3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-24 20:16:00 +00:00

remove simplify dependencies

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-08-25 23:56:09 -07:00
parent 9438ff848f
commit ac0bb6a3d0
11 changed files with 108 additions and 45 deletions

View file

@ -3,13 +3,16 @@ z3_add_component(rewriter
arith_rewriter.cpp
array_rewriter.cpp
ast_counter.cpp
bit2int.cpp
bool_rewriter.cpp
bv_bounds.cpp
bv_elim2.cpp
bv_rewriter.cpp
datatype_rewriter.cpp
der.cpp
distribute_forall.cpp
dl_rewriter.cpp
elim_bounds2.cpp
enum2bv_rewriter.cpp
expr_replacer.cpp
expr_safe_replace.cpp
@ -17,6 +20,7 @@ z3_add_component(rewriter
fpa_rewriter.cpp
inj_axiom.cpp
label_rewriter.cpp
maximize_ac_sharing.cpp
mk_simplified_app.cpp
pb_rewriter.cpp
pb2bv_rewriter.cpp

View file

@ -0,0 +1,420 @@
/*++
Copyright (c) 2009 Microsoft Corporation
Module Name:
bit2cpp.cpp
Abstract:
Routines for simplifying bit2int expressions.
This propagates bv2int over arithmetical symbols as much as possible,
converting arithmetic operations into bit-vector operations.
Author:
Nikolaj Bjorner (nbjorner) 2009-08-28
Revision History:
--*/
#include "ast/ast_pp.h"
#include "ast/ast_ll_pp.h"
#include "ast/for_each_ast.h"
#include "ast/rewriter/bit2int.h"
#define CHECK(_x_) if (!(_x_)) { UNREACHABLE(); }
bit2int::bit2int(ast_manager & m) :
m_manager(m), m_bv_util(m), m_rewriter(m), m_arith_util(m), m_cache(m), m_bit0(m) {
m_bit0 = m_bv_util.mk_numeral(0,1);
}
void bit2int::operator()(expr * m, expr_ref & result, proof_ref& p) {
flush_cache();
expr_reduce emap(*this);
for_each_ast(emap, m);
result = get_cached(m);
if (m_manager.proofs_enabled() && m != result.get()) {
// TBD: rough
p = m_manager.mk_rewrite(m, result);
}
TRACE("bit2int",
tout << mk_pp(m, m_manager) << "======>\n"
<< mk_pp(result, m_manager) << "\n";);
}
unsigned bit2int::get_b2i_size(expr* n) {
SASSERT(m_bv_util.is_bv2int(n));
return m_bv_util.get_bv_size(to_app(n)->get_arg(0));
}
unsigned bit2int::get_numeral_bits(numeral const& k) {
numeral two(2);
numeral n(abs(k));
unsigned num_bits = 1;
n = div(n, two);
while (n.is_pos()) {
++num_bits;
n = div(n, two);
}
return num_bits;
}
void bit2int::align_size(expr* e, unsigned sz, expr_ref& result) {
unsigned sz1 = m_bv_util.get_bv_size(e);
SASSERT(sz1 <= sz);
result = m_rewriter.mk_zero_extend(sz-sz1, e);
}
void bit2int::align_sizes(expr_ref& a, expr_ref& b) {
unsigned sz1 = m_bv_util.get_bv_size(a);
unsigned sz2 = m_bv_util.get_bv_size(b);
expr_ref tmp(m_manager);
if (sz1 > sz2) {
tmp = m_rewriter.mk_zero_extend(sz1-sz2, b);
b = tmp;
}
else if (sz2 > sz1) {
tmp = m_rewriter.mk_zero_extend(sz2-sz1, a);
a = tmp;
}
}
bool bit2int::extract_bv(expr* n, unsigned& sz, bool& sign, expr_ref& bv) {
numeral k;
bool is_int;
if (m_bv_util.is_bv2int(n)) {
