3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 01:24:08 +00:00

adding the polarity bound

This commit is contained in:
Lev Nachmanson 2023-12-23 14:02:14 -10:00 committed by Lev Nachmanson
parent d7931b9342
commit af7691224e
4 changed files with 134 additions and 99 deletions

View file

@ -25,7 +25,7 @@
#define SMALL_CUTS 1
namespace lp {
class create_cut {
struct create_cut {
lar_term & m_t; // the term to return in the cut
mpq & m_k; // the right side of the cut
explanation* m_ex; // the conflict explanation
@ -39,7 +39,8 @@ class create_cut {
#if SMALL_CUTS
mpq m_abs_max, m_big_number;
#endif
struct found_big {};
int m_polarity;
bool m_found_big;
const impq & get_value(unsigned j) const { return lia.get_value(j); }
bool is_int(unsigned j) const { return lia.column_is_int(j) || (lia.is_fixed(j) &&
@ -70,7 +71,7 @@ class create_cut {
new_a = m_fj <= m_one_minus_f ? m_fj / m_one_minus_f : ((1 - m_fj) / m_f);
lp_assert(new_a.is_pos());
m_k.addmul(new_a, lower_bound(j).x);
push_explanation(column_lower_bound_constraint(j));
push_explanation(column_lower_bound_constraint(j));
}
else {
lp_assert(at_upper(j));
@ -78,14 +79,14 @@ class create_cut {
new_a = - (m_fj <= m_f ? m_fj / m_f : ((1 - m_fj) / m_one_minus_f));
lp_assert(new_a.is_neg());
m_k.addmul(new_a, upper_bound(j).x);
push_explanation(column_upper_bound_constraint(j));
}
push_explanation(column_upper_bound_constraint(j));
}
m_t.add_monomial(new_a, j);
TRACE("gomory_cut_detail", tout << "new_a = " << new_a << ", k = " << m_k << "\n";);
#if SMALL_CUTS
// if (numerator(new_a).is_big()) throw found_big();
if (numerator(new_a) > m_big_number)
throw found_big();
m_found_big = true;
#endif
}
@ -93,25 +94,45 @@ class create_cut {
TRACE("gomory_cut_detail_real", tout << "j = " << j << ", a = " << a << ", m_k = " << m_k << "\n";);
mpq new_a;
if (at_lower(j)) {
if (a.is_pos())
if (a.is_pos()) {
// the delta is a (x - f) is positive it has to grow and fight m_one_minus_f
new_a = a / m_one_minus_f;
else
if (m_polarity != 2) {
if (m_polarity == -1) m_polarity = 2;
else m_polarity = 1;
}
}
else {
// the delta is negative and it works again m_f
new_a = - a / m_f;
if (m_polarity != 2) {
if (m_polarity == 1) m_polarity = 2;
else m_polarity = -1;
}
}
m_k.addmul(new_a, lower_bound(j).x); // is it a faster operation than
// k += lower_bound(j).x * new_a;
// k += lower_bound(j).x * new_a;
push_explanation(column_lower_bound_constraint(j));
}
else {
lp_assert(at_upper(j));
if (a.is_pos())
if (a.is_pos()) {
// the delta is works again m_f
new_a = - a / m_f;
else
new_a = - a / m_f;
if (m_polarity != 2) {
if (m_polarity == 1) m_polarity = 2;
else m_polarity = -1;
}
}
else {
// the delta is positive works again m_one_minus_f
new_a = a / m_one_minus_f;
m_k.addmul(new_a, upper_bound(j).x); // k += upper_bound(j).x * new_a;
new_a = a / m_one_minus_f;
if (m_polarity != 2) {
if (m_polarity == -1) m_polarity = 2;
else m_polarity = 1;
}
}
m_k.addmul(new_a, upper_bound(j).x); // k += upper_bound(j).x * new_a;
push_explanation(column_upper_bound_constraint(j));
}
m_t.add_monomial(new_a, j);
@ -121,7 +142,7 @@ class create_cut {
#if SMALL_CUTS
// if (numerator(new_a).is_big()) throw found_big();
if (numerator(new_a) > m_big_number)
throw found_big();
m_found_big = true;
#endif
}
@ -184,6 +205,7 @@ class create_cut {
void dump_lower_bound_expl(std::ostream & out, unsigned j) const {
out << "(assert (>= " << var_name(j) << " " << lower_bound(j).x << "))\n";
}
void dump_upper_bound_expl(std::ostream & out, unsigned j) const {
out << "(assert (<= " << var_name(j) << " " << upper_bound(j).x << "))\n";
}
@ -238,10 +260,12 @@ public:
lia_move cut() {
