3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 09:34:08 +00:00

Fix typos.

This commit is contained in:
Bruce Mitchener 2018-01-30 20:36:12 +07:00
parent 54ba25175c
commit ae8027e594
23 changed files with 67 additions and 67 deletions

View file

@ -427,11 +427,11 @@ Version 3.0
- New Bitvector (QF_BV) solver. The new solver is only available when using the new SMT2 front-end.
- Major performace improvements.
- Major performance improvements.
- New preprocessing stack.
- Performance improvements for linear and nonlinear arithmetic. The improvements are only available when using the the SMT2 front-end.
- Performance improvements for linear and nonlinear arithmetic. The improvements are only available when using the SMT2 front-end.
- Added API for parsing SMT2 files.
@ -772,7 +772,7 @@ This release also introduces some new preprocessing features:
- More efficient destructive equality resolution DER=true.
- DISTRIBUTE_FORALL=true (distributes universal quatifiers over conjunctions, this transformation may affect pattern inference).
- DISTRIBUTE_FORALL=true (distributes universal quantifiers over conjunctions, this transformation may affect pattern inference).
- Rewriter that uses universally quantified equations PRE_DEMODULATOR=true (yes, the option name is not good, we will change it in a future release).
@ -842,7 +842,7 @@ This release introduces the following features:
It fixes the following bugs:
- Incorrect simplification of map over store in the extendted array theory. Reported by Catalin Hritcu.
- Incorrect simplification of map over store in the extended array theory. Reported by Catalin Hritcu.
- Incomplete handling of equality propagation with constant arrays. Reported by Catalin Hritcu.
@ -886,7 +886,7 @@ Version 2.0
proof object.
- Proof Objects.
The #Z3_check_assumptions retuns a proof object if
The #Z3_check_assumptions returns a proof object if
the configuration flag PROOF_MODE is set to 1 or 2.
- Partial support for non-linear arithmetic.
@ -899,4 +899,4 @@ Version 2.0
The theory of well-founded recursive data-types is supported
over the binary APIs. It supports ground satisfiability checking
for tuples, enumeration types (scalars),
lists and mututally recursive data-types.
lists and mutually recursive data-types.

View file

@ -51,7 +51,7 @@ namespace api {
class context : public tactic_manager {
struct add_plugins { add_plugins(ast_manager & m); };
context_params m_params;
bool m_user_ref_count; //!< if true, the user is responsible for managing referenc counters.
bool m_user_ref_count; //!< if true, the user is responsible for managing reference counters.
scoped_ptr<ast_manager> m_manager;
add_plugins m_plugins;
@ -158,7 +158,7 @@ namespace api {
// Create a numeral of the given sort
expr * mk_numeral_core(rational const & n, sort * s);
// Return a conjuction that will be exposed to the "external" world.
// Return a conjunction that will be exposed to the "external" world.
expr * mk_and(unsigned num_exprs, expr * const * exprs);
// Hack for preventing an AST for being GC when ref-count is not used

View file

@ -187,8 +187,8 @@ namespace z3 {
\brief The C++ API uses by defaults exceptions on errors.
For applications that don't work well with exceptions (there should be only few)
you have the ability to turn off exceptions. The tradeoffs are that applications
have to very careful about using check_error() after calls that may result in an errornous
state.
have to very careful about using check_error() after calls that may result in an
erroneous state.
*/
void set_enable_exceptions(bool f) { m_enable_exceptions = f; }
@ -213,7 +213,7 @@ namespace z3 {
/**
\brief Interrupt the current procedure being executed by any object managed by this context.
This is a soft interruption: there is no guarantee the object will actualy stop.
This is a soft interruption: there is no guarantee the object will actually stop.
*/
void interrupt() { Z3_interrupt(m_ctx); }
@ -709,7 +709,7 @@ namespace z3 {
It only makes sense to use this function if the caller can ensure that
the result is an integer or if exceptions are enabled.
If exceptions are disabled, then use the the is_numeral_i function.
If exceptions are disabled, then use the is_numeral_i function.
\pre is_numeral()
*/
@ -729,7 +729,7 @@ namespace z3 {
It only makes sense to use this function if the caller can ensure that
the result is an integer or if exceptions are enabled.
If exceptions are disabled, then use the the is_numeral_u function.
If exceptions are disabled, then use the is_numeral_u function.
\pre is_numeral()
*/
unsigned get_numeral_uint() const {

