From abf29b57aa52be79430d52597111a78c03e1ca98 Mon Sep 17 00:00:00 2001 From: Lev Nachmanson Date: Thu, 15 Aug 2024 17:14:03 -1000 Subject: [PATCH] crash Signed-off-by: Lev Nachmanson --- src/math/lp/CMakeLists.txt | 1 + src/math/lp/dioph_eq.cpp | 64 ++ src/math/lp/dioph_eq.h | 32 + src/math/lp/int_gcd_test.cpp | 9 +- src/math/lp/int_solver.cpp | 1783 ++++++++++++++++----------------- src/math/lp/int_solver.h | 2 +- src/math/lp/lia_move.h | 2 + src/math/lp/static_matrix.cpp | 7 + src/math/lp/static_matrix.h | 2 + 9 files changed, 999 insertions(+), 903 deletions(-) create mode 100644 src/math/lp/dioph_eq.cpp create mode 100644 src/math/lp/dioph_eq.h diff --git a/src/math/lp/CMakeLists.txt b/src/math/lp/CMakeLists.txt index dd72f36ee..d6ee28466 100644 --- a/src/math/lp/CMakeLists.txt +++ b/src/math/lp/CMakeLists.txt @@ -2,6 +2,7 @@ z3_add_component(lp SOURCES core_solver_pretty_printer.cpp dense_matrix.cpp + dioph_eq.cpp emonics.cpp factorization.cpp factorization_factory_imp.cpp diff --git a/src/math/lp/dioph_eq.cpp b/src/math/lp/dioph_eq.cpp new file mode 100644 index 000000000..b1c9afe2e --- /dev/null +++ b/src/math/lp/dioph_eq.cpp @@ -0,0 +1,64 @@ +#include "math/lp/dioph_eq.h" +#include "math/lp/int_solver.h" +#include "math/lp/lar_solver.h" +#include "math/lp/lp_utils.h" + +namespace lp { + struct imp { + + int_solver& lia; + lar_solver& lra; + + imp(int_solver& lia, lar_solver& lra): lia(lia), lra(lra) {} + vector m_e; + + void init() { + int n_of_rows = lra.r_basis().size(); + unsigned skipped = 0; + for (unsigned i = 0; i < lra.r_basis().size(); i++) { + auto & row = lra.get_row(i); + lar_term t; + bool is_int = true; + for (const auto & p : row) { + if (!lia.column_is_int(p.var())) + is_int = false; + } + if (is_int) { + lar_term t; + const auto lcm = get_denominators_lcm(row); + for (const auto & p: row) { + t.add_monomial(lcm * p.coeff(), p.var()); + } + m_e.push_back(t); + } else { + skipped ++; + } + } + if (m_e.size() > 0) { + std::cout << "collected " << m_e.size() << ", skipped " << skipped << "\n"; + for (const auto & t: m_e) { + lra.print_term(t, std::cout) << "\n"; + } + std::cout << "________________________\n"; + } + } + + lia_move check() { + init(); + return lia_move::undef; + } + }; +// Constructor definition + dioph_eq::dioph_eq(int_solver& lia): lia(lia) { + m_imp = alloc(imp, lia, lia.lra); + } + dioph_eq::~dioph_eq() { + dealloc(m_imp); + } + + lia_move dioph_eq::check() { + return m_imp->check(); + + } + +} diff --git a/src/math/lp/dioph_eq.h b/src/math/lp/dioph_eq.h new file mode 100644 index 000000000..f37a2baa0 --- /dev/null +++ b/src/math/lp/dioph_eq.h @@ -0,0 +1,32 @@ +/*++ +Copyright (c) 2024 Microsoft Corporation + +Module Name: + + diophantine equations + +Abstract: + + Following "A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic" + by Alberto Griggio(griggio@fbk.eu) + +Author: + Lev Nachmanson (levnach) + +Revision History: +--*/ +#pragma once +#include "math/lp/lia_move.h" + +namespace lp { + struct imp; + class int_solver; + class dioph_eq { + int_solver& lia; + imp* m_imp; + public: + dioph_eq(int_solver& lia); + ~dioph_eq(); + lia_move check(); + }; +} diff --git a/src/math/lp/int_gcd_test.cpp b/src/math/lp/int_gcd_test.cpp index 086424c79..3615e8989 100644 --- a/src/math/lp/int_gcd_test.cpp +++ b/src/math/lp/int_gcd_test.cpp @@ -100,14 +100,7 @@ namespace lp { } return true; } - - static mpq get_denominators_lcm(const row_strip & row) { - mpq r(1); - for (auto & c : row) - r = lcm(r, denominator(c.coeff())); - return r; - } - + bool int_gcd_test::gcd_test_for_row(const static_matrix> & A, unsigned i) { auto const& row = A.m_rows[i]; unsigned basic_var = lra.r_basis()[i]; diff --git a/src/math/lp/int_solver.cpp b/src/math/lp/int_solver.cpp index 7854fde58..aac1caf18 100644 --- a/src/math/lp/int_solver.cpp +++ b/src/math/lp/int_solver.cpp @@ -1,894 +1,889 @@ -/* - Copyright (c) 2017 Microsoft Corporation - Author: Lev Nachmanson -*/ -#include "math/lp/int_solver.h" -#include "math/lp/lar_solver.h" -#include "math/lp/lp_utils.h" -#include "math/lp/monic.h" -#include "math/lp/gomory.h" -#include "math/lp/int_branch.h" -#include "math/lp/int_cube.h" - -namespace lp { - bool get_patching_deltas(const rational& x, const rational& alpha, - rational& delta_plus, rational& delta_minus); - // this will allow to enable and disable tracking of the pivot rows - struct check_return_helper { - lar_solver& lra; - bool m_track_touched_rows; - check_return_helper(lar_solver& ls) : - lra(ls), - m_track_touched_rows(lra.touched_rows_are_tracked()) { - lra.track_touched_rows(false); - } - ~check_return_helper() { - lra.track_touched_rows(m_track_touched_rows); - } - - }; - - struct imp { - int_solver& lia; - lar_solver& lra; - lar_core_solver& lrac; - unsigned m_number_of_calls = 0; - lar_term m_t; // the term to return in the cut - bool m_upper; // cut is an upper bound - explanation *m_ex; // the conflict explanation - mpq m_k; // the right side of the cut - hnf_cutter m_hnf_cutter; - unsigned m_hnf_cut_period; - unsigned_vector m_cut_vars; // variables that should not be selected for cuts - int_gcd_test m_gcd; - - bool column_is_int_inf(unsigned j) const { - return lra.column_is_int(j) && (!lia.value_is_int(j)); - } - - imp(int_solver& lia): lia(lia), lra(lia.lra), lrac(lia.lrac), m_hnf_cutter(lia), m_gcd(lia) {} - - bool has_lower(unsigned j) const { - switch (lrac.m_column_types()[j]) { - case column_type::fixed: - case column_type::boxed: - case column_type::lower_bound: - return true; - default: - return false; - } - } - - bool has_upper(unsigned j) const { - switch (lrac.m_column_types()[j]) { - case column_type::fixed: - case column_type::boxed: - case column_type::upper_bound: - return true; - default: - return false; - } - } - const impq& upper_bound(unsigned j) const { - return lra.column_upper_bound(j); - } - - const impq& lower_bound(unsigned j) const { - return lra.column_lower_bound(j); - } - - void patch_basic_column(unsigned v) { - SASSERT(!lia.is_fixed(v)); - for (auto const& c : lra.basic2row(v)) - if (patch_basic_column_on_row_cell(v, c)) - return; - } - bool try_patch_column(unsigned v, unsigned j, mpq const& delta) { - const auto & A = lra.A_r(); - if (delta < 0) { - if (has_lower(j) && lia.get_value(j) + impq(delta) < lra.get_lower_bound(j)) - return false; - } - else { - if (lia.has_upper(j) && lia.get_value(j) + impq(delta) > lra.get_upper_bound(j)) - return false; - } - for (auto const& c : A.column(j)) { - unsigned