mirror of
https://github.com/Z3Prover/z3
synced 2025-11-21 21:26:40 +00:00
fix memory leaks and handling of non-integer term coefficients
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
2578218b6f
commit
b3f7d16606
1 changed files with 23 additions and 21 deletions
|
|
@ -67,46 +67,50 @@ struct solver::imp {
|
|||
|
||||
// Create polynomial definition for variable v used in setup_assignment_solver.
|
||||
// Side-effects: updates m_vars2mon when v is a monic variable.
|
||||
void mk_definition(unsigned v, polynomial_ref_vector &definitions) {
|
||||
void mk_definition(unsigned v, polynomial_ref_vector &definitions, vector<rational>& denominators) {
|
||||
auto &pm = m_nlsat->pm();
|
||||
polynomial::polynomial_ref p(pm);
|
||||
rational den(1);
|
||||
if (m_nla_core.emons().is_monic_var(v)) {
|
||||
auto const &m = m_nla_core.emons()[v];
|
||||
for (auto v2 : m.vars()) {
|
||||
auto pv = definitions.get(v2);
|
||||
polynomial_ref pw(definitions.get(v2), m_nlsat->pm());
|
||||
if (!p)
|
||||
p = pv;
|
||||
p = pw;
|
||||
else
|
||||
p = pm.mul(p, pv);
|
||||
p = p * pw;
|
||||
}
|
||||
}
|
||||
else if (lra.column_has_term(v)) {
|
||||
for (auto const &[w, coeff] : lra.get_term(v)) {
|
||||
auto pw = definitions.get(w);
|
||||
den = lcm(denominator(coeff), den);
|
||||
}
|
||||
for (auto const &[w, coeff] : lra.get_term(v)) {
|
||||
auto coeff1 = den * coeff;
|
||||
polynomial_ref pw(definitions.get(w), m_nlsat->pm());
|
||||
if (!p)
|
||||
p = pm.mul(coeff, pw);
|
||||
p = constant(coeff1) * pw;
|
||||
else
|
||||
p = pm.add(p, pm.mul(coeff, pw));
|
||||
p = p + (constant(coeff1) * pw);
|
||||
}
|
||||
}
|
||||
else {
|
||||
p = pm.mk_polynomial(v); // nlsat var index equals v (verified above when created)
|
||||
}
|
||||
definitions.push_back(p);
|
||||
denominators.push_back(den);
|
||||
}
|
||||
|
||||
void setup_solver_poly() {
|
||||
m_coi.init();
|
||||
auto &pm = m_nlsat->pm();
|
||||
polynomial_ref_vector definitions(pm);
|
||||
vector<rational> denominators;
|
||||
for (unsigned v = 0; v < lra.number_of_vars(); ++v) {
|
||||
auto j = m_nlsat->mk_var(lra.var_is_int(v));
|
||||
VERIFY(j == v);
|
||||
m_lp2nl.insert(v, j); // we don't really need this. It is going to be the identify map.
|
||||
scoped_anum a(am());
|
||||
am().set(a, m_nla_core.val(v).to_mpq());
|
||||
m_values->push_back(a);
|
||||
mk_definition(v, definitions);
|
||||
mk_definition(v, definitions, denominators);
|
||||
}
|
||||
|
||||
// we rely on that all information encoded into the tableau is present as a constraint.
|
||||
|
|
@ -118,13 +122,14 @@ struct solver::imp {
|
|||
auto lhs = c.coeffs();
|
||||
rational den = denominator(rhs);
|
||||
for (auto [coeff, v] : lhs)
|
||||
den = lcm(den, denominator(coeff));
|
||||
den = lcm(lcm(den, denominator(coeff)), denominators[v]);
|
||||
polynomial::polynomial_ref p(pm);
|
||||
p = pm.mk_const(-den * rhs);
|
||||
|
||||
for (auto [coeff, v] : lhs) {
|
||||
polynomial_ref poly(pm);
|
||||
poly = pm.mul(den * coeff, definitions.get(v));
|
||||
poly = definitions.get(v);
|
||||
poly = poly * constant(den * coeff / denominators[v]);
|
||||
p = p + poly;
|
||||
}
|
||||
auto lit = add_constraint(p, ci, k);
|
||||
|
|
@ -164,9 +169,6 @@ struct solver::imp {
|
|||
polynomial::polynomial_ref sub(polynomial::polynomial *a, polynomial::polynomial *b) {
|
||||
return polynomial_ref(m_nlsat->pm().sub(a, b), m_nlsat->pm());
|
||||
}
|
||||
polynomial::polynomial_ref add(polynomial::polynomial *a, polynomial::polynomial *b) {
|
||||
return polynomial_ref(m_nlsat->pm().add(a, b), m_nlsat->pm());
|
||||
}
|
||||
polynomial::polynomial_ref mul(polynomial::polynomial *a, polynomial::polynomial *b) {
|
||||
return polynomial_ref(m_nlsat->pm().mul(a, b), m_nlsat->pm());
|
||||
}
|
||||
|
|
@ -204,14 +206,14 @@ struct solver::imp {
|
|||
//
|
||||
// other lemmas around a < x, b < y and a < x, b > y
|
||||
//
|
||||
auto x_ge_xv = mk_literal(sub(var(x), constant(xv)), lp::lconstraint_kind::GE);
|
||||
auto y_ge_yv = mk_literal(sub(var(y), constant(yv)), lp::lconstraint_kind::GE);
|
||||
auto yv_ge_y = mk_literal(sub(constant(yv), var(y)), lp::lconstraint_kind::GE);
|
||||
auto xv_ge_x = mk_literal(sub(constant(xv), var(x)), lp::lconstraint_kind::GE);
|
||||
auto x_ge_xv = mk_literal(var(x) - constant(xv), lp::lconstraint_kind::GE);
|
||||
auto y_ge_yv = mk_literal(var(y) - constant(yv), lp::lconstraint_kind::GE);
|
||||
auto yv_ge_y = mk_literal(constant(yv) - var(y), lp::lconstraint_kind::GE);
|
||||
auto xv_ge_x = mk_literal(constant(xv) - var(x), lp::lconstraint_kind::GE);
|
||||
|
||||
{
|
||||
auto ineq = mk_literal(
|
||||
sub(mul(sub(var(x), constant(xv - 1)), sub(var(y), constant(yv - 1))), constant(rational(1))),
|
||||
((var(x) - constant(xv - 1)) * (var(y) - constant(yv - 1))) - constant(rational(1)),
|
||||
lp::lconstraint_kind::GE);
|
||||
nlsat::literal lits[3] = {~x_ge_xv, ~y_ge_yv, ineq};
|
||||
m_nlsat->mk_clause(3, lits, nullptr);
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue