3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00

Add bitblasting fallback to viable::query

(integration between conflict/viable is still messy)
This commit is contained in:
Jakob Rath 2022-12-16 13:02:54 +01:00
parent 44cb528300
commit afde0e993c
8 changed files with 336 additions and 121 deletions

View file

@ -182,6 +182,15 @@ namespace polysat {
SASSERT(s.at_base_level());
m_level = s.m_level;
SASSERT(!empty());
// TODO: logger().begin_conflict???
// TODO: check uses of logger().begin_conflict(). sometimes we call it before adding constraints, sometimes after...
}
void conflict::init_empty() {
SASSERT(empty());
m_level = s.m_level;
SASSERT(!empty());
// TODO: logger().begin_conflict???
}
void conflict::init(signed_constraint c) {
@ -193,11 +202,13 @@ namespace polysat {
logger().begin_conflict();
}
#if 0
void conflict::set(signed_constraint c) {
SASSERT(!empty());
remove_all();
set_impl(c);
}
#endif
void conflict::set_impl(signed_constraint c) {
if (c.bvalue(s) == l_false) {
@ -233,6 +244,7 @@ namespace polysat {
void conflict::init(pvar v, bool by_viable_fallback) {
LOG("Conflict: viable v" << v);
SASSERT(empty());
SASSERT(!s.is_assigned(v));
m_level = s.m_level;
if (by_viable_fallback) {
logger().begin_conflict(header_with_var("unsat core from viable fallback for v", v));

View file

@ -85,7 +85,7 @@ namespace polysat {
scoped_ptr<conflict_resolver> m_resolver;
// current conflict core consists of m_literals and m_vars
indexed_uint_set m_literals; // set of boolean literals in the conflict
indexed_uint_set m_literals; // set of boolean literals in the conflict; TODO: why not sat::literal_set
uint_set m_vars; // variable assignments used as premises, shorthand for literals (x := v)
unsigned_vector m_var_occurrences; // for each variable, the number of constraints in m_literals that contain it
@ -135,9 +135,13 @@ namespace polysat {
void init(clause const& cl);
/** conflict because there is no viable value for the variable v */
void init(pvar v, bool by_viable_fallback);
/** start empty conflict, constraints to be added by caller */
void init_empty(); // TODO: remove... rather have all types of conflicts explicitly listed here.
#if 0
/** replace the current conflict by a single constraint */
void set(signed_constraint c);
#endif
bool contains(signed_constraint c) const { SASSERT(c); return contains(c.blit()); }
bool contains(sat::literal lit) const;

View file

@ -652,7 +652,7 @@ namespace polysat {
// (fail here in debug mode so we notice if we miss some)
DEBUG_CODE( UNREACHABLE(); );
m_free_pvars.unassign_var_eh(v);
set_conflict(v, false);
SASSERT(is_conflict());
return;
case find_t::singleton:
// NOTE: this case may happen legitimately if all other possibilities were excluded by brute force search

View file

@ -26,6 +26,12 @@ Author:
namespace polysat {
univariate_solver::dep_vector univariate_solver::unsat_core() {
dep_vector deps;
unsat_core(deps);
return deps;
}
class univariate_bitblast_solver : public univariate_solver {
// TODO: does it make sense to share m and bv between different solver instances?
// TODO: consider pooling solvers to save setup overhead, see if solver/solver_pool.h can be used
@ -33,6 +39,7 @@ namespace polysat {
scoped_ptr<bv_util> bv;
scoped_ptr<solver> s;
unsigned bit_width;
unsigned m_scope_level = 0;
func_decl_ref x_decl;
expr_ref x;
vector<rational> model_cache;
@ -67,15 +74,22 @@ namespace polysat {
}
void push() override {
m_scope_level++;
push_cache();
s->push();
}
void pop(unsigned n) override {
SASSERT(scope_level() >= n);
m_scope_level -= n;
pop_cache();
s->pop(n);
}
unsigned scope_level() override {
return m_scope_level;
}
expr* mk_numeral(rational const& r) const {
return bv->mk_numeral(r, bit_width);
}
@ -198,8 +212,8 @@ namespace polysat {
return s->check_sat();
}
dep_vector unsat_core() override {
dep_vector deps;
void unsat_core(dep_vector& deps) override {
deps.reset();
expr_ref_vector core(m);
s->get_unsat_core(core);
for (expr* a : core) {
@ -207,7 +221,6 @@ namespace polysat {
deps.push_back(dep);
}
SASSERT(deps.size() > 0);
return deps;
}
rational model() override {

