3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-14 21:08:46 +00:00

some extensions/modifications. versions added.

This commit is contained in:
Andreas Froehlich 2014-02-18 14:01:47 +00:00 committed by Christoph M. Wintersteiger
parent 40014d019c
commit b002697e03
14 changed files with 470 additions and 48 deletions

View file

@ -28,10 +28,11 @@ Notes:
#include"probe_arith.h"
#include"quant_tactics.h"
#include"qffpa_tactic.h"
#include"sls_tactic.h"
tactic * mk_default_tactic(ast_manager & m, params_ref const & p) {
tactic * st = using_params(and_then(mk_simplify_tactic(m),
cond(mk_is_qfbv_probe(), mk_qfbv_tactic(m),
cond(mk_is_qfbv_probe(), mk_qfbv_sls_tactic(m),
cond(mk_is_qflia_probe(), mk_qflia_tactic(m),
cond(mk_is_qflra_probe(), mk_qflra_tactic(m),
cond(mk_is_qfnra_probe(), mk_qfnra_tactic(m),

View file

@ -584,8 +584,8 @@ public:
run_update(cur_depth);
}
void randomize_local(goal_ref const & g) {
ptr_vector<func_decl> & unsat_constants = m_tracker.get_unsat_constants(g);
void randomize_local(goal_ref const & g, unsigned int flip) {
ptr_vector<func_decl> & unsat_constants = m_tracker.get_unsat_constants(g, flip);
// Randomize _all_ candidates:

