3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 18:05:21 +00:00

SLS refactoring

Signed-off-by: Christoph M. Wintersteiger <cwinter@microsoft.com>
This commit is contained in:
Christoph M. Wintersteiger 2014-03-19 17:04:38 +00:00
parent aa6f8a4b8a
commit b1eeb9adf4
6 changed files with 1520 additions and 1367 deletions

View file

@ -0,0 +1,158 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
sls_compilation_constants.h
Abstract:
Stochastic Local Search (SLS) compilation constants
Author:
Christoph (cwinter) 2014-03-19
Notes:
This file should go away completely once we have evaluated all options.
--*/
// which unsatisfied assertion is selected? only works with _FOCUS_ > 0
// 0 = random, 1 = #moves, 2 = assertion with min score, 3 = assertion with max score
#define _BFS_ 0
// how many terms are considered for variable selection?
// 0 = all terms (GSAT), 1 = only one top level assertion (WSAT), 2 = only one bottom level atom
#define _FOCUS_ 1
// probability of choosing the same assertion again in the next step
#define _PERC_STICKY_ 0
// do we use dirty unit propagation to get rid of nested top level assertions?
#define _DIRTY_UP_ 0
// do we use restarts?
// 0 = no, 1 = use #moves, 2 = use #plateaus, 3 = use time
#define _RESTARTS_ 3
// limit of moves/plateaus/seconds until first restart occurs
#define _RESTART_LIMIT_ 10
// 0 = initialize with all zero, 1 initialize with random value
#define _RESTART_INIT_ 0
// 0 = even intervals, 1 = pseudo luby, 2 = real luby, 3 = armin, 4 = rapid
#define _RESTART_SCHEME_ 1
// base value c for armin restart scheme using c^inner - only applies for _RESTART_SCHEME_ 3
#define _RESTART_CONST_ARMIN_ 3.0
// timelimit
#define _TIMELIMIT_ 3600
// should score of conjunctions be calculated by average rather than max?
#define _SCORE_AND_AVG_ 0
// should score of discunctions be calculated by multiplication of the inverse score rather than min?
#define _SCORE_OR_MUL_ 0
// do we use some kind of variable neighbourhood-search?
// 0 = no, 1 = only consider flipping bits if no better score can be obtained otherwise, 2 = only consider flipping bits until a better score can be obtained
#define _VNS_ 0
// do we reduce the score of unsatisfied literals?
// 0 = no
// 1 = yes, by multiplying it with some factor
// 2 = yes, by squaring it
// 3 = yes, by setting it to zero
// 4 = by progessively increasing weight (_TIMELIMIT_ needs to be set appropriately!)
#define _WEIGHT_DIST_ 1
// the factor used for _WEIGHT_DIST_ = 1
#define _WEIGHT_DIST_FACTOR_ 0.25
// shall we toggle the weight after each restart?
#define _WEIGHT_TOGGLE_ 0
// do we use intensification steps in local minima? if so, how many?
#define _INTENSIFICATION_ 0
#define _INTENSIFICATION_TRIES_ 0
// what is the percentage of random moves in plateaus (instead of full randomization)?
#define _PERC_PLATEAU_MOVES_ 0
// shall we repick clause when randomizing in a plateau or use the current one?
#define _REPICK_ 1
// do we use some UCT-like scheme for assertion-selection? overrides _BFS_
#define _UCT_ 1
// how much diversification is used in the UCT-scheme?
#define _UCT_CONSTANT_ 10.0
// is uct clause selection probabilistic similar to variable selection in sparrow?
// 0 = no, 1 = yes, use uct-value, 2 = yes, use score-value (_UCT_CONSTANT_ = 0.0) with squared score
#define _PROBABILISTIC_UCT_ 0
// additive constants for probabilistic uct > 0
#define _UCT_EPS_ 0.0001
// shall we reset _UCT_ touched values after restart?
#define _UCT_RESET_ 0
// how shall we initialize the _UCT_ total touched counter?
// 0 = initialize with one, 1 = initialize with number of assertions
#define _UCT_INIT_ 1
// shall we use addition/subtraction?
#define _USE_ADDSUB_ 1
// shall we try multilication and division by 2?
#define _USE_MUL2DIV2_ 0
// shall we try multiplication by 3?
#define _USE_MUL3_ 0
// shall we try unary minus (= inverting and incrementing)
#define _USE_UNARY_MINUS_ 0
// is random selection for assertions uniform? only works with _BFS_ = _UCT_ = 0
#define _UNIFORM_RANDOM_ 0
// should we use unsat-structures as done in SLS 4 SAT instead for random or bfs selection?
#define _REAL_RS_ 0
#define _REAL_PBFS_ 0
// how many bits do we neglect in each iteration?
#define _SKIP_BITS_ 0
// when randomizing local, what is the probability for changing a single bit?
// 0 = use standard scheme and pick a new value at random (= 50), otherwise the value (as int) gives the percentage
#define _PERC_CHANGE_ 0
// do we use random steps for noise?
// 0 = no, 1 = randomize local, 2 = make random move
#define _TYPE_RSTEP_ 0
// with what probability _PERM_STEP_/1000 will the random step happen?
#define _PERM_RSTEP_ 0
// shall we use early pruning for incremental update?
#define _EARLY_PRUNE_ 1
// shall we use caching for top_score?
#define _CACHE_TOP_SCORE_ 1
#if ((_BFS_ > 0) + (_UCT_ > 0) + _UNIFORM_RANDOM_ + _REAL_RS_ + _REAL_PBFS_ > 1)
InvalidConfiguration;
#endif
#if (_PROBABILISTIC_UCT_ && !_UCT_)
InvalidConfiguration;
#endif
#if (_PERM_RSTEP_ && !_TYPE_RSTEP_)
InvalidConfiguration;
#endif
#if (_PERC_CHANGE_ == 50)
InvalidConfiguration;
#endif
#if (_PERC_STICKY_ && !_FOCUS_)
InvalidConfiguration;
#endif