bv = to_app(n)->get_arg(0);
sz = m_bv_util.get_bv_size(bv);
sign = false;
return true;
}
else if (m_arith_util.is_numeral(n, k, is_int) && is_int) {
sz = get_numeral_bits(k);
bv = m_bv_util.mk_numeral(k, m_bv_util.mk_sort(sz));
sign = k.is_neg();
return true;
}
else {
return false;
}
}
bool bit2int::mk_add(expr* e1, expr* e2, expr_ref& result) {
unsigned sz1, sz2;
bool sign1, sign2;
expr_ref tmp1(m_manager), tmp2(m_manager), tmp3(m_manager);
if (extract_bv(e1, sz1, sign1, tmp1) && !sign1 &&
extract_bv(e2, sz2, sign2, tmp2) && !sign2) {
unsigned sz;
numeral k;
if (m_bv_util.is_numeral(tmp1, k, sz) && k.is_zero()) {
result = e2;
return true;
}
if (m_bv_util.is_numeral(tmp2, k, sz) && k.is_zero()) {
result = e1;
return true;
}
align_sizes(tmp1, tmp2);
tmp1 = m_rewriter.mk_zero_extend(1, tmp1);
tmp2 = m_rewriter.mk_zero_extend(1, tmp2);
SASSERT(m_bv_util.get_bv_size(tmp1) == m_bv_util.get_bv_size(tmp2));
tmp3 = m_rewriter.mk_bv_add(tmp1, tmp2);
result = m_rewriter.mk_bv2int(tmp3);
return true;
}
return false;
}
bool bit2int::mk_comp(eq_type ty, expr* e1, expr* e2, expr_ref& result) {
unsigned sz1, sz2;
bool sign1, sign2;
expr_ref tmp1(m_manager), tmp2(m_manager), tmp3(m_manager);
if (extract_bv(e1, sz1, sign1, tmp1) && !sign1 &&
extract_bv(e2, sz2, sign2, tmp2) && !sign2) {
align_sizes(tmp1, tmp2);
SASSERT(m_bv_util.get_bv_size(tmp1) == m_bv_util.get_bv_size(tmp2));
switch(ty) {
case lt:
tmp3 = m_rewriter.mk_ule(tmp2, tmp1);
result = m_manager.mk_not(tmp3);
break;
case le:
result = m_rewriter.mk_ule(tmp1, tmp2);
break;
case eq:
result = m_manager.mk_eq(tmp1, tmp2);
break;
}
return true;
}
return false;
}
bool bit2int::mk_mul(expr* e1, expr* e2, expr_ref& result) {
unsigned sz1, sz2;
bool sign1, sign2;
expr_ref tmp1(m_manager), tmp2(m_manager);
expr_ref tmp3(m_manager);
if (extract_bv(e1, sz1, sign1, tmp1) &&
extract_bv(e2, sz2, sign2, tmp2)) {
align_sizes(tmp1, tmp2);
tmp1 = m_rewriter.mk_zero_extend(m_bv_util.get_bv_size(tmp1), tmp1);
tmp2 = m_rewriter.mk_zero_extend(m_bv_util.get_bv_size(tmp2), tmp2);
SASSERT(m_bv_util.get_bv_size(tmp1) == m_bv_util.get_bv_size(tmp2));
tmp3 = m_rewriter.mk_bv_mul(tmp1, tmp2);
result = m_rewriter.mk_bv2int(tmp3);
if (sign1 != sign2) {
result = m_arith_util.mk_uminus(result);
}
return true;
}
return false;
}
bool bit2int::is_bv_poly(expr* n, expr_ref& pos, expr_ref& neg) {
ptr_vector<expr> todo;
expr_ref tmp(m_manager);
numeral k;
bool is_int;
todo.push_back(n);
neg = pos = m_rewriter.mk_bv2int(m_bit0);
while (!todo.empty()) {
n = todo.back();
todo.pop_back();
if (m_bv_util.is_bv2int(n)) {
CHECK(mk_add(n, pos, pos));
}
else if (m_arith_util.is_numeral(n, k, is_int) && is_int) {
if (k.is_nonneg()) {
CHECK(mk_add(n, pos, pos));
}
else {
tmp = m_arith_util.mk_numeral(-k, true);
CHECK(mk_add(tmp, neg, neg));