View file

@ -39,13 +39,15 @@ namespace polysat {
virtual void push() = 0;
virtual void pop(unsigned n) = 0;
virtual unsigned scope_level() = 0;
virtual lbool check() = 0;
/**
* Precondition: check() returned l_false
*/
virtual dep_vector unsat_core() = 0;
dep_vector unsat_core();
virtual void unsat_core(dep_vector& out_deps) = 0;
/**
* Precondition: check() returned l_true

View file

@ -23,6 +23,10 @@ TODO: improve management of the fallback univariate solvers:
- incrementally add/remove constraints
- set resource limit of univariate solver
TODO: plan to fix the FI "pumping":
1. simple looping detection and bitblasting fallback.
2. intervals at multiple bit widths
--*/
@ -33,6 +37,8 @@ TODO: improve management of the fallback univariate solvers:
namespace polysat {
using namespace viable_query;
struct inf_fi : public inference {
viable& v;
pvar var;
@ -137,7 +143,7 @@ namespace polysat {
prop = true;
break;
case find_t::empty:
s.set_conflict(v, false);
SASSERT(s.is_conflict());
return true;
default:
break;
@ -543,15 +549,22 @@ namespace polysat {
return refine_viable(v, val);
}
lbool viable::min_viable(pvar v, rational& lo) {
return query<query_t::min_viable>(v, lo);
}
rational viable::min_viable(pvar v) {
refined:
rational lo(0);
auto* e = m_units[v];
lbool viable::max_viable(pvar v, rational& hi) {
return query<query_t::max_viable>(v, hi);
}
bool viable::query_min(pvar v, rational& lo) {
// TODO: should be able to deal with UNSAT case; since also min_viable has to deal with it due to fallback solver
lo = 0;
entry* e = m_units[v];
if (!e && !refine_viable(v, lo))
goto refined;
return false;
if (!e)
return lo;
return true;
entry* first = e;
entry* last = first->prev();
if (last->interval.currently_contains(lo))
@ -564,19 +577,19 @@ namespace polysat {
}
while (e != first);
if (!refine_viable(v, lo))
goto refined;
return false;
SASSERT(is_viable(v, lo));
return lo;
return true;
}
rational viable::max_viable(pvar v) {
refined:
rational hi = s.var2pdd(v).max_value();
bool viable::query_max(pvar v, rational& hi) {
// TODO: should be able to deal with UNSAT case; since also max_viable has to deal with it due to fallback solver
hi = s.var2pdd(v).max_value();
auto* e = m_units[v];
if (!e && !refine_viable(v, hi))
goto refined;
return false;
if (!e)
return hi;
return true;
entry* last = e->prev();
e = last;
do {
@ -587,17 +600,13 @@ namespace polysat {
}
while (e != last);
if (!refine_viable(v, hi))
goto refined;
return false;
SASSERT(is_viable(v, hi));
return hi;
return true;
}
// template <viable::query_t mode>
find_t viable::query(query_t mode, pvar v, rational& lo, rational& hi) {
SASSERT(mode == query_t::find_viable); // other modes are TODO
auto const& max_value = s.var2pdd(v).max_value();
template <query_t mode>
lbool viable::query(pvar v, typename query_result<mode>::result_t& result) {
// max number of interval refinements before falling back to the univariate solver
unsigned const refinement_budget = 1000;
unsigned refinements = refinement_budget;
@ -606,25 +615,152 @@ namespace polysat {
if (!refinements) {
LOG("Refinement budget exhausted! Fall back to univariate solver.");
return find_t::resource_out;
return query_fallback<mode>(v, result);
}
refinements--;
if constexpr (mode == query_t::find_viable) {
lbool res = query_find(v, result.first, result.second);
if (res == l_undef)
goto refined;
return res;
}
if constexpr (mode == query_t::min_viable) {
if (!query_min(v, result))
goto refined;
return l_true;
}
if constexpr (mode == query_t::max_viable) {
if (!query_max(v, result))
goto refined;
return l_true;
}
if constexpr (mode == query_t::has_viable) {
NOT_IMPLEMENTED_YET();
return l_undef;
}
