3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-09 17:31:57 +00:00

add search tree skeleton

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-09-08 13:59:23 -07:00
parent a119c0d864
commit b02161ef51
7 changed files with 707 additions and 7 deletions

View file

@ -19,4 +19,5 @@ def_module_params('smt_parallel',
('beam_search', BOOL, False, 'use beam search with PQ to rank cubes given to threads'),
('explicit_hardness', BOOL, False, 'use explicit hardness metric for cube'),
('cubetree', BOOL, False, 'use cube tree data structure for storing cubes'),
('searchtree', BOOL, False, 'use search tree implementation (parallel2)')
))

View file

@ -39,6 +39,7 @@ z3_add_component(smt
smt_model_finder.cpp
smt_model_generator.cpp
smt_parallel.cpp
smt_parallel2.cpp
smt_quantifier.cpp
smt_quick_checker.cpp
smt_relevancy.cpp

View file

@ -42,8 +42,10 @@ Revision History:
#include "smt/smt_model_generator.h"
#include "smt/smt_model_checker.h"
#include "smt/smt_model_finder.h"
#include "smt/smt_parallel2.h"
#include "smt/smt_parallel.h"
#include "smt/smt_arith_value.h"
#include "params/smt_parallel_params.hpp"
#include <iostream>
namespace smt {
@ -3621,9 +3623,17 @@ namespace smt {
setup_context(m_fparams.m_auto_config);
if (m_fparams.m_threads > 1 && !m.has_trace_stream()) {
parallel p(*this);
expr_ref_vector asms(m);
return p(asms);
smt_parallel_params p(m_params);
if (p.searchtree()) {
parallel2 p(*this);
expr_ref_vector asms(m);
return p(asms);
}
else {
parallel p(*this);
expr_ref_vector asms(m);
return p(asms);
}
}
try {
@ -3689,8 +3699,15 @@ namespace smt {
search_completion sc(*this);
if (m_fparams.m_threads > 1 && !m.has_trace_stream()) {
expr_ref_vector asms(m, num_assumptions, assumptions);
parallel p(*this);
return p(asms);
smt_parallel_params p(m_params);
if (p.searchtree()) {
parallel2 p(*this);
return p(asms);
}
else {
parallel p(*this);
return p(asms);
}
}
lbool r = l_undef;
do {

View file

@ -85,6 +85,7 @@ namespace smt {
friend class model_generator;
friend class lookahead;
friend class parallel;
friend class parallel2;
public:
statistics m_stats;