}
}
else if (m_arith_util.is_add(n)) {
for (unsigned i = 0; i < to_app(n)->get_num_args(); ++i) {
todo.push_back(to_app(n)->get_arg(i));
}
}
else if (m_arith_util.is_mul(n) &&
to_app(n)->get_num_args() == 2 &&
m_arith_util.is_numeral(to_app(n)->get_arg(0), k, is_int) && is_int && k.is_minus_one() &&
m_bv_util.is_bv2int(to_app(n)->get_arg(1))) {
CHECK(mk_add(to_app(n)->get_arg(1), neg, neg));
}
else if (m_arith_util.is_mul(n) &&
to_app(n)->get_num_args() == 2 &&
m_arith_util.is_numeral(to_app(n)->get_arg(1), k, is_int) && is_int && k.is_minus_one() &&
m_bv_util.is_bv2int(to_app(n)->get_arg(0))) {
CHECK(mk_add(to_app(n)->get_arg(0), neg, neg));
}
else if (m_arith_util.is_uminus(n) &&
m_bv_util.is_bv2int(to_app(n)->get_arg(0))) {
CHECK(mk_add(to_app(n)->get_arg(0), neg, neg));
}
else {
TRACE("bit2int", tout << "Not a poly: " << mk_pp(n, m_manager) << "\n";);
return false;
}
}
return true;
}
void bit2int::visit(quantifier* q) {
expr_ref result(m_manager);
result = get_cached(q->get_expr());
result = m_manager.update_quantifier(q, result);
cache_result(q, result);
}
void bit2int::visit(app* n) {
func_decl* f = n->get_decl();
unsigned num_args = n->get_num_args();
m_args.reset();
for (unsigned i = 0; i < num_args; ++i) {
m_args.push_back(get_cached(n->get_arg(i)));
}
expr* const* args = m_args.c_ptr();
bool has_b2i =
m_arith_util.is_le(n) || m_arith_util.is_ge(n) || m_arith_util.is_gt(n) ||
m_arith_util.is_lt(n) || m_manager.is_eq(n);
expr_ref result(m_manager);
for (unsigned i = 0; !has_b2i && i < num_args; ++i) {
has_b2i = m_bv_util.is_bv2int(args[i]);
}
if (!has_b2i) {
result = m_manager.mk_app(f, num_args, args);
cache_result(n, result);
return;
}
//
// bv2int(x) + bv2int(y) -> bv2int(pad(x) + pad(y))
// bv2int(x) + k -> bv2int(pad(x) + pad(k))
// bv2int(x) * bv2int(y) -> bv2int(pad(x) * pad(y))
// bv2int(x) * k -> sign(k)*bv2int(pad(x) * pad(k))
// bv2int(x) - bv2int(y) <= z -> bv2int(x) <= bv2int(y) + z
// bv2int(x) <= z - bv2int(y) -> bv2int(x) + bv2int(y) <= z
//
expr* e1 = 0, *e2 = 0;
expr_ref tmp1(m_manager), tmp2(m_manager);
expr_ref tmp3(m_manager);
expr_ref pos1(m_manager), neg1(m_manager);
expr_ref pos2(m_manager), neg2(m_manager);
expr_ref e2bv(m_manager);
bool sign2;
numeral k;
unsigned sz2;
if (num_args >= 2) {
e1 = args[0];
e2 = args[1];
}
if (m_arith_util.is_add(n) && num_args >= 1) {
result = e1;
for (unsigned i = 1; i < num_args; ++i) {
e1 = result;
e2 = args[i];
if (!mk_add(e1, e2, result)) {
result = m_manager.mk_app(f, num_args, args);
cache_result(n, result);
return;
}
}
cache_result(n, result);
}
else if (m_arith_util.is_mul(n) && num_args >= 1) {
result = e1;
for (unsigned i = 1; i < num_args; ++i) {
e1 = result;
e2 = args[i];
if (!mk_mul(e1, e2, result)) {
result = m_manager.mk_app(f, num_args, args);