View file

@ -56,7 +56,7 @@ namespace Microsoft.Z3
public bool IsDouble { get { return m_is_double; } }
/// <summary>
/// The string representation of the the entry's value.
/// The string representation of the entry's value.
/// </summary>
public string Value
{

View file

@ -934,7 +934,7 @@ public class Context implements AutoCloseable {
* exposed. It follows the semantics prescribed by the SMT-LIB standard.
*
* You can take the floor of a real by creating an auxiliary integer Term
* {@code k} and and asserting
* {@code k} and asserting
* {@code MakeInt2Real(k) &lt;= t1 &lt; MkInt2Real(k)+1}. The argument
* must be of integer sort.
**/

View file

@ -65,7 +65,7 @@ public class Statistics extends Z3Object {
}
/**
* The string representation of the the entry's value.
* The string representation of the entry's value.
*
* @throws Z3Exception
**/

View file

@ -5741,7 +5741,7 @@ class ModelRef(Z3PPObject):
return None
def num_sorts(self):
"""Return the number of unintepreted sorts that contain an interpretation in the model `self`.
"""Return the number of uninterpreted sorts that contain an interpretation in the model `self`.
>>> A = DeclareSort('A')
>>> a, b = Consts('a b', A)
@ -5756,7 +5756,7 @@ class ModelRef(Z3PPObject):
return int(Z3_model_get_num_sorts(self.ctx.ref(), self.model))
def get_sort(self, idx):
"""Return the unintepreted sort at position `idx` < self.num_sorts().
"""Return the uninterpreted sort at position `idx` < self.num_sorts().
>>> A = DeclareSort('A')
>>> B = DeclareSort('B')
@ -5796,7 +5796,7 @@ class ModelRef(Z3PPObject):
return [ self.get_sort(i) for i in range(self.num_sorts()) ]
def get_universe(self, s):
"""Return the intepretation for the uninterpreted sort `s` in the model `self`.
"""Return the interpretation for the uninterpreted sort `s` in the model `self`.
>>> A = DeclareSort('A')
>>> a, b = Consts('a b', A)
@ -5816,7 +5816,7 @@ class ModelRef(Z3PPObject):
return None
def __getitem__(self, idx):
"""If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned. If `idx` is a declaration, then the actual interpreation is returned.
"""If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned. If `idx` is a declaration, then the actual interpretation is returned.
The elements can be retrieved using position or the actual declaration.
@ -5860,7 +5860,7 @@ class ModelRef(Z3PPObject):
return None
def decls(self):
"""Return a list with all symbols that have an interpreation in the model `self`.
"""Return a list with all symbols that have an interpretation in the model `self`.
>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> s = Solver()

View file

@ -363,7 +363,7 @@ extern "C" {
void Z3_API Z3_fixedpoint_set_reduce_assign_callback(
Z3_context c ,Z3_fixedpoint d, Z3_fixedpoint_reduce_assign_callback_fptr cb);
/** \brief Register a callback for buildling terms based on the relational operators. */
/** \brief Register a callback for building terms based on the relational operators. */
void Z3_API Z3_fixedpoint_set_reduce_app_callback(
Z3_context c, Z3_fixedpoint d, Z3_fixedpoint_reduce_app_callback_fptr cb);

View file

@ -433,7 +433,7 @@ extern "C" {
\param c logical context
\param rm term of RoundingMode sort
\param t1 term of FloatingPoint sort
\param t2 term of FloatingPoint sor
\param t2 term of FloatingPoint sort
\param t3 term of FloatingPoint sort
The result is round((t1 * t2) + t3)