TRACE("gomory_cut", dump(tout););
// gomory will be t >= k and the current solution has a property t < k
m_polarity = 0; // 0: means undefined, 1, -1: the polar case, 2: the mixed case
// gomory cut will be m_t >= m_k and the current solution has a property m_t < m_k
m_k = 1;
m_t.clear();
m_ex->clear();
m_found_big = false;
TRACE("gomory_cut_detail", tout << "m_f: " << m_f << ", ";
tout << "1 - m_f: " << 1 - m_f << ", get_value(m_inf_col).x - m_f = " << get_value(m_inf_col).x - m_f << "\n";);
lp_assert(m_f.is_pos() && (get_value(m_inf_col).x - m_f).is_int());
@ -258,42 +282,59 @@ public:
#endif
for (const auto & p : m_row) {
unsigned j = p.var();
if (j == m_inf_col) {
lp_assert(p.coeff() == one_of_type<mpq>());
if (j == m_inf_col) continue;
// use -p.coeff() to make the format compatible with the format used in: Integrating Simplex with DPLL(T)
if (lia.is_fixed(j)) {
push_explanation(column_lower_bound_constraint(j));
push_explanation(column_upper_bound_constraint(j));
continue;
}
// use -p.coeff() to make the format compatible with the format used in: Integrating Simplex with DPLL(T)
try {
if (lia.is_fixed(j)) {
push_explanation(column_lower_bound_constraint(j));
push_explanation(column_upper_bound_constraint(j));
continue;
if (is_real(j))
real_case_in_gomory_cut(- p.coeff(), j);
else if (!p.coeff().is_int()) {
some_int_columns = true;
m_fj = fractional_part(-p.coeff());
m_one_minus_fj = 1 - m_fj;
int_case_in_gomory_cut(j);
if (p.coeff().is_pos()) {
if (at_lower(j)) {
if (m_polarity == -1) m_polarity = 2;
else m_polarity = 1;
}
else {
if (m_polarity == 1) m_polarity = 2;
else m_polarity = -1;
}
}
if (is_real(j))
real_case_in_gomory_cut(- p.coeff(), j);
else if (!p.coeff().is_int()) {
some_int_columns = true;
m_fj = fractional_part(-p.coeff());
m_one_minus_fj = 1 - m_fj;
int_case_in_gomory_cut(j);
else {
if (at_lower(j)) {
if (m_polarity == 1) m_polarity = 2;
else m_polarity = -1;
}
else {
if (m_polarity == -1) m_polarity = 2;
else m_polarity = 1;
}
}
}
catch (found_big) {
m_ex->clear();
m_t.clear();
m_k = 1;
if (m_found_big) {
return lia_move::undef;
}
}
if (m_t.is_empty())
return report_conflict_from_gomory_cut();
TRACE("gomory_cut", print_linear_combination_of_column_indices_only(m_t.coeffs_as_vector(), tout << "gomory cut: "); tout << " >= " << m_k << std::endl;);
if (some_int_columns)
simplify_inequality();
lp_assert(lia.current_solution_is_inf_on_cut()); // checks that indices are columns
TRACE("gomory_cut", print_linear_combination_of_column_indices_only(m_t.coeffs_as_vector(), tout << "gomory cut: "); tout << " >= " << m_k << std::endl;);
TRACE("gomory_cut_detail", dump_cut_and_constraints_as_smt_lemma(tout);
lia.lra.display(tout));
SASSERT(lia.current_solution_is_inf_on_cut()); // checks that indices are columns
lia.settings().stats().m_gomory_cuts++;
return lia_move::cut;
}
@ -403,11 +444,6 @@ public:
};
lia_move gomory::cut(lar_term & t, mpq & k, explanation* ex, unsigned basic_inf_int_j, const row_strip<mpq>& row) {
create_cut cc(t, k, ex, basic_inf_int_j, row, lia);
return cc.cut();
}
bool gomory::is_gomory_cut_target(lpvar k) {
SASSERT(lia.is_base(k));
// All non base variables must be at their bounds and assigned to rationals (that is, infinitesimals are not allowed).
@ -425,16 +461,6 @@ public:
return true;
}
lia_move gomory::get_cut(lpvar j) {
unsigned r = lia.row_of_basic_column(j);
const row_strip<mpq>& row = lra.get_row(r);
SASSERT(lra.row_is_correct(r));
SASSERT(is_gomory_cut_target(j));
lia.m_upper = false;
return cut(lia.m_t, lia.m_k, lia.m_ex, j, row);
}
// return the minimal distance from the variable value to an integer
mpq get_gomory_score(const int_solver& lia, lpvar j) {