View file

@ -35,6 +35,17 @@ Notes:
#include"sls_tactic.h"
#include"nnf_tactic.h"
#define _CNF_ 0
#define _BFS_ 1
#define _FOCUS_ 1
#define _RESTARTS_ 0
#define _TIMELIMIT_ 30
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0
#define _VNS_ 0
#define _WEIGHT_DIST_ 3
#define _WEIGHT_DIST_FACTOR_ 0.1
#include"sls_params.hpp"
#include"sls_evaluator.h"
#include"sls_tracker.h"
@ -257,7 +268,7 @@ class sls_tactic : public tactic {
// inversion doesn't make sense, let's do a flip instead.
if (mt == MV_INV) mt = MV_FLIP;
ptr_vector<func_decl> & unsat_constants = m_tracker.get_unsat_constants(g);
ptr_vector<func_decl> & unsat_constants = m_tracker.get_unsat_constants(g, m_stats.m_moves);
unsigned ucc = unsat_constants.size();
unsigned rc = (m_tracker.get_random_uint((ucc < 16) ? 4 : (ucc < 256) ? 8 : (ucc < 4096) ? 12 : (ucc < 65536) ? 16 : 32)) % ucc;
func_decl * fd = unsat_constants[rc];
@ -303,6 +314,82 @@ class sls_tactic : public tactic {
m_mpz_manager.del(new_value);
}
double find_best_move_vns(goal_ref const & g, ptr_vector<func_decl> & to_evaluate, double score,
unsigned & best_const, mpz & best_value, unsigned & new_bit, move_type & move) {
mpz old_value, temp;
unsigned bv_sz, max_bv_sz = 0;
double new_score = score;
for (unsigned i = 0; i < to_evaluate.size() && new_score < 1.0 ; i++) {
func_decl * fd = to_evaluate[i];
sort * srt = fd->get_range();
bv_sz = (m_manager.is_bool(srt)) ? 1 : m_bv_util.get_bv_size(srt);
if (max_bv_sz < bv_sz) max_bv_sz = bv_sz;
m_mpz_manager.set(old_value, m_tracker.get_value(fd));
if (m_bv_util.is_bv_sort(srt) && bv_sz > 1) {
if (!m_mpz_manager.is_even(old_value)) {
// for odd values, try +1
mk_inc(bv_sz, old_value, temp);
if (what_if(g, fd, i, temp, new_score, best_const, best_value))
move = MV_INC;
}
else {
// for even values, try -1
mk_dec(bv_sz, old_value, temp);
if (what_if(g, fd, i, temp, new_score, best_const, best_value))
move = MV_DEC;
}
// try inverting
mk_inv(bv_sz, old_value, temp);
if (what_if(g, fd, i, temp, new_score, best_const, best_value))
move = MV_INV;
// try to flip lsb
mk_flip(srt, old_value, 0, temp);
if (what_if(g, fd, i, temp, new_score, best_const, best_value)) {
new_bit = 0;
move = MV_FLIP;
}
}
// reset to what it was before
double check = incremental_score(g, fd, old_value);
SASSERT(check == score);
}
#if _VNS_ == 1
for (unsigned j = 1; j < max_bv_sz && new_score <= score; j++)
#else
if (new_score <= score)
for (unsigned j = 1; j < max_bv_sz && new_score < 1.0; j++)
#endif
for (unsigned i = 0; i < to_evaluate.size() && new_score < 1.0 ; i++) {
func_decl * fd = to_evaluate[i];
sort * srt = fd->get_range();
bv_sz = (m_manager.is_bool(srt)) ? 1 : m_bv_util.get_bv_size(srt);
m_mpz_manager.set(old_value, m_tracker.get_value(fd));
// What would happen if we flipped bit #j ?
if (j < bv_sz)
{
mk_flip(srt, old_value, j, temp);
if (what_if(g, fd, i, temp, new_score, best_const, best_value)) {
new_bit = j;
move = MV_FLIP;
}
}
// reset to what it was before
double check = incremental_score(g, fd, old_value);
SASSERT(check == score);
}
m_mpz_manager.del(old_value);
m_mpz_manager.del(temp);
return new_score;
}
double find_best_move(goal_ref const & g, ptr_vector<func_decl> & to_evaluate, double score,
unsigned & best_const, mpz & best_value, unsigned & new_bit, move_type & move) {
mpz old_value, temp;
@ -372,22 +459,29 @@ class sls_tactic : public tactic {
unsigned plateau_cnt = 0;
while (plateau_cnt < m_plateau_limit) {
// Andreas: Why do we only allow so few plateaus?
#if _RESTARTS_
while (plateau_cnt < m_plateau_limit && m_stats.m_stopwatch.get_current_seconds() < _TIMELIMIT_) {
#else
while (m_stats.m_stopwatch.get_current_seconds() < _TIMELIMIT_) {
#endif
do {
checkpoint();
old_score = score;
new_const = (unsigned)-1;
ptr_vector<func_decl> & to_evaluate = m_tracker.get_unsat_constants(g);
ptr_vector<func_decl> & to_evaluate = m_tracker.get_unsat_constants(g, m_stats.m_moves);
TRACE("sls_constants", tout << "Evaluating these constants: " << std::endl;
for (unsigned i = 0 ; i < to_evaluate.size(); i++)