View file

@ -83,7 +83,7 @@ class reduce_hypotheses {
// map from unit literals to their hypotheses-free derivations
obj_map<expr, proof*> m_units;
// -- all hypotheses in the the proof
// -- all hypotheses in the proof
obj_hashtable<expr> m_hyps;
// marks hypothetical proofs
@ -192,7 +192,7 @@ class reduce_hypotheses {
res = mk_lemma_core(args.get(0), m.get_fact(p));
compute_mark1(res);
} else if (m.is_unit_resolution(p)) {
// unit: reduce untis; reduce the first premise; rebuild unit resolution
// unit: reduce units; reduce the first premise; rebuild unit resolution
res = mk_unit_resolution_core(args.size(), args.c_ptr());
compute_mark1(res);
} else {
@ -340,7 +340,7 @@ void reduce_hypotheses(proof_ref &pr) {
class reduce_hypotheses0 {
typedef obj_hashtable<expr> expr_set;
ast_manager& m;
// reference for any expression created by the tranformation
// reference for any expression created by the transformation
expr_ref_vector m_refs;
// currently computed result
obj_map<proof,proof*> m_cache;
@ -352,7 +352,7 @@ class reduce_hypotheses0 {
unsigned_vector m_limits;
// map from proofs to active hypotheses
obj_map<proof, expr_set*> m_hypmap;
// refernce train for hypotheses sets
// reference train for hypotheses sets
ptr_vector<expr_set> m_hyprefs;
ptr_vector<expr> m_literals;
@ -492,7 +492,7 @@ public:
// replace result by m_units[m.get_fact (p)] if defined
// AG: This is the main step. Replace a hypothesis by a derivation of its consequence
if (!m_units.find(m.get_fact(p), result)) {
// restore ther result back to p
// restore the result back to p
result = p.get();
}
// compute hypothesis of the result

View file

@ -761,7 +761,7 @@ public:
return m_array_fid;
}
virtual char const * get_usage() const { return "<symbol> (<sort>+) <func-decl-ref>"; }
virtual char const * get_descr(cmd_context & ctx) const { return "declare a new array map operator with name <symbol> using the given function declaration.\n<func-decl-ref> ::= <symbol>\n | (<symbol> (<sort>*) <sort>)\n | ((_ <symbol> <numeral>+) (<sort>*) <sort>)\nThe last two cases are used to disumbiguate between declarations with the same name and/or select (indexed) builtin declarations.\nFor more details about the the array map operator, see 'Generalized and Efficient Array Decision Procedures' (FMCAD 2009).\nExample: (declare-map set-union (Int) (or (Bool Bool) Bool))\nDeclares a new function (declare-fun set-union ((Array Int Bool) (Array Int Bool)) (Array Int Bool)).\nThe instance of the map axiom for this new declaration is:\n(forall ((a1 (Array Int Bool)) (a2 (Array Int Bool)) (i Int)) (= (select (set-union a1 a2) i) (or (select a1 i) (select a2 i))))"; }
virtual char const * get_descr(cmd_context & ctx) const { return "declare a new array map operator with name <symbol> using the given function declaration.\n<func-decl-ref> ::= <symbol>\n | (<symbol> (<sort>*) <sort>)\n | ((_ <symbol> <numeral>+) (<sort>*) <sort>)\nThe last two cases are used to disumbiguate between declarations with the same name and/or select (indexed) builtin declarations.\nFor more details about the array map operator, see 'Generalized and Efficient Array Decision Procedures' (FMCAD 2009).\nExample: (declare-map set-union (Int) (or (Bool Bool) Bool))\nDeclares a new function (declare-fun set-union ((Array Int Bool) (Array Int Bool)) (Array Int Bool)).\nThe instance of the map axiom for this new declaration is:\n(forall ((a1 (Array Int Bool)) (a2 (Array Int Bool)) (i Int)) (= (select (set-union a1 a2) i) (or (select a1 i) (select a2 i))))"; }
virtual unsigned get_arity() const { return 3; }
virtual void prepare(cmd_context & ctx) { m_name = symbol::null; m_domain.reset(); }
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const {

View file

@ -112,9 +112,9 @@ namespace Duality {
};
/** This is the main solver. It takes anarbitrary (possibly cyclic)
/** This is the main solver. It takes an arbitrary (possibly cyclic)
RPFP and either annotates it with a solution, or returns a
counterexample derivation in the form of an embedd RPFP tree. */
counterexample derivation in the form of an embedded RPFP tree. */
class Duality : public Solver {

View file

@ -233,7 +233,7 @@ namespace polynomial {
/**
\brief Install a "delete polynomial" event handler.
The even hanlder is not owned by the polynomial manager.
The event handler is not owned by the polynomial manager.
If eh = 0, then it uninstall the event handler.
*/
void add_del_eh(del_eh * eh);
@ -426,7 +426,7 @@ namespace polynomial {
polynomial * flip_sign_if_lm_neg(polynomial const * p);
/**
\breif Return the gcd g of p and q.
\brief Return the gcd g of p and q.
*/
void gcd(polynomial const * p, polynomial const * q, polynomial_ref & g);
@ -853,7 +853,7 @@ namespace polynomial {
void resultant(polynomial const * p, polynomial const * q, var x, polynomial_ref & r);
/**
\brief Stroe in r the discriminant of p with respect to variable x.
\brief Store in r the discriminant of p with respect to variable x.
discriminant(p, x, r) == resultant(p, derivative(p, x), x, r)
*/
void discriminant(polynomial const * p, var x, polynomial_ref & r);
@ -959,7 +959,7 @@ namespace polynomial {
}
/**
\brief Apply substiution [x -> p/q] in r.
\brief Apply substitution [x -> p/q] in r.
That is, given r \in Z[x, y_1, .., y_m] return
polynomial q^k * r(p/q, y_1, .., y_m), where k is the maximal degree of x in r.
*/