cache_result(n, result);
return;
}
}
cache_result(n, result);
}
else if (m_manager.is_eq(n) &&
is_bv_poly(e1, pos1, neg1) &&
is_bv_poly(e2, pos2, neg2) &&
mk_add(pos1, neg2, tmp1) &&
mk_add(neg1, pos2, tmp2) &&
mk_comp(eq, tmp1, tmp2, result)) {
cache_result(n, result);
}
else if (m_arith_util.is_le(n) &&
is_bv_poly(e1, pos1, neg1) &&
is_bv_poly(e2, pos2, neg2) &&
mk_add(pos1, neg2, tmp1) &&
mk_add(neg1, pos2, tmp2) &&
mk_comp(le, tmp1, tmp2, result)) {
cache_result(n, result);
}
else if (m_arith_util.is_lt(n) &&
is_bv_poly(e1, pos1, neg1) &&
is_bv_poly(e2, pos2, neg2) &&
mk_add(pos1, neg2, tmp1) &&
mk_add(neg1, pos2, tmp2) &&
mk_comp(lt, tmp1, tmp2, result)) {
cache_result(n, result);
}
else if (m_arith_util.is_ge(n) &&
is_bv_poly(e1, pos1, neg1) &&
is_bv_poly(e2, pos2, neg2) &&
mk_add(pos1, neg2, tmp1) &&
mk_add(neg1, pos2, tmp2) &&
mk_comp(le, tmp2, tmp1, result)) {
cache_result(n, result);
}
else if (m_arith_util.is_gt(n) &&
is_bv_poly(e1, pos1, neg1) &&
is_bv_poly(e2, pos2, neg2) &&
mk_add(pos1, neg2, tmp1) &&
mk_add(neg1, pos2, tmp2) &&
mk_comp(lt, tmp2, tmp1, result)) {
cache_result(n, result);
}
else if (m_arith_util.is_mod(n) &&
is_bv_poly(e1, pos1, neg1) &&
extract_bv(e2, sz2, sign2, e2bv) && !sign2) {
//
// (pos1 - neg1) mod e2 = (pos1 + (e2 - (neg1 mod e2))) mod e2
//
unsigned sz_p, sz_n, sz;
bool sign_p, sign_n;
expr_ref tmp_p(m_manager), tmp_n(m_manager);
CHECK(extract_bv(pos1, sz_p, sign_p, tmp_p));
CHECK(extract_bv(neg1, sz_n, sign_n, tmp_n));
SASSERT(!sign_p && !sign_n);
// pos1 mod e2
if (m_bv_util.is_numeral(tmp_n, k, sz) && k.is_zero()) {
tmp1 = tmp_p;
tmp2 = e2bv;
align_sizes(tmp1, tmp2);
tmp3 = m_rewriter.mk_bv_urem(tmp1, tmp2);
result = m_rewriter.mk_bv2int(tmp3);
cache_result(n, result);
return;
}
// neg1 mod e2;
tmp1 = tmp_n;
tmp2 = e2bv;
align_sizes(tmp1, tmp2);
tmp3 = m_rewriter.mk_bv_urem(tmp1, tmp2);
// e2 - (neg1 mod e2)
tmp1 = e2bv;
tmp2 = tmp3;
align_sizes(tmp1, tmp2);
tmp3 = m_rewriter.mk_bv_sub(tmp1, tmp2);
// pos1 + (e2 - (neg1 mod e2))
tmp1 = tmp_p;
tmp2 = tmp3;
align_sizes(tmp1, tmp2);
tmp_p = m_rewriter.mk_zero_extend(1, tmp1);
tmp_n = m_rewriter.mk_zero_extend(1, tmp2);
tmp1 = m_rewriter.mk_bv_add(tmp_p, tmp_n);
// (pos1 + (e2 - (neg1 mod e2))) mod e2
tmp2 = e2bv;
align_sizes(tmp1, tmp2);
tmp3 = m_rewriter.mk_bv_urem(tmp1, tmp2);
result = m_rewriter.mk_bv2int(tmp3);
cache_result(n, result);
}
else {
result = m_manager.mk_app(f, num_args, args);
cache_result(n, result);
}
}
expr * bit2int::get_cached(expr * n) const {
return const_cast<bit2int*>(this)->m_cache.find(n);
}
void bit2int::cache_result(expr * n, expr * r) {
TRACE("bit2int_verbose", tout << "caching:\n" << mk_ll_pp(n, m_manager) <<
"======>\n" << mk_ll_pp(r, m_manager) << "\n";);
m_cache.insert(n, r);
}

