_lits[j]); }
virtual literal_vector literals() const { return literal_vector(m_size, m_lits); }
virtual bool is_watching(literal l) const;
@ -156,7 +157,7 @@ namespace sat {
unsigned max_sum() const { return m_max_sum; }
void set_num_watch(unsigned s) { m_num_watch = s; }
bool is_cardinality() const;
void negate();
virtual void negate();
virtual void set_k(unsigned k) { m_k = k; update_max_sum(); }
virtual void swap(unsigned i, unsigned j) { std::swap(m_wlits[i], m_wlits[j]); }
virtual literal_vector literals() const { literal_vector lits; for (auto wl : *this) lits.push_back(wl.second); return lits; }
@ -174,7 +175,7 @@ namespace sat {
literal operator[](unsigned i) const { return m_lits[i]; }
literal const* begin() const { return m_lits; }
literal const* end() const { return begin() + m_size; }
void negate() { m_lits[0].neg(); }
virtual void negate() { m_lits[0].neg(); }
virtual void swap(unsigned i, unsigned j) { std::swap(m_lits[i], m_lits[j]); }
virtual bool is_watching(literal l) const;
virtual literal_vector literals() const { return literal_vector(size(), begin()); }
@ -257,6 +258,7 @@ namespace sat {
unsigned elim_pure();
bool elim_pure(literal lit);
void subsumption();
void subsumption(constraint& c1);
void subsumption(card& c1);
void gc_half(char const* _method);
void mutex_reduction();
@ -270,7 +272,7 @@ namespace sat {
void cleanup_clauses();
void cleanup_constraints();
void cleanup_constraints(ptr_vector<constraint>& cs);
void cleanup_constraints(ptr_vector<constraint>& cs, bool learned);
void remove_constraint(constraint& c);
// constraints
@ -279,6 +281,7 @@ namespace sat {
void unwatch_literal(literal w, constraint& c);
void watch_literal(literal w, constraint& c);
void watch_literal(wliteral w, pb& p);
bool is_watched(literal l, constraint const& c) const;
void add_constraint(constraint* c);
bool init_watch(constraint& c, bool is_true);
void init_watch(bool_var v);
@ -298,6 +301,7 @@ namespace sat {
void assert_unconstrained(literal lit, literal_vector const& lits);
void flush_roots(constraint& c);
void recompile(constraint& c);
void split_root(constraint& c);
unsigned next_id() { return m_constraint_id++; }
@ -330,6 +334,7 @@ namespace sat {
void add_index(pb& p, unsigned index, literal lit);
void clear_watch(pb& p);
void get_antecedents(literal l, pb const& p, literal_vector & r);
void split_root(pb_base& p);
void simplify(pb_base& p);
void simplify2(pb& p);
bool is_cardinality(pb const& p);
@ -377,6 +382,7 @@ namespace sat {
bool validate_watch_literals() const;
bool validate_watch_literal(literal lit) const;
bool validate_watched_constraint(constraint const& c) const;
bool validate_watch(pb const& p) const;
bool is_watching(literal lit, constraint const& c) const;
ineq m_A, m_B, m_C;

View file

@ -96,10 +96,8 @@ namespace sat {
cache_bins(l, old_tr_sz);
s.pop(1);
literal_vector::iterator it = m_to_assert.begin();
literal_vector::iterator end = m_to_assert.end();
for (; it != end; ++it) {
s.assign(*it, justification());
for (literal l : m_to_assert) {
s.assign(l, justification());
m_num_assigned++;
}
}

View file

@ -1406,22 +1406,29 @@ namespace sat {
SASSERT(at_base_lvl());
m_cleaner();
CASSERT("sat_simplify_bug", check_invariant());
m_scc();
CASSERT("sat_simplify_bug", check_invariant());
m_ext->validate();
m_simplifier(false);
CASSERT("sat_simplify_bug", check_invariant());
CASSERT("sat_missed_prop", check_missed_propagation());
m_ext->validate();
if (!m_learned.empty()) {
m_simplifier(true);
CASSERT("sat_missed_prop", check_missed_propagation());
CASSERT("sat_simplify_bug", check_invariant());
}
m_ext->validate();
if (m_config.m_lookahead_simplify) {
{
lookahead lh(*this);
@ -1435,13 +1442,18 @@ namespace sat {
}
}
sort_watch_lits();
CASSERT("sat_simplify_bug", check_invariant());
m_ext->validate();
m_probing();
CASSERT("sat_missed_prop", check_missed_propagation());
CASSERT("sat_simplify_bug", check_invariant());
m_ext->validate();
m_asymm_branch();
CASSERT("sat_missed_prop", check_missed_propagation());
CASSERT("sat_simplify_bug", check_invariant());
@ -1900,9 +1912,7 @@ namespace sat {
*/
unsigned solver::psm(clause const & c) const {
unsigned r = 0;
unsigned sz = c.size();
for (unsigned i = 0; i < sz; i++) {
literal l = c[i];
for (literal l : c) {
if (l.sign()) {
if (m_phase[l.var()] == NEG_PHASE)
r++;