View file

@ -152,7 +152,7 @@ public:
}
/**
\brief 'Disagonalizes' the matrix using only column operations. The reusling matrix will have -1 at pivot
\brief 'Diagonalizes' the matrix using only column operations. The resulting matrix will have -1 at pivot
elements. Returns the rank of the null space.
*/
unsigned diagonalize() {
@ -170,7 +170,7 @@ public:
m_column_pivot[j] = i;
m_row_pivot[i] = j;
// found a pivot, to make it -1 we compute the multuplier -p^-1
// found a pivot, to make it -1 we compute the multiplier -p^-1
m_zpm.set(multiplier, get(i, j));
m_zpm.inv(multiplier);
m_zpm.neg(multiplier);
@ -201,7 +201,7 @@ public:
}
/**
If rank of the matrix is n - r, we are interested in linearly indeprendent vectors v_1, ..., v_r (the basis of
If rank of the matrix is n - r, we are interested in linearly independent vectors v_1, ..., v_r (the basis of
the null space), such that v_k A = 0. This method will give one at a time. The method returns true if vector has
been computed properly. The first vector [1, 0, ..., 0] is ignored (m_null_row starts from 1).
*/
@ -417,7 +417,7 @@ bool zp_factor_square_free_berlekamp(zp_manager & upm, numeral_vector const & f,
// construct the berlekamp Q matrix to get the null space
berlekamp_matrix Q_I(upm, f);
// copy the inital polynomial to factors
// copy the initial polynomial to factors
unsigned first_factor = factors.distinct_factors();
factors.push_back(f, 1);
@ -473,7 +473,7 @@ bool zp_factor_square_free_berlekamp(zp_manager & upm, numeral_vector const & f,
// get the gcd
upm.gcd(v_k.size(), v_k.c_ptr(), current_factor.size(), current_factor.c_ptr(), gcd);
// if the gcd is 1, or the the gcd is f, we just ignroe it
// if the gcd is 1, or the gcd is f, we just ignore it
if (gcd.size() != 1 && gcd.size() != current_factor.size()) {
// get the divisor also (no need to normalize the div, both are monic)
@ -568,13 +568,13 @@ bool check_hansel_lift(z_manager & upm, numeral_vector const & C,
}
/**
Performs a Hensel lift of A and B in Z_a to Z_b, where p is prime and and a = p^{a_k}, b = p^{b_k},
Performs a Hensel lift of A and B in Z_a to Z_b, where p is prime and a = p^{a_k}, b = p^{b_k},
r = (a, b), with the following assumptions:
(1) UA + VB = 1 (mod a)
(1) UA + VB = 1 (mod a)
(2) C = A*B (mod b)
(3) (l(A), r) = 1 (importand in order to divide by A, i.e. to invert l(A))
(4) deg(A) + deg(B) = deg(C)
(3) (l(A), r) = 1 (important in order to divide by A, i.e. to invert l(A))
(4) deg(A) + deg(B) = deg(C)
The output of is two polynomials A1, B1 such that A1 = A (mod b), B1 = B (mod b),
l(A1) = l(A), deg(A1) = deg(A), deg(B1) = deg(B) and C = A1 B1 (mod b*r). Such A1, B1 are unique if
@ -625,7 +625,7 @@ void hensel_lift(z_manager & upm, numeral const & a, numeral const & b, numeral
// having (1) AU + BV = 1 (mod r) and (5) AT + BS = f (mod r), we know that
// A*(fU) + B*(fV) = f (mod r), i.e. T = fU, S = fV is a solution
// but we also know that we need an S with deg(S) <= deg(A) so we can do the following
// we know that l(A) is invertible so we can find the exact remainder of fV with A, i.e. find the qotient
// we know that l(A) is invertible so we can find the exact remainder of fV with A, i.e. find the quotient
// t in the division and set
// A*(fU + tB) + B*(fV - tA) = f
// T = fU + tB, S = fU - tA
@ -1093,7 +1093,7 @@ bool factor_square_free(z_manager & upm, numeral_vector const & f, factors & fs,
continue;
}
// if it's not square free, we also try somehting else
// if it's not square free, we also try something else
scoped_numeral_vector f_pp_zp(nm);
to_zp_manager(zp_upm, f_pp, f_pp_zp);
@ -1170,7 +1170,7 @@ bool factor_square_free(z_manager & upm, numeral_vector const & f, factors & fs,
zp_numeral_manager & zpe_nm = zpe_upm.m();
zp_factors zpe_fs(zpe_upm);
// this might give something bigger than p^e, but the lifting proocedure will update the zpe_nm
// this might give something bigger than p^e, but the lifting procedure will update the zpe_nm
// zp factors are monic, so will be the zpe factors, i.e. f_pp = zpe_fs * lc(f_pp) (mod p^e)
hensel_lift(upm, f_pp, zp_fs, e, zpe_fs);
@ -1182,7 +1182,7 @@ bool factor_square_free(z_manager & upm, numeral_vector const & f, factors & fs,
scoped_numeral f_pp_lc(nm);
zpe_nm.set(f_pp_lc, f_pp.back());
// we always keep in f_pp the the actual primitive part f_pp*lc(f_pp)
// we always keep in f_pp the actual primitive part f_pp*lc(f_pp)
upm.mul(f_pp, f_pp_lc);
// now we go through the combinations of factors to check construct the factorization
@ -1287,7 +1287,7 @@ bool factor_square_free(z_manager & upm, numeral_vector const & f, factors & fs,
fs.push_back(f_pp, k);
}
else {
// if a constant it must be 1 (it was primitve)
// if a constant it must be 1 (it was primitive)
SASSERT(f_pp.size() == 1 && nm.is_one(f_pp.back()));
}