tout << to_evaluate[i]->get_name() << std::endl; );
#if _VNS_
score = find_best_move_vns(g, to_evaluate, score, new_const, new_value, new_bit, move);
#else
score = find_best_move(g, to_evaluate, score, new_const, new_value, new_bit, move);
#endif
if (new_const == static_cast<unsigned>(-1)) {
TRACE("sls", tout << "Local maximum reached; unsatisfied constraints: " << std::endl;
for (unsigned i = 0; i < g->size(); i++) {
@ -400,9 +494,11 @@ class sls_tactic : public tactic {
for (unsigned i = 0; i < g->size(); i++)
tout << mk_ismt2_pp(g->form(i), m_manager) << " ---> " <<
m_tracker.get_score(g->form(i)) << std::endl; );
// Andreas: If new_const == -1, shouldn't score = old_score anyway?
score = old_score;
}
else {
// Andreas: Why does randomizing not count as a move? (Now it does.)
m_stats.m_moves++;
func_decl * fd = to_evaluate[new_const];
@ -441,6 +537,7 @@ class sls_tactic : public tactic {
if (score >= 1.0) {
// score could theoretically be imprecise.
// Andreas: Can it only be imprecise in one direction?
bool all_true = true;
for (unsigned i = 0; i < g->size() && all_true; i++)
if (!m_mpz_manager.is_one(m_tracker.get_value(g->form(i))))
@ -451,19 +548,30 @@ class sls_tactic : public tactic {
} else
TRACE("sls", tout << "Imprecise 1.0 score" << std::endl;);
}
/*
if (m_stats.m_moves % 100 == 0)
{
verbose_stream() << "(" << std::fixed << std::setprecision(10) << score << ")" << std::endl;
verbose_stream() << "(" << std::fixed << std::setprecision(2) << (m_stats.m_moves / m_stats.m_stopwatch.get_current_seconds()) << ")" << std::endl;
}*/
}
while (score > old_score && res == l_undef);
if (score != old_score)
// Andreas: Why do you check for old_score? This should always be equal due to the loop invariant.
if (score != old_score) {
report_tactic_progress("This should not happen I guess.", plateau_cnt);
plateau_cnt = 0;
else {
} else {
m_stats.m_moves++;
plateau_cnt++;
if (plateau_cnt < m_plateau_limit) {
//report_tactic_progress("Plateau.", plateau_cnt);
// Andreas: Right now, a useless assignment is created in case of a restart. But we don't want to use restarts anyway.
//if (plateau_cnt < m_plateau_limit) {
TRACE("sls", tout << "In a plateau (" << plateau_cnt << "/" << m_plateau_limit << "); randomizing locally." << std::endl; );
m_evaluator.randomize_local(g);
m_evaluator.randomize_local(g, m_stats.m_moves);
//mk_random_move(g);
score = top_score(g);
}
//}
}
}
@ -484,7 +592,8 @@ class sls_tactic : public tactic {
do {
checkpoint();
if ((m_stats.m_restarts % 100) == 0)
// Andreas: I think restarts are too impotant to ignore 99% of them are happening...
//if ((m_stats.m_restarts % 100) == 0)
report_tactic_progress("Searching... restarts left:", m_max_restarts - m_stats.m_restarts);
res = search(g);
@ -492,9 +601,12 @@ class sls_tactic : public tactic {
if (res == l_undef)
m_tracker.randomize();
}
while (res != l_true && m_stats.m_restarts++ < m_max_restarts);
while (m_stats.m_stopwatch.get_current_seconds() < _TIMELIMIT_ && res != l_true && m_stats.m_restarts++ < m_max_restarts);
if (res == l_true) {
verbose_stream() << "(restarts: " << m_stats.m_restarts << " flips: " << m_stats.m_moves << " time: " << std::fixed << std::setprecision(2) << m_stats.m_stopwatch.get_current_seconds() << " fps: " << (m_stats.m_moves / m_stats.m_stopwatch.get_current_seconds()) << ")" << std::endl;
if (res == l_true) {
report_tactic_progress("Number of flips:", m_stats.m_moves);
if (m_produce_models) {
model_ref mdl = m_tracker.get_model();
mc = model2model_converter(mdl.get());
@ -628,7 +740,13 @@ tactic * mk_preamble(ast_manager & m, params_ref const & p) {
using_params(mk_simplify_tactic(m), simp2_p)),
using_params(mk_simplify_tactic(m), hoist_p),
mk_max_bv_sharing_tactic(m),
#if _CNF_
// Andreas: We will probably never use this. CNF sucks.
mk_cnf_tactic(m, p));
#else
// Andreas: How does a NNF actually look like? Can it contain ITE operators?
mk_nnf_tactic(m, p));
#endif
}
tactic * mk_qfbv_sls_tactic(ast_manager & m, params_ref const & p) {