File diff suppressed because it is too large Load diff

159
src/tactic/sls/sls_engine.h Normal file
View file

@ -0,0 +1,159 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
sls_engine.h
Abstract:
A Stochastic Local Search (SLS) engine
Author:
Christoph (cwinter) 2014-03-19
Notes:
--*/
#ifndef _SLS_ENGINE_H_
#define _SLS_ENGINE_H_
#include"stopwatch.h"
#include"lbool.h"
#include"model_converter.h"
#include"sls_compilation_settings.h"
#include"sls_tracker.h"
#include"sls_evaluator.h"
class sls_engine {
public:
class stats {
public:
unsigned m_restarts;
stopwatch m_stopwatch;
unsigned m_full_evals;
unsigned m_incr_evals;
unsigned m_moves, m_flips, m_incs, m_decs, m_invs, m_umins, m_mul2s, m_mul3s, m_div2s;
stats() :
m_restarts(0),
m_full_evals(0),
m_incr_evals(0),
m_moves(0),
m_umins(0),
m_mul2s(0),
m_mul3s(0),
m_div2s(0),
m_flips(0),
m_incs(0),
m_decs(0),
m_invs(0) {
m_stopwatch.reset();
m_stopwatch.start();
}
void reset() {
m_full_evals = m_flips = m_incr_evals = 0;
m_stopwatch.reset();
m_stopwatch.start();
}
};
protected:
ast_manager & m_manager;
stats m_stats;
unsynch_mpz_manager m_mpz_manager;
powers m_powers;
mpz m_zero, m_one, m_two;
bool m_produce_models;
volatile bool m_cancel;
bv_util m_bv_util;
sls_tracker m_tracker;
sls_evaluator m_evaluator;
unsigned m_restart_limit;
unsigned m_max_restarts;
unsigned m_plateau_limit;
ptr_vector<mpz> m_old_values;
typedef enum { MV_FLIP = 0, MV_INC, MV_DEC, MV_INV, MV_UMIN, MV_MUL2, MV_MUL3, MV_DIV2 } move_type;
public:
sls_engine(ast_manager & m, params_ref const & p);
~sls_engine();
ast_manager & m() const { return m_manager; }
void set_cancel(bool f) { m_cancel = f; }
void cancel() { set_cancel(true); }
void reset_cancel() { set_cancel(false); }
void updt_params(params_ref const & _p);
stats const & get_stats(void) { return m_stats; }
void reset_statistics(void) { m_stats.reset(); }
bool full_eval(goal_ref const & g, model & mdl);
void mk_add(unsigned bv_sz, const mpz & old_value, mpz & add_value, mpz & result);
void mk_mul2(unsigned bv_sz, const mpz & old_value, mpz & result);
void mk_div2(unsigned bv_sz, const mpz & old_value, mpz & result);
void mk_inc(unsigned bv_sz, const mpz & old_value, mpz & incremented);
void mk_dec(unsigned bv_sz, const mpz & old_value, mpz & decremented);
void mk_inv(unsigned bv_sz, const mpz & old_value, mpz & inverted);
void mk_flip(sort * s, const mpz & old_value, unsigned bit, mpz & flipped);
double find_best_move(goal_ref const & g, ptr_vector<func_decl> & to_evaluate, double score,
unsigned & best_const, mpz & best_value, unsigned & new_bit, move_type & move);
double find_best_move_local(expr * e, ptr_vector<func_decl> & to_evaluate,
unsigned & best_const, mpz & best_value, unsigned & new_bit, move_type & move);