View file

@ -34,12 +34,12 @@ namespace upolynomial {
typedef manager::scoped_numeral scoped_numeral;
/**
\breif Factor f into f = f_1^k_1 * ... * p_n^k_n, such that p_i are square-free and coprime.
\brief Factor f into f = f_1^k_1 * ... * p_n^k_n, such that p_i are square-free and coprime.
*/
void zp_square_free_factor(zp_manager & zp_upm, numeral_vector const & f, zp_factors & sq_free_factors);
/**
\brief Factor the monic square-free polynomial f from Z_p[x]. Returns true if factorization was sucesseful, or false
\brief Factor the monic square-free polynomial f from Z_p[x]. Returns true if factorization was successful, or false
if f is an irreducible square-free polynomial in Z_p[x].
*/
bool zp_factor_square_free(zp_manager & zp_upm, numeral_vector const & f, zp_factors & factors);
@ -55,17 +55,17 @@ namespace upolynomial {
bool zp_factor_square_free_berlekamp(zp_manager & zp_upm, numeral_vector const & f, zp_factors & factors, bool randomized = true);
/**
\brief Factor the polynomial f from Z_p[x]. Returns true if factorization was sucesseful, or false if f is
\brief Factor the polynomial f from Z_p[x]. Returns true if factorization was successful, or false if f is
an irreducible polynomial in Z_p[x]
*/
bool zp_factor(zp_manager & zp_upm, numeral_vector const & f, zp_factors & factors);
/**
\brief Performs a Hensel lift of A and B in Z_a to Z_b, where p is prime and and a = p^{a_k}, b = p^{b_k},
\brief Performs a Hensel lift of A and B in Z_a to Z_b, where p is prime and a = p^{a_k}, b = p^{b_k},
r = (a, b), with the following assumptions:
* UA + VB = 1 (mod a)
* C = AB (mod b)
* (l(A), r) = 1 (importand in order to divide by A, i.e. to invert l(A))
* (l(A), r) = 1 (important in order to divide by A, i.e. to invert l(A))
the output of is two polynomials A1, B1 (replacing A and B) such that A1 = A (mod b), B1 = B (mod b),
l(A1) = l(A), deg(A1) = deg(A), deg(B1) = deg(B) and C = A1 B1 (mod b*r). Such A1, B1 are unique if
r is prime. See [3] p. 138.
@ -82,7 +82,7 @@ namespace upolynomial {
void hensel_lift(z_manager & upm, numeral_vector const & f, zp_factors const & factors_p, unsigned e, zp_factors & factors_pe);
/**
\brief Factor the square-free polynomial f from Z[x]. Returns true if factorization was sucesseful, or false if
\brief Factor the square-free polynomial f from Z[x]. Returns true if factorization was successful, or false if
f is an irreducible polynomial in Z[x]. The vector of factors is cleared.
*/
bool factor_square_free(z_manager & upm, numeral_vector const & f, factors & fs, factor_params const & ps = factor_params());