View file

@ -28,8 +28,8 @@ class sls_tracker {
random_gen m_rng;
unsigned m_random_bits;
unsigned m_random_bits_cnt;
mpz m_zero, m_one, m_two;
mpz m_zero, m_one, m_two;
struct value_score {
value_score() : m(0), value(unsynch_mpz_manager::mk_z(0)), score(0.0), distance(0) { };
~value_score() { if (m) m->del(value); }
@ -249,12 +249,46 @@ public:
}
}
void initialize(goal_ref const & g) {
void initialize_recursive(init_proc proc, expr_mark visited, expr * e) {
if (m_manager.is_and(e) || m_manager.is_or(e)) {
app * a = to_app(e);
expr * const * args = a->get_args();
unsigned int sz = a->get_num_args();
for (unsigned int i = 0; i < sz; i++) {
expr * q = args[i];
initialize_recursive(proc, visited, q);
}
}
for_each_expr(proc, visited, e);
}
void initialize_recursive(expr * e) {
if (m_manager.is_and(e) || m_manager.is_or(e)) {
app * a = to_app(e);
expr * const * args = a->get_args();
unsigned int sz = a->get_num_args();
for (unsigned int i = 0; i < sz; i++) {
expr * q = args[i];
initialize_recursive(q);
}
}
ptr_vector<func_decl> t;
m_constants_occ.insert_if_not_there(e, t);
find_func_decls_proc ffd_proc(m_manager, m_constants_occ.find(e));
expr_fast_mark1 visited;
quick_for_each_expr(ffd_proc, visited, e);
}
void initialize(goal_ref const & g) {
init_proc proc(m_manager, *this);
expr_mark visited;
unsigned sz = g->size();
for (unsigned i = 0; i < sz; i++) {
expr * e = g->form(i);
expr * e = g->form(i);
// Andreas: Maybe not fully correct.
#if _FOCUS_ == 2
initialize_recursive(proc, visited, e);
#endif
for_each_expr(proc, visited, e);
}
@ -262,6 +296,10 @@ public:
for (unsigned i = 0; i < sz; i++) {
expr * e = g->form(i);
// Andreas: Maybe not fully correct.
#if _FOCUS_ == 2
initialize_recursive(e);
#endif
ptr_vector<func_decl> t;
m_constants_occ.insert_if_not_there(e, t);
find_func_decls_proc ffd_proc(m_manager, m_constants_occ.find(e));
@ -382,8 +420,6 @@ public:
TRACE("sls", tout << "Randomized model:" << std::endl; show_model(tout); );
}
#define _SCORE_AND_MIN
double score_bool(expr * n, bool negated = false) {
TRACE("sls_score", tout << ((negated)?"NEG ":"") << "BOOL: " << mk_ismt2_pp(n, m_manager) << std::endl; );
@ -400,30 +436,41 @@ public:
SASSERT(!negated);
app * a = to_app(n);
expr * const * args = a->get_args();
#ifdef _SCORE_AND_MIN
double min = 1.0;
// Andreas: Seems to have no effect. Probably it does not even occur.
#if _SCORE_AND_AVG_
double sum = 0.0;
for (unsigned i = 0; i < a->get_num_args(); i++)
sum += get_score(args[i]);
res = sum / (double) a->get_num_args();
#else
double min = 1.0;
for (unsigned i = 0; i < a->get_num_args(); i++) {
double cur = get_score(args[i]);
if (cur < min) min = cur;
}
res = min;
#else
double sum = 0.0;
for (unsigned i = 0; i < a->get_num_args(); i++)
sum += get_score(args[i]);
res = sum / (double) a->get_num_args();
#endif
#endif
}
else if (m_manager.is_or(n)) {
SASSERT(!negated);
app * a = to_app(n);
expr * const * args = a->get_args();
double max = 0.0;
// Andreas: Seems to have no effect. Probably it is still too similar to the original version.
#if _SCORE_OR_MUL_
double inv = 1.0;