const mpq& val = lia.get_value(j).x;
@ -486,38 +512,28 @@ public:
lia_move gomory::get_gomory_cuts(unsigned num_cuts) {
struct ex { explanation m_ex; lar_term m_term; mpq m_k; bool m_is_upper; };
struct cut_result {explanation ex; lar_term t; mpq k; int polarity; lpvar j;};
vector<cut_result> big_cuts;
struct polar_pair {int polarity; lpvar j; u_dependency *dep;};
vector<polar_pair> polar_vars;
unsigned_vector columns_for_cuts = gomory_select_int_infeasible_vars(num_cuts);
vector<ex> cuts;
for (unsigned j : columns_for_cuts) {
lia.m_ex->clear();
lia.m_t.clear();
lia.m_k.reset();
auto r = get_cut(j);
if (r != lia_move::cut)
continue;
cuts.push_back({ *lia.m_ex, lia.m_t, lia.m_k, lia.is_upper() });
if (lia.settings().get_cancel_flag())
return lia_move::undef;
}
auto is_small_cut = [&](ex const& cut) {
return all_of(cut.m_term, [&](auto ci) { return ci.coeff().is_small(); });
// define inline helper functions
bool has_small_cut = false;
auto is_small_cut = [&](lar_term const& t) {
return all_of(t, [&](auto ci) { return ci.coeff().is_small(); });
};
auto add_cut = [&](ex const& cut) {
auto add_cut = [&](cut_result const& cr) {
u_dependency* dep = nullptr;
for (auto c : cut.m_ex)
for (auto c : cr.ex)
dep = lra.join_deps(lra.dep_manager().mk_leaf(c.ci()), dep);
lp::lpvar term_index = lra.add_term(cut.m_term.coeffs_as_vector(), UINT_MAX);
lp::lpvar term_index = lra.add_term(cr.t.coeffs_as_vector(), UINT_MAX);
term_index = lra.map_term_index_to_column_index(term_index);
lra.update_column_type_and_bound(term_index,
cut.m_is_upper ? lp::lconstraint_kind::LE : lp::lconstraint_kind::GE,
cut.m_k, dep);
lp::lconstraint_kind::GE,
lia.m_k, dep);
return dep;
};
auto _check_feasible = [&](void) {
lra.find_feasible_solution();
if (!lra.is_feasible() && !lia.settings().get_cancel_flag()) {
@ -527,24 +543,34 @@ public:
return true;
};
bool has_small = false, has_large = false;
for (auto const& cut : cuts) {
if (!is_small_cut(cut)) {
has_large = true;
// start creating cuts
for (unsigned j : columns_for_cuts) {
unsigned row_index = lia.row_of_basic_column(j);
const row_strip<mpq>& row = lra.get_row(row_index);
create_cut cc(lia.m_t, lia.m_k, lia.m_ex, j, row, lia);
auto r = cc.cut();
if (r != lia_move::cut)
continue;
cut_result cr = {*lia.m_ex, lia.m_t, lia.m_k, cc.m_polarity, j};
if (!is_small_cut(lia.m_t)) {
big_cuts.push_back(cr);
continue;
}
has_small = true;
add_cut(cut);
has_small_cut = true;
auto dep = add_cut(cr);
if (abs(cr.polarity) == 1) // need to delay the update of the bounds for j in a polar case, because simplify_inequality relies on the old bounds
polar_vars.push_back({cr.polarity, j, dep}); // todo : polarity for big cuts
if (lia.settings().get_cancel_flag())
return lia_move::undef;
}
if (has_large) {
lra.push();
for (auto const& cut : cuts)
if (!is_small_cut(cut))
add_cut(cut);
if (big_cuts.size()) {
lra.push();
for (auto const& cut : big_cuts)
add_cut(cut);
bool feas = _check_feasible();
lra.pop(1);
@ -555,18 +581,25 @@ public:
return lia_move::conflict;
}
for (auto const& p : polar_vars) {
if (p.polarity == 1) {
lra.update_column_type_and_bound(p.j, lp::lconstraint_kind::LE, floor(lra.get_column_value(p.j).x), p.dep);
}
else if (p.polarity == -1) {
lra.update_column_type_and_bound(p.j, lp::lconstraint_kind::GE, ceil(lra.get_column_value(p.j).x), p.dep);
}
}
if (!_check_feasible())
return lia_move::conflict;
lia.m_ex->clear();
lia.m_t.clear();
lia.m_k.reset();
if (!lia.has_inf_int())
return lia_move::sat;
if (has_small || has_large)
if (has_small_cut || big_cuts.size())
return lia_move::continue_with_check;
lra.move_non_basic_columns_to_bounds();
return lia_move::undef;