View file

@ -32,7 +32,7 @@ namespace datalog {
predicates.insert(I->first);
}
// reserve pred id = 0 for initalization purposes
// reserve pred id = 0 for initialization purposes
unsigned num_preds = (unsigned)predicates.size() + 1;
// poor's man round-up log2

View file

@ -67,7 +67,7 @@ namespace datalog {
}
relation_base * sieve_relation::complement(func_decl* p) const {
//this is not precisely a complement, because we still treat the ignored collumns as
//this is not precisely a complement, because we still treat the ignored columns as
//full, but it should give reasonable results inside the product relation
relation_base * new_inner = get_inner().complement(p);
return get_plugin().mk_from_inner(get_signature(), m_inner_cols.c_ptr(), new_inner);

View file

@ -424,7 +424,7 @@ namespace datalog {
/**
\c array \c removed_cols contains column indexes to be removed in ascending order and
is terminated by a number greated than the highest column index of a join the the two tables.
is terminated by a number greater than the highest column index of a join the two tables.
This is to simplify the traversal of the array when building facts.
*/
static void concatenate_rows(const column_layout & layout1, const column_layout & layout2,
@ -436,7 +436,7 @@ namespace datalog {
columns from t2 using indexing.
\c array \c removed_cols contains column indexes to be removed in ascending order and
is terminated by a number greated than the highest column index of a join the the two tables.
is terminated by a number greater than the highest column index of a join the two tables.
This is to simplify the traversal of the array when building facts.
\c tables_swapped value means that the resulting facts should contain facts from t2 first,

View file

@ -25,7 +25,7 @@ namespace spacer {
class spacer_matrix {
public:
spacer_matrix(unsigned m, unsigned n); // m rows, n colums
spacer_matrix(unsigned m, unsigned n); // m rows, n columns
unsigned num_rows();
unsigned num_cols();

View file

@ -242,7 +242,7 @@ namespace nlsat {
}
/**
\breif Store in ps the polynomials occurring in the given literals.
\brief Store in ps the polynomials occurring in the given literals.
*/
void collect_polys(unsigned num, literal const * ls, polynomial_ref_vector & ps) {
ps.reset();
@ -332,7 +332,7 @@ namespace nlsat {
if (!is_zero(lc)) {
if (sign(lc) != 0)
return;
// lc is not the zero polynomial, but it vanished in the current interpretaion.
// lc is not the zero polynomial, but it vanished in the current interpretation.
// so we keep searching...
add_zero_assumption(lc);
}

View file

@ -387,9 +387,9 @@ static void tst9() {
static void tst10(bool use_ints) {
if (use_ints)
std::cout << "Testing multiplication performace using small ints\n";
std::cout << "Testing multiplication performance using small ints\n";
else
std::cout << "Testing multiplication performace using small rationals\n";
std::cout << "Testing multiplication performance using small rationals\n";
vector<rational> vals;
vector<rational> vals2;
vector<float> fvals;

View file

@ -47,7 +47,7 @@ public:
set_global_param('pp.decimal', 'true')
will set the parameter "decimal" in the module "pp" to true.
An exception is thrown if the the parameter name is unknown, or if the value is incorrect.
An exception is thrown if the parameter name is unknown, or if the value is incorrect.
*/
static void set(char const * name, char const * value);
static void set(symbol const & name, char const * value);
@ -57,7 +57,7 @@ public:
If the parameter is not set, then it just returns 'default'.
An exception is thrown if the the parameter name is unknown.
An exception is thrown if the parameter name is unknown.
*/
static std::string get_value(char const * name);
static std::string get_value(symbol const & name);

View file

@ -187,7 +187,7 @@ class mpz_manager {
/**
\brief Set \c a with the value stored at m_tmp[IDX], and the given sign.
\c sz is an overapproximation of the the size of the number stored at \c tmp.
\c sz is an overapproximation of the size of the number stored at \c tmp.
*/
template<int IDX>
void set(mpz & a, int sign, unsigned sz);