3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-22 05:36:41 +00:00

fix memory leaks and handling of non-integer term coefficients

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-11-20 11:59:12 -08:00
parent 2578218b6f
commit b3f7d16606

View file

@ -67,46 +67,50 @@ struct solver::imp {
// Create polynomial definition for variable v used in setup_assignment_solver. // Create polynomial definition for variable v used in setup_assignment_solver.
// Side-effects: updates m_vars2mon when v is a monic variable. // Side-effects: updates m_vars2mon when v is a monic variable.
void mk_definition(unsigned v, polynomial_ref_vector &definitions) { void mk_definition(unsigned v, polynomial_ref_vector &definitions, vector<rational>& denominators) {
auto &pm = m_nlsat->pm(); auto &pm = m_nlsat->pm();
polynomial::polynomial_ref p(pm); polynomial::polynomial_ref p(pm);
rational den(1);
if (m_nla_core.emons().is_monic_var(v)) { if (m_nla_core.emons().is_monic_var(v)) {
auto const &m = m_nla_core.emons()[v]; auto const &m = m_nla_core.emons()[v];
for (auto v2 : m.vars()) { for (auto v2 : m.vars()) {
auto pv = definitions.get(v2); polynomial_ref pw(definitions.get(v2), m_nlsat->pm());
if (!p) if (!p)
p = pv; p = pw;
else else
p = pm.mul(p, pv); p = p * pw;
} }
} }
else if (lra.column_has_term(v)) { else if (lra.column_has_term(v)) {
for (auto const &[w, coeff] : lra.get_term(v)) { for (auto const &[w, coeff] : lra.get_term(v)) {
auto pw = definitions.get(w); den = lcm(denominator(coeff), den);
}
for (auto const &[w, coeff] : lra.get_term(v)) {
auto coeff1 = den * coeff;
polynomial_ref pw(definitions.get(w), m_nlsat->pm());
if (!p) if (!p)
p = pm.mul(coeff, pw); p = constant(coeff1) * pw;
else else
p = pm.add(p, pm.mul(coeff, pw)); p = p + (constant(coeff1) * pw);
} }
} }
else { else {
p = pm.mk_polynomial(v); // nlsat var index equals v (verified above when created) p = pm.mk_polynomial(v); // nlsat var index equals v (verified above when created)
} }
definitions.push_back(p); definitions.push_back(p);
denominators.push_back(den);
} }
void setup_solver_poly() { void setup_solver_poly() {
m_coi.init(); m_coi.init();
auto &pm = m_nlsat->pm(); auto &pm = m_nlsat->pm();
polynomial_ref_vector definitions(pm); polynomial_ref_vector definitions(pm);
vector<rational> denominators;
for (unsigned v = 0; v < lra.number_of_vars(); ++v) { for (unsigned v = 0; v < lra.number_of_vars(); ++v) {
auto j = m_nlsat->mk_var(lra.var_is_int(v)); auto j = m_nlsat->mk_var(lra.var_is_int(v));
VERIFY(j == v); VERIFY(j == v);
m_lp2nl.insert(v, j); // we don't really need this. It is going to be the identify map. m_lp2nl.insert(v, j); // we don't really need this. It is going to be the identify map.
scoped_anum a(am()); mk_definition(v, definitions, denominators);
am().set(a, m_nla_core.val(v).to_mpq());
m_values->push_back(a);
mk_definition(v, definitions);
} }
// we rely on that all information encoded into the tableau is present as a constraint. // we rely on that all information encoded into the tableau is present as a constraint.
@ -118,13 +122,14 @@ struct solver::imp {
auto lhs = c.coeffs(); auto lhs = c.coeffs();
rational den = denominator(rhs); rational den = denominator(rhs);
for (auto [coeff, v] : lhs) for (auto [coeff, v] : lhs)
den = lcm(den, denominator(coeff)); den = lcm(lcm(den, denominator(coeff)), denominators[v]);
polynomial::polynomial_ref p(pm); polynomial::polynomial_ref p(pm);
p = pm.mk_const(-den * rhs); p = pm.mk_const(-den * rhs);
for (auto [coeff, v] : lhs) { for (auto [coeff, v] : lhs) {
polynomial_ref poly(pm); polynomial_ref poly(pm);
poly = pm.mul(den * coeff, definitions.get(v)); poly = definitions.get(v);
poly = poly * constant(den * coeff / denominators[v]);
p = p + poly; p = p + poly;
} }
auto lit = add_constraint(p, ci, k); auto lit = add_constraint(p, ci, k);
@ -164,9 +169,6 @@ struct solver::imp {
polynomial::polynomial_ref sub(polynomial::polynomial *a, polynomial::polynomial *b) { polynomial::polynomial_ref sub(polynomial::polynomial *a, polynomial::polynomial *b) {
return polynomial_ref(m_nlsat->pm().sub(a, b), m_nlsat->pm()); return polynomial_ref(m_nlsat->pm().sub(a, b), m_nlsat->pm());
} }
polynomial::polynomial_ref add(polynomial::polynomial *a, polynomial::polynomial *b) {
return polynomial_ref(m_nlsat->pm().add(a, b), m_nlsat->pm());
}
polynomial::polynomial_ref mul(polynomial::polynomial *a, polynomial::polynomial *b) { polynomial::polynomial_ref mul(polynomial::polynomial *a, polynomial::polynomial *b) {
return polynomial_ref(m_nlsat->pm().mul(a, b), m_nlsat->pm()); return polynomial_ref(m_nlsat->pm().mul(a, b), m_nlsat->pm());
} }
@ -204,14 +206,14 @@ struct solver::imp {
// //
// other lemmas around a < x, b < y and a < x, b > y // other lemmas around a < x, b < y and a < x, b > y
// //
auto x_ge_xv = mk_literal(sub(var(x), constant(xv)), lp::lconstraint_kind::GE); auto x_ge_xv = mk_literal(var(x) - constant(xv), lp::lconstraint_kind::GE);
auto y_ge_yv = mk_literal(sub(var(y), constant(yv)), lp::lconstraint_kind::GE); auto y_ge_yv = mk_literal(var(y) - constant(yv), lp::lconstraint_kind::GE);
auto yv_ge_y = mk_literal(sub(constant(yv), var(y)), lp::lconstraint_kind::GE); auto yv_ge_y = mk_literal(constant(yv) - var(y), lp::lconstraint_kind::GE);
auto xv_ge_x = mk_literal(sub(constant(xv), var(x)), lp::lconstraint_kind::GE); auto xv_ge_x = mk_literal(constant(xv) - var(x), lp::lconstraint_kind::GE);
{ {
auto ineq = mk_literal( auto ineq = mk_literal(
sub(mul(sub(var(x), constant(xv - 1)), sub(var(y), constant(yv - 1))), constant(rational(1))), ((var(x) - constant(xv - 1)) * (var(y) - constant(yv - 1))) - constant(rational(1)),
lp::lconstraint_kind::GE); lp::lconstraint_kind::GE);
nlsat::literal lits[3] = {~x_ge_xv, ~y_ge_yv, ineq}; nlsat::literal lits[3] = {~x_ge_xv, ~y_ge_yv, ineq};
m_nlsat->mk_clause(3, lits, nullptr); m_nlsat->mk_clause(3, lits, nullptr);