View file

@ -0,0 +1,93 @@
/*++
Copyright (c) 2009 Microsoft Corporation
Module Name:
bit2int.h
Abstract:
Routines for simplifying bit2int expressions.
Author:
Nikolaj Bjorner (nbjorner) 2009-08-28
Revision History:
--*/
#ifndef BIT2INT_H_
#define BIT2INT_H_
#include "ast/bv_decl_plugin.h"
#include "ast/arith_decl_plugin.h"
#include "ast/act_cache.h"
#include "ast/rewriter/bv_rewriter.h"
class bit2int {
protected:
typedef rational numeral;
enum eq_type {
lt,
le,
eq
};
class expr_reduce {
bit2int& m_super;
public:
expr_reduce(bit2int& s) : m_super(s) {}
void operator()(var* v) {
m_super.cache_result(v, v);
}
void operator()(quantifier* q) {
m_super.visit(q);
}
void operator()(app* a) {
m_super.visit(a);
}
void operator()(ast* a) {}
};
typedef act_cache expr_map;
ast_manager & m_manager;
bv_util m_bv_util;
bv_rewriter m_rewriter;
arith_util m_arith_util;
expr_map m_cache; // map: ast -> ast ref. counters are incremented when inserted here.
expr_ref m_bit0;
ptr_vector<expr> m_args;
void visit(app* n);
void visit(quantifier* q);
unsigned get_b2i_size(expr * n);
bool extract_bv(expr* n, unsigned& sz, bool& sign, expr_ref& bv);
unsigned get_numeral_bits(numeral const& k);
bool is_bv_poly(expr* n, expr_ref& pos, expr_ref& neg);
bool mk_mul(expr* a, expr* b, expr_ref& result);
bool mk_comp(eq_type ty, expr* e1, expr* e2, expr_ref& result);
bool mk_add(expr* e1, expr* e2, expr_ref& result);
expr * get_cached(expr * n) const;
bool is_cached(expr * n) const { return get_cached(n) != 0; }
void cache_result(expr * n, expr * r);
void reset_cache() { m_cache.reset(); }
void flush_cache() { m_cache.cleanup(); }
void align_size(expr* e, unsigned sz, expr_ref& result);
void align_sizes(expr_ref& a, expr_ref& b);
public:
bit2int(ast_manager & m);
void operator()(expr * m, expr_ref & result, proof_ref& p);
};
#endif /* BIT2INT_H_ */

View file

@ -98,11 +98,10 @@ class bv_rewriter : public poly_rewriter<bv_rewriter_core> {
br_status mk_bv_rotate_right(unsigned n, expr * arg, expr_ref & result);
br_status mk_bv_ext_rotate_left(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_bv_ext_rotate_right(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_bv_add(expr* a, expr* b, expr_ref& result) { expr* args[2] = { a, b }; return mk_bv_add(2, args, result); }
br_status mk_bv_sub(expr* a, expr* b, expr_ref& result) { expr* args[2] = { a, b }; return mk_sub(2, args, result); }
br_status mk_bv_mul(expr* a, expr* b, expr_ref& result) { expr* args[2] = { a, b }; return mk_bv_mul(2, args, result); }
br_status mk_bv_add(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_bv_add(expr * arg1, expr * arg2, expr_ref & result) {
expr * args[2] = { arg1, arg2 };
return mk_bv_add(2, args, result);
}
br_status mk_bv_mul(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_bv_shl(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_bv_lshr(expr * arg1, expr * arg2, expr_ref & result);
@ -185,6 +184,38 @@ public:
bool hi_div0() const { return m_hi_div0; }
bv_util & get_util() { return m_util; }
#define MK_BV_BINARY(OP) \
expr_ref OP(expr* a, expr* b) { \
expr_ref result(m()); \
if (BR_FAILED == OP(a, b, result)) \
result = m_util.OP(a, b); \
return result; \
} \
expr_ref mk_zero_extend(unsigned n, expr * arg) {
expr_ref result(m());
if (BR_FAILED == mk_zero_extend(n, arg, result))
result = m_util.mk_zero_extend(n, arg);
return result;
}
MK_BV_BINARY(mk_bv_urem);
MK_BV_BINARY(mk_ule);
MK_BV_BINARY(mk_bv_add);
MK_BV_BINARY(mk_bv_mul);
MK_BV_BINARY(mk_bv_sub);
expr_ref mk_bv2int(expr* a) {
expr_ref result(m());
if (BR_FAILED == mk_bv2int(a, result))
result = m_util.mk_bv2int(a);
return result;
}
};
#endif