490
src/smt/smt_parallel2.cpp Normal file
View file

@ -0,0 +1,490 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
smt_parallel.cpp
Abstract:
Parallel SMT, portfolio loop specialized to SMT core.
Author:
nbjorner 2020-01-31
--*/
#include "util/scoped_ptr_vector.h"
#include "ast/ast_util.h"
#include "ast/ast_pp.h"
#include "ast/ast_ll_pp.h"
#include "ast/ast_translation.h"
#include "smt/smt_parallel2.h"
#include "smt/smt_lookahead.h"
#include "params/smt_parallel_params.hpp"
#include <cmath>
#ifdef SINGLE_THREAD
namespace smt {
lbool parallel2::operator()(expr_ref_vector const& asms) {
return l_undef;
}
}
#else
#include <thread>
#include <mutex>
#include <condition_variable>
#define LOG_WORKER(lvl, s) IF_VERBOSE(lvl, verbose_stream() << "Worker " << id << s)
namespace smt {
void parallel2::worker::run() {
search_tree::node<cube_config>* node = nullptr;
expr_ref_vector cube(m);
while (m.inc()) {
collect_shared_clauses(m_g2l);
if (!b.get_cube(m_g2l, id, cube, node)) {
LOG_WORKER(1, " no more cubes\n");
return;
}
check_cube_start:
LOG_WORKER(1, " CUBE SIZE IN MAIN LOOP: " << cube.size() << "\n");
lbool r = check_cube(cube);
if (!m.inc()) {
b.set_exception("context cancelled");
return;
}
switch (r) {
case l_undef: {
LOG_WORKER(1, " found undef cube\n");
// return unprocessed cubes to the batch manager
// add a split literal to the batch manager.
// optionally process other cubes and delay sending back unprocessed cubes to batch manager.
auto atom = get_split_atom();
if (!atom)
goto check_cube_start;
b.split(m_l2g, id, node, atom);
break;
}
case l_true: {
LOG_WORKER(1, " found sat cube\n");
model_ref mdl;
ctx->get_model(mdl);
b.set_sat(m_l2g, *mdl);
return;
}
case l_false: {
// if unsat core only contains (external) assumptions (i.e. all the unsat core are asms), then unsat and return as this does NOT depend on cubes
// otherwise, extract lemmas that can be shared (units (and unsat core?)).
// share with batch manager.
// process next cube.
expr_ref_vector const& unsat_core = ctx->unsat_core();
LOG_WORKER(2, " unsat core:\n"; for (auto c : unsat_core) verbose_stream() << mk_bounded_pp(c, m, 3) << "\n");
// If the unsat core only contains assumptions,
// unsatisfiability does not depend on the current cube and the entire problem is unsat.
if (all_of(unsat_core, [&](expr* e) { return asms.contains(e); })) {
LOG_WORKER(1, " determined formula unsat\n");
b.set_unsat(m_l2g, unsat_core);
return;
}
for (expr* e : unsat_core)
if (asms.contains(e))
b.report_assumption_used(m_l2g, e); // report assumptions used in unsat core, so they can be used in final core
LOG_WORKER(1, " found unsat cube\n");
b.backtrack(m_l2g, unsat_core, node);
break;
}
}
#if 0
if (m_config.m_share_units)
share_units(m_l2g);
#endif
}
}
parallel2::worker::worker(unsigned id, parallel2& p, expr_ref_vector const& _asms):
id(id), p(p), b(p.m_batch_manager), m_smt_params(p.ctx.get_fparams()), asms(m),
m_g2l(p.ctx.m, m),
m_l2g(m, p.ctx.m) {
for (auto e : _asms)
asms.push_back(m_g2l(e));
LOG_WORKER(1, " created with " << asms.size() << " assumptions\n");
m_smt_params.m_preprocess = false;
ctx = alloc(context, m, m_smt_params, p.ctx.get_params());
context::copy(p.ctx, *ctx, true);
ctx->set_random_seed(id + m_smt_params.m_random_seed);
smt_parallel_params pp(p.ctx.m_params);
m_config.m_threads_max_conflicts = ctx->get_fparams().m_threads_max_conflicts;
m_config.m_max_conflicts = ctx->get_fparams().m_max_conflicts;
m_config.m_relevant_units_only = pp.relevant_units_only();
m_config.m_never_cube = pp.never_cube();
m_config.m_share_conflicts = pp.share_conflicts();
m_config.m_share_units = pp.share_units();
m_config.m_share_units_initial_only = pp.share_units_initial_only();
m_config.m_cube_initial_only = pp.cube_initial_only();
m_config.m_max_conflict_mul = pp.max_conflict_mul();