for (unsigned i = 0; i < a->get_num_args(); i++) {
double cur = get_score(args[i]);
inv *= (1.0 - get_score(args[i]));
}
res = 1.0 - inv;
#else
double max = 0.0;
for (unsigned i = 0; i < a->get_num_args(); i++) {
double cur = get_score(args[i]);
if (cur > max) max = cur;
}
res = max;
#endif
}
else if (m_manager.is_ite(n)) {
SASSERT(!negated);
@ -468,7 +515,7 @@ public:
}
m_mpz_manager.machine_div(diff, m_two, diff);
}
res = 1.0 - (hamming_distance / (double) bv_sz);
res = 1.0 - (hamming_distance / (double) bv_sz);
#else
rational r(diff);
r /= m_powers(bv_sz);
@ -503,7 +550,7 @@ public:
double dbl = n.get_double();
// In extreme cases, n is 0.9999 but to_double returns something > 1.0
res = (dbl > 1.0) ? 0.0 : (dbl < 0.0) ? 1.0 : 1.0 - dbl;
m_mpz_manager.del(diff);
m_mpz_manager.del(diff);
}
}
else {
@ -564,7 +611,7 @@ public:
TRACE("sls_score", tout << "x = " << m_mpz_manager.to_string(x) << " ; y = " <<
m_mpz_manager.to_string(y) << " ; SZ = " << bv_sz << std::endl; );
}
m_mpz_manager.del(x);
m_mpz_manager.del(x);
m_mpz_manager.del(y);
}
else if (m_manager.is_not(n)) {
@ -598,6 +645,20 @@ public:
SASSERT(res >= 0.0 && res <= 1.0);
#if _WEIGHT_DIST_
app * a = to_app(n);
family_id afid = a->get_family_id();
if (afid == m_bv_util.get_family_id())
#endif
#if _WEIGHT_DIST_ == 1
if (res < 1.0) res *= _WEIGHT_DIST_FACTOR_;
#elif _WEIGHT_DIST_ == 2
res *= res;
#elif _WEIGHT_DIST_ == 3
if (res < 1.0) res = 0.0;
#endif
TRACE("sls_score", tout << "SCORE = " << res << std::endl; );
return res;
}
@ -647,7 +708,111 @@ public:
NOT_IMPLEMENTED_YET();
}
ptr_vector<func_decl> & get_unsat_constants(goal_ref const & g) {
ptr_vector<func_decl> & get_unsat_constants_gsat(goal_ref const & g, unsigned sz) {
for (unsigned i = 0; i < sz; i++) {
expr * q = g->form(i);
if (m_mpz_manager.eq(get_value(q), m_one))
continue;
ptr_vector<func_decl> const & this_decls = m_constants_occ.find(q);
unsigned sz2 = this_decls.size();
for (unsigned j = 0; j < sz2; j++) {
func_decl * fd = this_decls[j];
if (!m_temp_constants.contains(fd))
m_temp_constants.push_back(fd);
}
}
return m_temp_constants;
}
expr * get_unsat_assertion(goal_ref const & g, unsigned sz, unsigned int pos) {
for (unsigned i = pos; i < sz; i++) {
expr * q = g->form(i);
if (m_mpz_manager.neq(get_value(q), m_one))
return q;
}
for (unsigned i = 0; i < pos; i++) {
expr * q = g->form(i);
if (m_mpz_manager.neq(get_value(q), m_one))
return q;
}
return 0;
}
ptr_vector<func_decl> & get_unsat_constants_walksat(goal_ref const & g, unsigned sz, unsigned int pos) {
expr * q = get_unsat_assertion(g, sz, pos);
// Andreas: I should probably fix this. If this is the case then the formula is SAT anyway but this is not checked in the first iteration.
if (!q)
return m_temp_constants;
ptr_vector<func_decl> const & this_decls = m_constants_occ.find(q);
unsigned sz2 = this_decls.size();
for (unsigned j = 0; j < sz2; j++) {
func_decl * fd = this_decls[j];
if (!m_temp_constants.contains(fd))
m_temp_constants.push_back(fd);
}
return m_temp_constants;
}
ptr_vector<func_decl> & go_deeper(expr * e) {
if (m_manager.is_bool(e)) {