UNREACHABLE();
return l_undef;
}
template <query_t mode>
lbool viable::query_fallback(pvar v, typename query_result<mode>::result_t& result) {
unsigned const bit_width = s.size(v);
univariate_solver* us = s.m_viable_fallback.usolver(bit_width);
sat::literal_set added;
// First step: only query the looping constraints and see if they alone are already UNSAT.
// The constraints which caused the refinement loop will be reached from m_units.
entry const* first = m_units[v];
entry const* e = first;
do {
entry const* origin = e;
while (origin->refined)
origin = origin->refined;
signed_constraint const c = origin->src;
sat::literal const lit = c.blit();
if (!added.contains(lit)) {
added.insert(lit);
c.add_to_univariate_solver(s, *us, lit.to_uint());
}
e = e->next();
}
while (e != first);
switch (us->check()) {
case l_false:
set_fallback_conflict(v, *us);
return l_false;
case l_true:
// At this point we don't know much because we did not add all relevant constraints
break;
default:
// resource limit
return l_undef;
}
// Second step: looping constraints aren't UNSAT, so add the remaining relevant constraints
auto const& cs = s.m_viable_fallback.m_constraints[v];
for (unsigned i = cs.size(); i-- > 0; ) {
sat::literal const lit = cs[i].blit();
if (added.contains(lit))
continue;
added.insert(lit);
cs[i].add_to_univariate_solver(s, *us, lit.to_uint());
}
switch (us->check()) {
case l_false:
set_fallback_conflict(v, *us);
return l_false;
case l_true:
// pass solver to mode-specific query
break;
default:
// resource limit
return l_undef;
}
if constexpr (mode == query_t::find_viable)
return query_find_fallback(v, *us, result.first, result.second);
if constexpr (mode == query_t::min_viable)
return query_min_fallback(v, *us, result);
if constexpr (mode == query_t::max_viable)
return query_max_fallback(v, *us, result);
if constexpr (mode == query_t::has_viable) {
NOT_IMPLEMENTED_YET();
return l_undef;
}
UNREACHABLE();
return l_undef;
}
lbool viable::query_find_fallback(pvar v, univariate_solver& us, rational& lo, rational& hi) {
if (!us.find_min(lo))
return l_undef;
if (!us.find_max(hi))
return l_undef;
return l_true;
}
lbool viable::query_min_fallback(pvar v, univariate_solver& us, rational& lo) {
return us.find_min(lo) ? l_true : l_undef;
}
lbool viable::query_max_fallback(pvar v, univariate_solver& us, rational& hi) {
return us.find_max(hi) ? l_true : l_undef;
}
lbool viable::query_find(pvar v, rational& lo, rational& hi) {
auto const& max_value = s.var2pdd(v).max_value();
lbool const refined = l_undef;
// After a refinement, any of the existing entries may have been replaced
// (if it is subsumed by the new entry created during refinement).
// For this reason, we start chasing the intervals from the start again.
lo = 0;
hi = max_value;
auto* e = m_units[v];
if (!e && !refine_viable(v, lo))
goto refined;
if (!e && !refine_viable(v, rational::one()))
goto refined;
return refined;
if (!e && !refine_viable(v, hi))
return refined;
if (!e)
return find_t::multiple;
if (e->interval.is_full())
return find_t::empty;
return l_true;
if (e->interval.is_full()) {
set_interval_conflict(v);
return l_false;
}
entry* first = e;
entry* last = first->prev();
@ -635,10 +771,10 @@ namespace polysat {
last->interval.hi_val() < max_value) {
lo = last->interval.hi_val();
if (!refine_viable(v, lo))
goto refined;
return refined;
if (!refine_viable(v, max_value))
goto refined;
return find_t::multiple;
return refined;
return l_true;
}
// find lower bound
@ -652,8 +788,10 @@ namespace polysat {
}
while (e != first);
if (e->interval.currently_contains(lo))
return find_t::empty;
if (e->interval.currently_contains(lo)) {
set_interval_conflict(v);