m_config.m_max_greedy_cubes = pp.max_greedy_cubes();
m_config.m_num_split_lits = pp.num_split_lits();
m_config.m_backbone_detection = pp.backbone_detection();
m_config.m_iterative_deepening = pp.iterative_deepening();
m_config.m_beam_search = pp.beam_search();
m_config.m_explicit_hardness = pp.explicit_hardness();
m_config.m_cubetree = pp.cubetree();
// don't share initial units
ctx->pop_to_base_lvl();
m_num_shared_units = ctx->assigned_literals().size();
m_num_initial_atoms = ctx->get_num_bool_vars();
}
void parallel2::worker::share_units(ast_translation& l2g) {
// Collect new units learned locally by this worker and send to batch manager
ctx->pop_to_base_lvl();
unsigned sz = ctx->assigned_literals().size();
for (unsigned j = m_num_shared_units; j < sz; ++j) { // iterate only over new literals since last sync
literal lit = ctx->assigned_literals()[j];
if (!ctx->is_relevant(lit.var()) && m_config.m_relevant_units_only)
continue;
if (m_config.m_share_units_initial_only && lit.var() >= m_num_initial_atoms) {
LOG_WORKER(2, " Skipping non-initial unit: " << lit.var() << "\n");
continue; // skip non-iniial atoms if configured to do so
}
expr_ref e(ctx->bool_var2expr(lit.var()), ctx->m); // turn literal into a Boolean expression
if (m.is_and(e) || m.is_or(e))
continue;
if (lit.sign())
e = m.mk_not(e); // negate if literal is negative
b.collect_clause(l2g, id, e);
}
m_num_shared_units = sz;
}
void parallel2::worker::collect_statistics(::statistics& st) const {
ctx->collect_statistics(st);
}
void parallel2::worker::cancel() {
LOG_WORKER(1, " canceling\n");
m.limit().cancel();
}
void parallel2::batch_manager::backtrack(ast_translation& l2g, expr_ref_vector const& core,
search_tree::node<cube_config>* node) {
std::scoped_lock lock(mux);
IF_VERBOSE(1, verbose_stream() << "Batch manager backtracking.\n");
if (m_state != state::is_running)
return;
vector<cube_config::literal> g_core;
for (auto c : core) {
expr_ref g_c(l2g(c), m);
if (is_assumption(g_c))
continue;
g_core.push_back(expr_ref(l2g(c), m));
}
m_search_tree.backtrack(node, g_core);
if (m_search_tree.is_closed()) {
m_state = state::is_unsat;
cv.notify_all();
cancel_workers();
}
}
void parallel2::batch_manager::split(ast_translation& l2g, unsigned source_worker_id,
search_tree::node<cube_config>* node, expr* atom) {
std::scoped_lock lock(mux);
expr_ref lit(m), nlit(m);
lit = l2g(atom);
nlit = mk_not(m, lit);
IF_VERBOSE(1, verbose_stream() << "Batch manager splitting on literal: " << mk_bounded_pp(lit, m, 3) << "\n");
if (m_state != state::is_running)
return;
m_search_tree.split(node, lit, nlit);
cv.notify_all();
}
void parallel2::batch_manager::collect_clause(ast_translation& l2g, unsigned source_worker_id, expr* clause) {
std::scoped_lock lock(mux);
expr* g_clause = l2g(clause);
if (!shared_clause_set.contains(g_clause)) {
shared_clause_set.insert(g_clause);
shared_clause sc{source_worker_id, expr_ref(g_clause, m)};
shared_clause_trail.push_back(sc);
}
}
void parallel2::worker::collect_shared_clauses(ast_translation& g2l) {
expr_ref_vector new_clauses = b.return_shared_clauses(g2l, m_shared_clause_limit, id); // get new clauses from the batch manager
// iterate over new clauses and assert them in the local context
for (expr* e : new_clauses) {
expr_ref local_clause(e, g2l.to()); // e was already translated to the local context in the batch manager!!
ctx->assert_expr(local_clause); // assert the clause in the local context
LOG_WORKER(2, " asserting shared clause: " << mk_bounded_pp(local_clause, m, 3) << "\n");
}
}
// get new clauses from the batch manager and assert them in the local context
expr_ref_vector parallel2::batch_manager::return_shared_clauses(ast_translation& g2l, unsigned& worker_limit, unsigned worker_id) {
std::scoped_lock lock(mux);
expr_ref_vector result(g2l.to());