if (m_manager.is_and(e)) {
app * a = to_app(e);
expr * const * args = a->get_args();
// Andreas: might be used for guided branching
//for (unsigned i = 0; i < a->get_num_args(); i++) {
//double cur = get_score(args[i]);
//}
// Andreas: A random number is better here since reusing flip will cause patterns.
unsigned int sz = a->get_num_args();
unsigned int pos = get_random_uint(16) % sz;
for (unsigned int i = pos; i < sz; i++) {
expr * q = args[i];
if (m_mpz_manager.neq(get_value(q), m_one))
return go_deeper(q);
}
for (unsigned int i = 0; i < pos; i++) {
expr * q = args[i];
if (m_mpz_manager.neq(get_value(q), m_one))
return go_deeper(q);
}
}
else if (m_manager.is_or(e)) {
app * a = to_app(e);
expr * const * args = a->get_args();
unsigned int sz = a->get_num_args();
unsigned int pos = get_random_uint(16) % sz;
for (unsigned int i = pos; i < sz; i++) {
expr * q = args[i];
if (m_mpz_manager.neq(get_value(q), m_one))
return go_deeper(q);
}
for (unsigned int i = 0; i < pos; i++) {
expr * q = args[i];
if (m_mpz_manager.neq(get_value(q), m_one))
return go_deeper(q);
}
}
}
ptr_vector<func_decl> const & this_decls = m_constants_occ.find(e);
unsigned sz2 = this_decls.size();
for (unsigned j = 0; j < sz2; j++) {
func_decl * fd = this_decls[j];
if (!m_temp_constants.contains(fd))
m_temp_constants.push_back(fd);
}
return m_temp_constants;
}
ptr_vector<func_decl> & get_unsat_constants_crsat(goal_ref const & g, unsigned sz, unsigned int pos) {
expr * q = get_unsat_assertion(g, sz, pos);
if (!q)
return m_temp_constants;
return go_deeper(q);
}
ptr_vector<func_decl> & get_unsat_constants(goal_ref const & g, unsigned int flip) {
unsigned sz = g->size();
if (sz == 1) {
@ -655,19 +820,41 @@ public:
}
else {
m_temp_constants.reset();
for (unsigned i = 0; i < sz; i++) {
expr * q = g->form(i);
if (m_mpz_manager.eq(get_value(q), m_one))
continue;
ptr_vector<func_decl> const & this_decls = m_constants_occ.find(q);
unsigned sz2 = this_decls.size();
for (unsigned j = 0; j < sz2; j++) {
func_decl * fd = this_decls[j];
if (!m_temp_constants.contains(fd))
m_temp_constants.push_back(fd);
}
#if _FOCUS_ == 1
#if _BFS_ == 3
unsigned int pos = 0;
double max = get_score(g->form(0));
unsigned sz = g->size();
for (unsigned i = 1; i < sz; i++) {
expr * e = g->form(i);
double q = get_score(e);
if (q > max && m_mpz_manager.neq(get_value(e), m_one) ) { max = q; pos = i; }
}
return m_temp_constants;
#elif _BFS_ == 2
unsigned int pos = 0;
double min = get_score(g->form(0));
unsigned sz = g->size();
for (unsigned i = 1; i < sz; i++) {
expr * e = g->form(i);
double q = get_score(e);
if (q < min && m_mpz_manager.neq(get_value(e), m_one) ) { min = q; pos = i; }
}
#elif _BFS_ == 1
unsigned int pos = flip % m_constants.size();
#else
unsigned int pos = get_random_uint(16) % m_constants.size();
#endif
return get_unsat_constants_walksat(g, sz, pos);
#elif _FOCUS_ == 2
#if _BFS_
unsigned int pos = flip % m_constants.size();
#else
unsigned int pos = get_random_uint(16) % m_constants.size();
#endif
return get_unsat_constants_crsat(g, sz, pos);
#else
return get_unsat_constants_gsat(g, sz);
#endif
}
}
};