return l_false;
}
// find upper bound
hi = max_value;
@ -666,83 +804,59 @@ namespace polysat {
}
while (e != last);
if (!refine_viable(v, lo))
goto refined;
return refined;
if (!refine_viable(v, hi))
goto refined;
return refined;
return l_true;
}
if (lo == hi)
return find_t::singleton;
else
return find_t::multiple;
lbool viable::find_viable(pvar v, rational& lo, rational& hi) {
std::pair<rational&, rational&> args{lo, hi};
return query<query_t::find_viable>(v, args);
}
find_t viable::find_viable(pvar v, rational& lo) {
#if 1
rational hi;
// return query<query_t::find_viable>(v, lo, hi);
return query(query_t::find_viable, v, lo, hi);
#else
refined:
lo = 0;
auto* e = m_units[v];
if (!e && !refine_viable(v, lo))
goto refined;
if (!e && !refine_viable(v, rational::one()))
goto refined;
if (!e)
return find_t::multiple;
if (e->interval.is_full())
switch (find_viable(v, lo, hi)) {
case l_true:
return (lo == hi) ? find_t::singleton : find_t::multiple;
case l_false:
return find_t::empty;
entry* first = e;
entry* last = first->prev();
// quick check: last interval does not wrap around
// and has space for 2 unassigned values.
auto& max_value = s.var2pdd(v).max_value();
if (last->interval.lo_val() < last->interval.hi_val() &&
last->interval.hi_val() < max_value) {
lo = last->interval.hi_val();
if (!refine_viable(v, lo))
goto refined;
if (!refine_viable(v, max_value))
goto refined;
return find_t::multiple;
default:
return find_t::resource_out;
}
}
// find lower bound
if (last->interval.currently_contains(lo))
lo = last->interval.hi_val();
do {
if (!e->interval.currently_contains(lo))
break;
lo = e->interval.hi_val();
e = e->next();
void viable::set_fallback_conflict(pvar v, univariate_solver& us) {
SASSERT(!s.is_assigned(v));
conflict& core = s.m_conflict;
core.init_empty();
core.logger().begin_conflict(); //header_with_var("unsat core from viable fallback for v", v)); // TODO: begin_conflict before or after adding constraints?
// The conflict is the unsat core of the univariate solver,
// and the current assignment (under which the constraints are univariate in v)
// TODO:
// - currently we add variables directly, which is sound:
// e.g.: v^2 + w^2 == 0; w := 1
// - but we could use side constraints on the coefficients instead (coefficients when viewed as polynomial over v):
// e.g.: v^2 + w^2 == 0; w^2 == 1
for (unsigned dep : us.unsat_core()) {
sat::literal lit = sat::to_literal(dep);
signed_constraint c = s.lit2cnstr(lit);
core.insert(c);
core.insert_vars(c);
}
while (e != first);
SASSERT(!core.vars().contains(v));
core.add_lemma("viable unsat core", core.build_lemma());
core.revert_pvar(v); // at this point, v is not assigned
}
if (e->interval.currently_contains(lo))
return find_t::empty;
// find upper bound
rational hi = max_value;
e = last;
do {
if (!e->interval.currently_contains(hi))
break;
hi = e->interval.lo_val() - 1;
e = e->prev();
}
while (e != last);
if (!refine_viable(v, lo))
goto refined;
if (!refine_viable(v, hi))
goto refined;
if (lo == hi)
return find_t::singleton;
else
return find_t::multiple;
#endif
void viable::set_interval_conflict(pvar v) {
SASSERT(!s.is_assigned(v));
conflict& core = s.m_conflict;
core.init_empty();
core.logger().begin_conflict(); //header_with_var("forbidden interval lemma for v", v));
VERIFY(resolve(v, core)); // TODO: merge?
core.revert_pvar(v); // at this point, v is not assigned
}
bool viable::resolve(pvar v, conflict& core) {
@ -960,6 +1074,7 @@ namespace polysat {
m_usolver.insert(bit_width, mk_solver(bit_width));
us = m_usolver[bit_width].get();
}
SASSERT_EQ(us->scope_level(), 0);
// push once on the empty solver so we can reset it before the next use
us->push();

