3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-22 11:07:51 +00:00

hoist out fixed-bits reasoning into self-contained module

without dependencies on viable entries
This commit is contained in:
Nikolaj Bjorner 2023-12-25 10:59:27 -08:00
parent 658f079efd
commit b1072d0a1c
8 changed files with 183 additions and 158 deletions

View file

@ -13,14 +13,95 @@ Author:
#include "sat/smt/polysat/fixed_bits.h"
#include "sat/smt/polysat/ule_constraint.h"
#include "sat/smt/polysat/core.h"
namespace polysat {
// reset with fixed bits information for variable v
void fixed_bits::reset(pvar v) {
m_fixed_slices.reset();
m_var = v;
m_fixed.reset();
m_fixed.resize(c.size(v), l_undef);
m_bits.reserve(c.size(v));
fixed_bits_vector fbs;
c.get_fixed_bits(v, fbs);
for (auto const& fb : fbs)
for (unsigned i = fb.lo; i <= fb.hi; ++i)
m_fixed[i] = to_lbool(fb.value.get_bit(i - fb.lo));
}
// find then next value >= val that agrees with fixed bits, or false if none exists within the maximal value for val.
// examples
// fixed bits: 1?0 (least significant bit is last)
// val: 101
// next: 110
// fixed bits ?1?0
// val 1011
// next 1100
// algorith: Let i be the most significant index where fixed bits disagree with val.
// If m_fixed[i] == l_true; then updating val to mask by fixed bits sufficies.
// Otherwise, the range above the disagreement has to be incremented.
// Increment the non-fixed bits by 1
// The first non-fixed 0 position is set to 1, non-fixed positions below are set to 0.s
// If there are none, then the value is maximal and we return false.
bool fixed_bits::next(rational& val) {
if (m_fixed_slices.empty())
return true;
unsigned sz = c.size(m_var);
for (unsigned i = 0; i < sz; ++i)
m_bits[i] = val.get_bit(i);
unsigned i = sz;
for (; i-- > 0; )
if (m_fixed[i] != l_undef && m_fixed[i] != to_lbool(m_bits[i]))
break;
if (i == 0)
return true;
for (unsigned j = 0; j < sz; ++j) {
if (m_fixed[j] != l_undef)
m_bits[j] = m_fixed[j] == l_true;
else if (j < i)
m_bits[j] = false;
}
if (m_fixed[i] == l_false) {
for (; i < sz; ++i) {
if (m_fixed[i] != l_undef)
continue;
if (m_bits[i])
m_bits[i] = false;
else {
m_bits[i] = true;
break;
}
}
// overflow
if (i == sz)
return false;
}
val = 0;
for (unsigned i = sz; i-- > 0;)
val = val * 2 + rational(m_bits[i]);
return true;
}
// explain the fixed bits ranges.
dependency_vector fixed_bits::explain() {
dependency_vector result;
for (auto const& slice : m_fixed_slices)
result.push_back(dependency({ m_var, slice }));
return result;
}
/**
* 2^k * x = 2^k * b
* ==> x[N-k-1:0] = b[N-k-1:0]
*/
bool get_eq_fixed_lsb(pdd const& p, fixed_bits& out) {
bool get_eq_fixed_lsb(pdd const& p, fixed_slice& out) {
SASSERT(!p.is_val());
unsigned const N = p.power_of_2();
// Recognize p = 2^k * a * x - 2^k * b
@ -39,7 +120,7 @@ namespace polysat {
if (d.parity(N) < k)
return false;
rational const b = machine_div2k(d, k);
out = fixed_bits(N - k - 1, 0, b);
out = fixed_slice(N - k - 1, 0, b);
SASSERT_EQ(d, b * rational::power_of_two(k));
SASSERT_EQ(p, (p.manager().mk_var(p.var()) - out.value) * rational::power_of_two(k));
return true;
@ -66,7 +147,7 @@ namespace polysat {
#endif
}
bool get_eq_fixed_bits(pdd const& p, fixed_bits& out) {
bool get_eq_fixed_slice(pdd const& p, fixed_slice& out) {
if (get_eq_fixed_lsb(p, out))
return true;
return false;
@ -80,7 +161,7 @@ namespace polysat {
* ==> x[1:0] = 1
* -- TODO: Generalize [the obvious solution does not work]
*/
bool get_ule_fixed_lsb(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out) {
bool get_ule_fixed_lsb(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_slice& out) {
return false;
}
@ -90,7 +171,7 @@ namespace polysat {
* x <= 2^k - 1 ==> x[N-1:k] = 0
* x < 2^k ==> x[N-1:k] = 0
*/
bool get_ule_fixed_msb(pdd const& p, pdd const& q, bool is_positive, fixed_bits& out) {
bool get_ule_fixed_msb(pdd const& p, pdd const& q, bool is_positive, fixed_slice& out) {
SASSERT(!q.is_zero()); // equalities are handled elsewhere
unsigned const N = p.power_of_2();
pdd const& lhs = is_positive ? p : q;
@ -117,14 +198,14 @@ namespace polysat {
}
// 2^(N-1) <= 2^(N-1-i) * x
bool get_ule_fixed_bit(pdd const& p, pdd const& q, bool is_positive, fixed_bits& out) {
bool get_ule_fixed_bit(pdd const& p, pdd const& q, bool is_positive, fixed_slice& out) {
return false;
}
bool get_ule_fixed_bits(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out) {
bool get_ule_fixed_slice(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_slice& out) {
SASSERT(ule_constraint::is_simplified(lhs, rhs));
if (rhs.is_zero())
return is_positive ? get_eq_fixed_bits(lhs, out) : false;
return is_positive ? get_eq_fixed_slice(lhs, out) : false;
if (get_ule_fixed_msb(lhs, rhs, is_positive, out))
return true;
if (get_ule_fixed_lsb(lhs, rhs, is_positive, out))
@ -134,10 +215,10 @@ namespace polysat {
return false;
}
bool get_fixed_bits(signed_constraint c, fixed_bits& out) {
bool get_fixed_slice(signed_constraint c, fixed_slice& out) {
SASSERT_EQ(c.vars().size(), 1); // this only makes sense for univariate constraints
if (c.is_ule())
return get_ule_fixed_bits(c.to_ule().lhs(), c.to_ule().rhs(), c.is_positive(), out);
return get_ule_fixed_slice(c.to_ule().lhs(), c.to_ule().rhs(), c.is_positive(), out);
// if (c->is_op())
// ; // TODO: x & constant = constant ==> bitmask ... but we have trouble recognizing that because we introduce a new variable for '&' before we see the equality.
return false;