View file

@ -0,0 +1,12 @@
More focused (_FOCUS_ == 2) WalkSAT version.
Variables are chosen among candidates in only one unsatisfied bit-vector term.
Flip rate slightly slower; probably due to larger hash-table and recursive formula structure.
No restarts.
#define _CNF_ 0
#define _BFS_ 1
#define _FOCUS_ 3
#define _RESTARTS_ 0
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0

10
versions/z3-gsat-0.01.txt Normal file
View file

@ -0,0 +1,10 @@
Basic GSAT version.
No restarts.
#define _CNF_ 0
#define _BFS_ 0
#define _FOCUS_ 0
#define _RESTARTS_ 0
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0

View file

@ -0,0 +1,10 @@
Basic GSAT version corresponding to Christoph's original code.
Restarts after 100 plateaus.
#define _CNF_ 0
#define _BFS_ 0
#define _FOCUS_ 0
#define _RESTARTS_ 1
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0

12
versions/z3-wsat-0.01.txt Normal file
View file

@ -0,0 +1,12 @@
Basic WalkSAT version.
Variables are chosen among candidates in only ONE top level assertion.
Flip rate increased by roughly 10%-300%.
No restarts.
#define _CNF_ 0
#define _BFS_ 1
#define _FOCUS_ 1
#define _RESTARTS_ 0
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0

View file

@ -0,0 +1,12 @@
Basic WalkSAT version.
Variables are chosen among candidates in only ONE top level assertion.
Chooses a random top level assertion instead of using a BFS approach (_BFS_ == 0).
No restarts.
#define _CNF_ 0
#define _BFS_ 0
#define _FOCUS_ 1
#define _RESTARTS_ 0
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0

View file

@ -0,0 +1,12 @@
Basic WalkSAT version.
Variables are chosen among candidates in only ONE top level assertion.
AND is scored by average; OR is scored by inverse multiplication.
No restarts.
#define _CNF_ 0
#define _BFS_ 1
#define _FOCUS_ 1
#define _RESTARTS_ 0
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 1
#define _SCORE_OR_MUL_ 1

View file

@ -0,0 +1,11 @@
Basic WalkSAT version.
Variables are chosen among candidates in only ONE top level assertion with MINIMAL top_score.
No restarts.
#define _CNF_ 0
#define _BFS_ 2
#define _FOCUS_ 1
#define _RESTARTS_ 0
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0

View file

@ -0,0 +1,11 @@
Basic WalkSAT version.
Variables are chosen among candidates in only ONE top level assertion with MAXIMAL top_score.
No restarts.
#define _CNF_ 0
#define _BFS_ 3
#define _FOCUS_ 1
#define _RESTARTS_ 0
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0

13
versions/z3-wsat-0.02.txt Normal file
View file

@ -0,0 +1,13 @@
Basic WalkSAT version.
Variables are chosen among candidates in only ONE top level assertion.
Score function reduced to 0/1.
No restarts.
#define _CNF_ 0
#define _BFS_ 1
#define _FOCUS_ 1
#define _RESTARTS_ 0
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0
#define _WEIGHTED_DIST_ 1

View file

@ -0,0 +1,13 @@
Basic WalkSAT version.
Variables are chosen among candidates in only ONE top level assertion.
Flip rate increased by roughly 10%-300% compared to GSAT.
Restarts after 100 plateaus.
Fps slightly decreased due to restarts.
#define _CNF_ 0
#define _BFS_ 1
#define _FOCUS_ 1
#define _RESTARTS_ 1
#define _TIMELIMIT_ 300
#define _SCORE_AND_AVG_ 0
#define _SCORE_OR_MUL_ 0