View file

@ -25,6 +25,7 @@ Author:
#include "math/polysat/conflict.h"
#include "math/polysat/constraint.h"
#include "math/polysat/forbidden_intervals.h"
#include <optional>
namespace polysat {
@ -39,6 +40,34 @@ namespace polysat {
resource_out,
};
namespace viable_query {
enum class query_t {
has_viable, // currently only used internally in resolve_viable
min_viable, // currently unused
max_viable, // currently unused
find_viable,
};
template <query_t mode>
struct query_result {
};
template <>
struct query_result<query_t::min_viable> {
using result_t = rational;
};
template <>
struct query_result<query_t::max_viable> {
using result_t = rational;
};
template <>
struct query_result<query_t::find_viable> {
using result_t = std::pair<rational&, rational&>;
};
}
std::ostream& operator<<(std::ostream& out, find_t x);
class viable {
@ -76,15 +105,38 @@ namespace polysat {
void propagate(pvar v, rational const& val);
enum class query_t {
has_viable, // currently only used internally in resolve_viable
min_viable, // currently unused
max_viable, // currently unused
find_viable,
};
// return true if done, false if refined
bool query_min(pvar v, rational& out_lo);
// template <query_t mode>
find_t query(query_t mode, pvar v, rational& out_lo, rational& out_hi);
// return true if done, false if refined
bool query_max(pvar v, rational& out_hi);
// return true if done, false if resource out
lbool query_min_fallback(pvar v, univariate_solver& us, rational& out_lo);
lbool query_max_fallback(pvar v, univariate_solver& us, rational& out_hi);
// return resource_out if refined
lbool query_find(pvar v, rational& out_lo, rational& out_hi);
lbool query_find_fallback(pvar v, univariate_solver& us, rational& out_lo, rational& out_hi);
/**
* Interval query with bounded refinement and fallback to bitblasting.
* @return l_true on success, l_false on conflict, l_undef on resource limit
*/
template <viable_query::query_t mode>
lbool query(pvar v, typename viable_query::query_result<mode>::result_t& out_result);
/**
* @return l_true on success, l_false on conflict, l_undef on resource limit
*/
template <viable_query::query_t mode>
lbool query_fallback(pvar v, typename viable_query::query_result<mode>::result_t& out_result);
/** Set viable conflict due to interval cover */
void set_interval_conflict(pvar v);
/** Set viable conflict due to fallback solver */
void set_fallback_conflict(pvar v, univariate_solver& us);
public:
viable(solver& s);
@ -122,17 +174,29 @@ namespace polysat {
*/
bool is_viable(pvar v, rational const& val);
/*
* Extract min and max viable values for v
/**
* Extract min viable value for v.
* @return l_true on success, l_false on conflict, l_undef on resource limit
*/
rational min_viable(pvar v);
rational max_viable(pvar v);
lbool min_viable(pvar v, rational& out_lo);
/**
* Extract max viable value for v.
* @return l_true on success, l_false on conflict, l_undef on resource limit
*/
lbool max_viable(pvar v, rational& out_hi);
/**
* Find a next viable value for variable.
*/
find_t find_viable(pvar v, rational& out_val);
/**
* Find a next viable value for variable by determining currently viable lower and upper bounds.
* @return l_true on success, l_false on conflict, l_undef on resource limit
*/
lbool find_viable(pvar v, rational& out_lo, rational& out_hi);
/**
* Retrieve the unsat core for v,
* and add the forbidden interval lemma for v (which eliminates v from the unsat core).
@ -251,6 +315,8 @@ namespace polysat {
}
class viable_fallback {
friend class viable;
solver& s;
scoped_ptr<univariate_solver_factory> m_usolver_factory;

View file

@ -38,16 +38,19 @@ namespace polysat {
auto c = s.ule(x + 3, x + 5);
s.v.intersect(xv, c);
std::cout << s.v << "\n";
std::cout << "min-max " << s.v.min_viable(xv) << " " << s.v.max_viable(xv) << "\n";
std::cout << "min " << s.v.min_viable(xv, val) << " " << val << "\n";
std::cout << "max " << s.v.max_viable(xv, val) << " " << val << "\n";
s.v.intersect(xv, s.ule(x, 2));
std::cout << s.v << "\n";
s.v.intersect(xv, s.ule(1, x));
std::cout << s.v << "\n";
std::cout << "min-max " << s.v.min_viable(xv) << " " << s.v.max_viable(xv) << "\n";
std::cout << "min " << s.v.min_viable(xv, val) << " " << val << "\n";
std::cout << "max " << s.v.max_viable(xv, val) << " " << val << "\n";
s.v.intersect(xv, s.ule(x, 3));
std::cout << s.v << "\n";
std::cout << s.v.find_viable(xv, val) << " " << val << "\n";
std::cout << "min-max " << s.v.min_viable(xv) << " " << s.v.max_viable(xv) << "\n";
std::cout << "min " << s.v.min_viable(xv, val) << " " << val << "\n";
std::cout << "max " << s.v.max_viable(xv, val) << " " << val << "\n";
s.v.intersect(xv, s.ule(3, x));
std::cout << s.v << "\n";
std::cout << s.v.find_viable(xv, val) << " " << val << "\n";