View file

@ -31,7 +31,8 @@ lia_move int_branch::operator()() {
lia_move int_branch::create_branch_on_column(int j) {
TRACE("check_main_int", tout << "branching" << std::endl;);
lp_assert(lia.m_t.is_empty());
lia.m_t.clear();
lp_assert(j != -1);
lia.m_t.add_monomial(mpq(1), lra.column_to_reported_index(j));
if (lia.is_free(j)) {

View file

@ -198,7 +198,7 @@ namespace lp {
if (r == lia_move::undef) lra.move_non_basic_columns_to_bounds();
if (r == lia_move::undef && should_hnf_cut()) r = hnf_cut();
if (r == lia_move::undef && should_gomory_cut()) r = gomory(*this).get_gomory_cuts(2);
if (r == lia_move::undef && should_gomory_cut()) r = gomory(*this).get_gomory_cuts(1);
if (r == lia_move::undef) r = int_branch(*this)();
if (settings().get_cancel_flag()) r = lia_move::undef;
@ -242,6 +242,7 @@ namespace lp {
CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign,
tout << "m_upper = " << m_upper << std::endl;
tout << "v = " << v << ", k = " << m_k << std::endl;
tout << "term:";lra.print_term(m_t, tout) << "\n";
);
return v * sign > impq(m_k) * sign;
}

View file

@ -33,7 +33,7 @@ class lar_solver;
class lar_core_solver;
class int_solver {
friend class create_cut;
friend struct create_cut;
friend class gomory;
friend class int_cube;
friend class int_branch;