bool what_if(goal_ref const & g, expr * e, func_decl * fd, const mpz & temp,
double & best_score, mpz & best_value, unsigned i);
double find_best_move_local(goal_ref const & g, expr * e, func_decl * fd, mpz & best_value, unsigned i);
lbool search(goal_ref const & g);
void operator()(goal_ref const & g, model_converter_ref & mc);
protected:
void checkpoint();
lbool search_old(goal_ref const & g);
double get_restart_armin(unsigned cnt_restarts);
bool what_if(goal_ref const & g, func_decl * fd, const unsigned & fd_inx, const mpz & temp,
double & best_score, unsigned & best_const, mpz & best_value);
bool what_if_local(expr * e, func_decl * fd, const unsigned & fd_inx, const mpz & temp,
double & best_score, unsigned & best_const, mpz & best_value);
double top_score(goal_ref const & g);
double rescore(goal_ref const & g);
double serious_score(goal_ref const & g, func_decl * fd, const mpz & new_value);
double incremental_score(goal_ref const & g, func_decl * fd, const mpz & new_value);
#if _EARLY_PRUNE_
double incremental_score_prune(goal_ref const & g, func_decl * fd, const mpz & new_value);
#endif
double find_best_move_vns(goal_ref const & g, ptr_vector<func_decl> & to_evaluate, double score,
unsigned & best_const, mpz & best_value, unsigned & new_bit, move_type & move);
void mk_random_move(ptr_vector<func_decl> & unsat_constants);
void mk_random_move(goal_ref const & g);
bool handle_plateau(goal_ref const & g);
bool handle_plateau(goal_ref const & g, double old_score);
inline unsigned check_restart(unsigned curr_value);
};
#endif

View file

@ -20,6 +20,9 @@ Notes:
#ifndef _SLS_EVALUATOR_H_
#define _SLS_EVALUATOR_H_
#include"model_evaluator.h"
#include"sls_compilation_settings.h"
#include"sls_powers.h"
#include"sls_tracker.h"

File diff suppressed because it is too large Load diff

View file

@ -20,6 +20,12 @@ Notes:
#ifndef _SLS_TRACKER_H_
#define _SLS_TRACKER_H_
#include"goal.h"
#include"model.h"
#include"sls_compilation_settings.h"
#include"sls_powers.h"
class sls_tracker {
ast_manager & m_manager;
unsynch_mpz_manager & m_mpz_manager;
@ -1186,7 +1192,7 @@ public:
// expr * e = m_list_false[i];
vscore = m_scores.find(e);
#if _UCT_ == 1
double q = vscore.score + _UCT_CONSTANT_ * sqrt(log(m_touched)/vscore.touched);
double q = vscore.score + _UCT_CONSTANT_ * sqrt(log((double)m_touched)/vscore.touched);
#elif _UCT_ == 2
double q = vscore.score + (_UCT_CONSTANT_ * (flip - vscore.touched)) / sz;
#endif
@ -1334,7 +1340,7 @@ public:
// expr * e = m_list_false[i];
vscore = m_scores.find(e);
#if _UCT_ == 1
double q = vscore.score + _UCT_CONSTANT_ * sqrt(log(m_touched)/vscore.touched);
double q = vscore.score + _UCT_CONSTANT_ * sqrt(log((double)m_touched) / vscore.touched);
#elif _UCT_ == 2
double q = vscore.score + (_UCT_CONSTANT_ * (flip - vscore.touched)) / sz;
#endif