3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 05:18:44 +00:00

simplify factorization

Signed-off-by: Lev <levnach@hotmail.com>
This commit is contained in:
Lev 2018-11-26 08:08:42 -08:00 committed by Lev Nachmanson
parent 667d1be8c3
commit aefd7eefb6
3 changed files with 15 additions and 22 deletions

View file

@ -4,13 +4,13 @@ namespace nla {
void const_iterator_mon::init_vars_by_the_mask(unsigned_vector & k_vars, unsigned_vector & j_vars) const {
// the last element for m_factorization.m_rooted_vars goes to k_vars
SASSERT(m_mask.size() + 1 == m_ff->m_cmon.vars().size());
k_vars.push_back(m_ff->m_cmon.vars().back());
SASSERT(m_mask.size() + 1 == m_ff->m_vars.size());
k_vars.push_back(m_ff->m_vars.back());
for (unsigned j = 0; j < m_mask.size(); j++) {
if (m_mask[j]) {
k_vars.push_back(m_ff->m_cmon.vars()[j]);
k_vars.push_back(m_ff->m_vars[j]);
} else {
j_vars.push_back(m_ff->m_cmon.vars()[j]);
j_vars.push_back(m_ff->m_vars[j]);
}
}
}
@ -54,7 +54,7 @@ const_iterator_mon::reference const_iterator_mon::operator*() const {
unsigned j, k; rational sign;
if (!get_factors(j, k, sign))
return factorization();
return create_binary_factorization(j, k, m_ff->m_cmon.coeff() * sign);
return create_binary_factorization(j, k, sign);
}
void const_iterator_mon::advance_mask() {
@ -113,7 +113,7 @@ factorization const_iterator_mon::create_binary_factorization(lpvar j, lpvar k,
factorization const_iterator_mon::create_full_factorization() const {
factorization f;
f.vars() = m_ff->m_mon.vars();
f.vars() = m_ff->m_vars;
f.sign() = rational(1);
return f;
}

View file

@ -75,27 +75,23 @@ struct const_iterator_mon {
};
struct factorization_factory {
// returns true if found
const svector<lpvar>& m_vars;
// returns true if found
virtual bool find_monomial_of_vars(const svector<lpvar>& vars, monomial& m, rational & sign) const = 0;
unsigned m_i_mon;
const monomial& m_mon;
monomial_coeff m_cmon;
factorization_factory(unsigned i_mon, const monomial& mon, const monomial_coeff& cmon) :
m_i_mon(i_mon),
m_mon(mon),
m_cmon(cmon) {
factorization_factory(const svector<lpvar>& vars) :
m_vars(vars) {
}
const_iterator_mon begin() const {
// we keep the last element always in the first factor to avoid
// repeating a pair twice
svector<bool> mask(m_mon.vars().size() - 1, false);
svector<bool> mask(m_vars.size() - 1, false);
return const_iterator_mon(mask, this);
}
const_iterator_mon end() const {
svector<bool> mask(m_mon.vars().size() - 1, true);
svector<bool> mask(m_vars.size() - 1, true);
auto it = const_iterator_mon(mask, this);
it.m_full_factorization_returned = true;
return it;

View file

@ -478,12 +478,9 @@ struct solver::imp {
struct factorization_factory_imp: factorization_factory {
const imp& m_imp;
factorization_factory_imp(unsigned i_mon, const imp& s) :
factorization_factory(i_mon,
s.m_monomials[i_mon],
s.canonize_monomial(s.m_monomials[i_mon])
),
m_imp(s) { }
factorization_factory_imp(const svector<lpvar>& m_vars, const imp& s) :
factorization_factory(m_vars),
m_imp(s) { }
bool find_monomial_of_vars(const svector<lpvar>& vars, monomial& m, rational & sign) const {
auto it = m_imp.m_rooted_monomials_map.find(vars);