for (unsigned i = worker_limit; i < shared_clause_trail.size(); ++i) {
if (shared_clause_trail[i].source_worker_id == worker_id)
continue; // skip clauses from the requesting worker
result.push_back(g2l(shared_clause_trail[i].clause.get()));
}
worker_limit = shared_clause_trail.size(); // update the worker limit to the end of the current trail
return result;
}
lbool parallel2::worker::check_cube(expr_ref_vector const& cube) {
for (auto& atom : cube)
asms.push_back(atom);
lbool r = l_undef;
ctx->get_fparams().m_max_conflicts = std::min((cube.size() + 1) *m_config.m_threads_max_conflicts, m_config.m_max_conflicts);
try {
r = ctx->check(asms.size(), asms.data());
}
catch (z3_error& err) {
b.set_exception(err.error_code());
}
catch (z3_exception& ex) {
b.set_exception(ex.what());
}
catch (...) {
b.set_exception("unknown exception");
}
asms.shrink(asms.size() - cube.size());
LOG_WORKER(1, " DONE checking cube " << r << "\n";);
return r;
}
expr_ref parallel2::worker::get_split_atom() {
expr_ref result(m);
double score = 0;
unsigned n = 0;
for (bool_var v = 0; v < ctx->get_num_bool_vars(); ++v) {
if (ctx->get_assignment(v) != l_undef)
continue;
expr* e = ctx->bool_var2expr(v);
if (!e)
continue;
double new_score = ctx->m_lit_scores[0][v] * ctx->m_lit_scores[1][v];
// decay the scores
ctx->m_lit_scores[0][v] /= 2;
ctx->m_lit_scores[1][v] /= 2;
if (new_score > score || !result || (new_score == score && m_rand(++n) == 0)) {
score = new_score;
result = e;
}
}
return result;
}
void parallel2::batch_manager::set_sat(ast_translation& l2g, model& m) {
std::scoped_lock lock(mux);
IF_VERBOSE(1, verbose_stream() << "Batch manager setting SAT.\n");
if (m_state != state::is_running)
return;
m_state = state::is_sat;
p.ctx.set_model(m.translate(l2g));
cancel_workers();
}
void parallel2::batch_manager::set_unsat(ast_translation& l2g, expr_ref_vector const& unsat_core) {
std::scoped_lock lock(mux);
IF_VERBOSE(1, verbose_stream() << "Batch manager setting UNSAT.\n");
if (m_state != state::is_running)
return;
m_state = state::is_unsat;
// every time we do a check_sat call, don't want to have old info coming from a prev check_sat call
// the unsat core gets reset internally in the context after each check_sat, so we assert this property here
// takeaway: each call to check_sat needs to have a fresh unsat core
SASSERT(p.ctx.m_unsat_core.empty());
for (expr* e : unsat_core)
p.ctx.m_unsat_core.push_back(l2g(e));
cancel_workers();
}
void parallel2::batch_manager::set_exception(unsigned error_code) {
std::scoped_lock lock(mux);
IF_VERBOSE(1, verbose_stream() << "Batch manager setting exception code: " << error_code << ".\n");
if (m_state != state::is_running)
return;
m_state = state::is_exception_code;
m_exception_code = error_code;
cancel_workers();
}
void parallel2::batch_manager::set_exception(std::string const& msg) {
std::scoped_lock lock(mux);
IF_VERBOSE(1, verbose_stream() << "Batch manager setting exception msg: " << msg << ".\n");
if (m_state != state::is_running || m.limit().is_canceled())
return;
m_state = state::is_exception_msg;
m_exception_msg = msg;
cancel_workers();
}
void parallel2::batch_manager::report_assumption_used(ast_translation& l2g, expr* assumption) {
std::scoped_lock lock(mux);
p.m_assumptions_used.insert(l2g(assumption));
}
lbool parallel2::batch_manager::get_result() const {
if (m.limit().is_canceled())
return l_undef; // the main context was cancelled, so we return undef.
switch (m_state) {
case state::is_running: // batch manager is still running, but all threads have processed their cubes, which means all cubes were unsat
if (!m_search_tree.is_closed())
throw default_exception("inconsistent end state");
if (!p.m_assumptions_used.empty()) {
// collect unsat core from assumptions used, if any --> case when all cubes were unsat, but depend on nonempty asms, so we need to add these asms to final unsat core
SASSERT(p.ctx.m_unsat_core.empty());
for (auto a : p.m_assumptions_used)
p.ctx.m_unsat_core.push_back(a);
}
return l_false;
case state::is_unsat:
return l_false;
case state::is_sat:
return l_true;
case state::is_exception_msg:
throw default_exception(m_exception_msg.c_str());
case state::is_exception_code:
throw z3_error(m_exception_code);
default:
UNREACHABLE();
return l_undef;
}
}
bool parallel2::batch_manager::get_cube(ast_translation& g2l, unsigned id, expr_ref_vector& cube, node*& n) {
cube.reset();
std::unique_lock<std::mutex> lock(mux);
node* t = nullptr;
while ((t = m_search_tree.activate_node(n)) == nullptr) {
// if all threads have reported they are done, then return false
// otherwise wait for condition variable
IF_VERBOSE(1, verbose_stream() << "waiting... " << "\n";);
if (m_search_tree.is_closed()) {
IF_VERBOSE(1, verbose_stream() << "all done\n";);
cv.notify_all();
return false;
}
cv.wait(lock);
}
IF_VERBOSE(1, m_search_tree.display(verbose_stream()); verbose_stream() << "\n";);
n = t;
while (t) {
if (cube_config::literal_is_null(t->get_literal()))
break;
expr_ref lit(g2l.to());
lit = g2l(t->get_literal().get());
cube.push_back(lit);
t = t->parent();
}
// IF_VERBOSE(1, verbose_stream() << "got cube " << cube << " from " << " " << t->get_status() << "\n";);
return true;
}
void parallel2::batch_manager::initialize() {
m_state = state::is_running;
m_search_tree.reset();
smt_parallel_params sp(p.ctx.m_params);
m_config.m_max_cube_depth = sp.max_cube_depth();
m_config.m_frugal_cube_only = sp.frugal_cube_only();
m_config.m_never_cube = sp.never_cube();
m_config.m_depth_splitting_only = sp.depth_splitting_only();
m_config.m_iterative_deepening = sp.iterative_deepening();
m_config.m_beam_search = sp.beam_search();
m_config.m_cubetree = sp.cubetree();
}
void parallel2::batch_manager::collect_statistics(::statistics& st) const {
//ctx->collect_statistics(st);
st.update("parallel-num_cubes", m_stats.m_num_cubes);
st.update("parallel-max-cube-size", m_stats.m_max_cube_depth);
}
lbool parallel2::operator()(expr_ref_vector const& asms) {
ast_manager& m = ctx.m;
if (m.has_trace_stream())
throw default_exception("trace streams have to be off in parallel mode");
struct scoped_clear {
parallel2& p;
scoped_clear(parallel2& p) : p(p) {}
~scoped_clear() { p.m_workers.reset(); p.m_assumptions_used.reset(); }
};
scoped_clear clear(*this);
{
m_batch_manager.initialize();
m_workers.reset();
scoped_limits sl(m.limit());
flet<unsigned> _nt(ctx.m_fparams.m_threads, 1);
SASSERT(num_threads > 1);
for (unsigned i = 0; i < num_threads; ++i)
m_workers.push_back(alloc(worker, i, *this, asms)); // i.e. "new worker(i, *this, asms)"
// THIS WILL ALLOW YOU TO CANCEL ALL THE CHILD THREADS
// within the lexical scope of the code block, creates a data structure that allows you to push children
// objects to the limit object, so if someone cancels the parent object, the cancellation propagates to the children
// and that cancellation has the lifetime of the scope
// even if this code doesn't expliclty kill the main thread, still applies bc if you e.g. Ctrl+C the main thread, the children threads need to be cancelled
for (auto w : m_workers)
sl.push_child(&(w->limit()));
// Launch threads
vector<std::thread> threads(num_threads);
for (unsigned i = 0; i < num_threads; ++i) {
threads[i] = std::thread([&, i]() {
m_workers[i]->run();
});
}
// Wait for all threads to finish
for (auto& th : threads)
th.join();
for (auto w : m_workers)
w->collect_statistics(ctx.m_aux_stats);
m_batch_manager.collect_statistics(ctx.m_aux_stats);
}
return m_batch_manager.get_result(); // i.e. all threads have finished all of their cubes -- so if state::is_running is still true, means the entire formula is unsat (otherwise a thread would have returned l_undef)
}
}
#endif

186
src/smt/smt_parallel2.h Normal file
View file

@ -0,0 +1,186 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
smt_parallel.h
Abstract:
Parallel SMT, portfolio loop specialized to SMT core.
Author:
Ilana 2025
Revision History:
--*/
#pragma once
#include "smt/smt_context.h"
#include "util/search_tree.h"
#include <thread>
#include <mutex>
namespace smt {
struct cube_config {
using literal = expr_ref;
static bool literal_is_null(expr_ref const& l) { return l == nullptr; }
static std::ostream& display_literal(std::ostream& out, expr_ref const& l) { return out << mk_bounded_pp(l, l.get_manager()); }
};
class parallel2 {
context& ctx;
unsigned num_threads;
struct shared_clause {
unsigned source_worker_id;
expr_ref clause;
};
class batch_manager {
enum state {
is_running,
is_sat,
is_unsat,
is_exception_msg,
is_exception_code
};
struct config {
unsigned m_max_cube_depth = 20;
bool m_frugal_cube_only = false;
bool m_never_cube = false;
bool m_depth_splitting_only = false;
bool m_iterative_deepening = false;
bool m_beam_search = false;
bool m_cubetree = false;
};
struct stats {
unsigned m_max_cube_depth = 0;
unsigned m_num_cubes = 0;
};
ast_manager& m;
parallel2& p;
std::mutex mux;
std::condition_variable cv;
state m_state = state::is_running;
config m_config;
stats m_stats;
using node = search_tree::node<cube_config>;
search_tree::tree<cube_config> m_search_tree;
unsigned m_exception_code = 0;
std::string m_exception_msg;
vector<shared_clause> shared_clause_trail; // store all shared clauses with worker IDs
obj_hashtable<expr> shared_clause_set; // for duplicate filtering on per-thread clause expressions
// called from batch manager to cancel other workers if we've reached a verdict
void cancel_workers() {
IF_VERBOSE(1, verbose_stream() << "Canceling workers\n");
for (auto& w : p.m_workers)
w->cancel();
}
void init_parameters_state();
bool is_assumption(expr* e) const {
return false; // m_assumptions_used.contains(e);
}
public:
batch_manager(ast_manager& m, parallel2& p) : m(m), p(p), m_search_tree(expr_ref(m)) { }
void initialize();
void set_unsat(ast_translation& l2g, expr_ref_vector const& unsat_core);
void set_sat(ast_translation& l2g, model& m);
void set_exception(std::string const& msg);
void set_exception(unsigned error_code);
void collect_statistics(::statistics& st) const;
bool get_cube(ast_translation& g2l, unsigned id, expr_ref_vector& cube, node*& n);
void backtrack(ast_translation& l2g, expr_ref_vector const& core, node* n);
void split(ast_translation& l2g, unsigned id, node* n, expr* atom);
void report_assumption_used(ast_translation& l2g, expr* assumption);
void collect_clause(ast_translation& l2g, unsigned source_worker_id, expr* clause);
expr_ref_vector return_shared_clauses(ast_translation& g2l, unsigned& worker_limit, unsigned worker_id);
lbool get_result() const;
};
class worker {
struct config {
unsigned m_threads_max_conflicts = 1000;
unsigned m_max_conflicts = 10000000;
bool m_relevant_units_only = true;
bool m_never_cube = false;
bool m_share_conflicts = true;
bool m_share_units = true;
double m_max_conflict_mul = 1.5;
bool m_share_units_initial_only = false;
bool m_cube_initial_only = false;
unsigned m_max_greedy_cubes = 1000;
unsigned m_num_split_lits = 2;
bool m_backbone_detection = false;
bool m_iterative_deepening = false;
bool m_beam_search = false;
bool m_explicit_hardness = false;
bool m_cubetree = false;
};
unsigned id; // unique identifier for the worker
parallel2& p;
batch_manager& b;
ast_manager m;
expr_ref_vector asms;
smt_params m_smt_params;
config m_config;
random_gen m_rand;
scoped_ptr<context> ctx;
ast_translation m_g2l, m_l2g;
unsigned m_num_shared_units = 0;
unsigned m_num_initial_atoms = 0;
unsigned m_shared_clause_limit = 0; // remembers the index into shared_clause_trail marking the boundary between "old" and "new" clauses to share
expr_ref get_split_atom();
lbool check_cube(expr_ref_vector const& cube);
void share_units(ast_translation& l2g);
public:
worker(unsigned id, parallel2& p, expr_ref_vector const& _asms);
void run();
void collect_shared_clauses(ast_translation& g2l);
void cancel();
void collect_statistics(::statistics& st) const;
reslimit& limit() {
return m.limit();
}
};
obj_hashtable<expr> m_assumptions_used; // assumptions used in unsat cores, to be used in final core
batch_manager m_batch_manager;
scoped_ptr_vector<worker> m_workers;
public:
parallel2(context& ctx) :
ctx(ctx),
num_threads(std::min(
(unsigned)std::thread::hardware_concurrency(),
ctx.get_fparams().m_threads)),
m_batch_manager(ctx.m, *this) {}
lbool operator()(expr_ref_vector const& asms);
};
}

View file

@ -128,13 +128,17 @@ namespace search_tree {
public:
tree(literal const& null_literal) : m_null_literal(null_literal) {
m_root = alloc(node<Config>, m_null_literal, nullptr);
m_root->set_status(status::active);
reset();
}
void set_seed(unsigned seed) {
m_rand.set_seed(seed);
}
void reset() {
m_root = alloc(node<Config>, m_null_literal, nullptr);
m_root->set_status(status::active);
}
// Split current node if it is active.
// After the call, n is open and has two children.