row_index = c.var(); - unsigned bj = lrac.m_r_basis[row_index]; - auto old_val = lia.get_value(bj); - auto new_val = old_val - impq(c.coeff()*delta); - if (has_lower(bj) && new_val < lra.get_lower_bound(bj)) - return false; - if (has_upper(bj) && new_val > lra.get_upper_bound(bj)) - return false; - if (old_val.is_int() && !new_val.is_int()){ - return false; // do not waste resources on this case - } - // if bj == v, then, because we are patching the lra.get_value(v), - // we just need to assert that the lra.get_value(v) would be integral. - lp_assert(bj != v || lra.from_model_in_impq_to_mpq(new_val).is_int()); - } - - lra.set_value_for_nbasic_column(j, lia.get_value(j) + impq(delta)); - return true; - } - - - unsigned random() { - return settings().random_next(); - } - - bool all_columns_are_integral() const { - for (lpvar j = 0; j < lra.number_of_vars(); j++) - if (!lra.column_is_int(j)) - return false; - return true; - } - - bool patch_basic_column_on_row_cell(unsigned v, row_cell const& c) { - if (v == c.var()) - return false; - if (!lra.column_is_int(c.var())) // could use real to patch integer - return false; - if (c.coeff().is_int()) - return false; - mpq a = fractional_part(c.coeff()); - mpq r = fractional_part(lra.get_value(v)); - lp_assert(0 < r && r < 1); - lp_assert(0 < a && a < 1); - mpq delta_plus, delta_minus; - if (!get_patching_deltas(r, a, delta_plus, delta_minus)) - return false; - - if (random() % 2) - return try_patch_column(v, c.var(), delta_plus) || - try_patch_column(v, c.var(), delta_minus); - else - return try_patch_column(v, c.var(), delta_minus) || - try_patch_column(v, c.var(), delta_plus); - } - - lia_move patch_basic_columns() { - lia.settings().stats().m_patches++; - lra.remove_fixed_vars_from_base(); - lp_assert(lia.is_feasible()); - for (unsigned j : lra.r_basis()) - if (!lra.get_value(j).is_int() && lra.column_is_int(j) && !lia.is_fixed(j)) - patch_basic_column(j); - if (!lra.has_inf_int()) { - lia.settings().stats().m_patches_success++; - return lia_move::sat; - } - return lia_move::undef; - } - - void init_dioph_eq() { - } - - lia_move solve_dioph_eq() { - init_dioph_eq(); - return lia_move::undef; - } - - lp_settings& settings() { return lra.settings(); } - - bool should_find_cube() { - return m_number_of_calls % settings().m_int_find_cube_period == 0; - } - - bool should_gomory_cut() { - return m_number_of_calls % settings().m_int_gomory_cut_period == 0; - } - - bool should_solve_dioph_eq() { - return lia.settings().dioph_eq() && m_number_of_calls % settings().m_dioph_eq_period == 0; - } - - bool should_hnf_cut() { - return settings().enable_hnf() && m_number_of_calls % settings().hnf_cut_period() == 0; - } - - lia_move hnf_cut() { - lia_move r = m_hnf_cutter.make_hnf_cut(); - if (r == lia_move::undef) - m_hnf_cut_period *= 2; - else - m_hnf_cut_period = settings().hnf_cut_period(); - return r; - } - - - lia_move check(lp::explanation * e) { - SASSERT(lra.ax_is_correct()); - if (!lra.has_inf_int()) - return lia_move::sat; - - m_t.clear(); - m_k.reset(); - m_ex = e; - m_ex->clear(); - m_upper = false; - m_cut_vars.reset(); - - lia_move r = lia_move::undef; - - if (m_gcd.should_apply()) - r = m_gcd(); - - check_return_helper pc(lra); - - if (settings().get_cancel_flag()) - return lia_move::undef; - - ++m_number_of_calls; - if (r == lia_move::undef) r = patch_basic_columns(); - if (r == lia_move::undef && should_find_cube()) r = int_cube(lia)(); - if (r == lia_move::undef && should_solve_dioph_eq()) r = solve_dioph_eq(); - if (r == lia_move::undef) lra.move_non_basic_columns_to_bounds(); - if (r == lia_move::undef && should_hnf_cut()) r = hnf_cut(); - - if (r == lia_move::undef && should_gomory_cut()) r = gomory(lia).get_gomory_cuts(2); - - if (r == lia_move::undef) r = int_branch(lia)(); - if (settings().get_cancel_flag()) r = lia_move::undef; - return r; - } - - bool cut_indices_are_columns() const { - for (lar_term::ival p : m_t) { - if (p.j() >= lra.A_r().column_count()) - return false; - } - return true; - } - - bool current_solution_is_inf_on_cut() const { - SASSERT(cut_indices_are_columns()); - const auto & x = lrac.m_r_x; - impq v = m_t.apply(x); - mpq sign = m_upper ? one_of_type() : -one_of_type(); - CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign, - tout << "m_upper = " << m_upper << std::endl; - tout << "v = " << v << ", k = " << m_k << std::endl; - tout << "term:";lra.print_term(m_t, tout) << "\n"; - ); - return v * sign > impq(m_k) * sign; - } - - int select_int_infeasible_var() { - int r_small_box = -1; - int r_small_value = -1; - int r_any_value = -1; - unsigned n_small_box = 1; - unsigned n_small_value = 1; - unsigned n_any_value = 1; - mpq range; - mpq new_range; - mpq small_value(1024); - unsigned prev_usage = 0; - - auto add_column = [&](bool improved, int& result, unsigned& n, unsigned j) { - if (result == -1) - result = j; - else if (improved && ((random() % (++n)) == 0)) - result = j; - }; - - for (unsigned j : lra.r_basis()) { - if (!column_is_int_inf(j)) - continue; - if (m_cut_vars.contains(j)) - continue; - - SASSERT(!lia.is_fixed(j)); - - unsigned usage = lra.usage_in_terms(j); - if (lia.is_boxed(j) && (new_range = lra.bound_span_x(j) - rational(2*usage)) <= small_value) { - - bool improved = new_range <= range || r_small_box == -1; - if (improved) - range = new_range; - add_column(improved, r_small_box, n_small_box, j); - continue; - } - impq const& value = lia.get_value(j); - if (abs(value.x) < small_value || - (lra.column_has_upper_bound(j) && small_value > upper_bound(j).x - value.x) || - (has_lower(j) && small_value > value.x - lower_bound(j).x)) { - TRACE("int_solver", tout << "small j" << j << "\n"); - add_column(true, r_small_value, n_small_value, j); - continue; - } - TRACE("int_solver", tout << "any j" << j << "\n"); - add_column(usage >= prev_usage, r_any_value, n_any_value, j); - if (usage > prev_usage) - prev_usage = usage; - } - - if (r_small_box != -1 && (random() % 3 != 0)) - return r_small_box; - if (r_small_value != -1 && (random() % 3) != 0) - return r_small_value; - if (r_any_value != -1) - return r_any_value; - if (r_small_box != -1) - return r_small_box; - return r_small_value; - } - - std::ostream & display_row(std::ostream & out, lp::row_strip const & row) const { - bool first = true; - auto & rslv = lrac.m_r_solver; - for (const auto &c : row) { - if (lia.is_fixed(c.var())) { - if (!lia.get_value(c.var()).is_zero()) { - impq val = lia.get_value(c.var()) * c.coeff(); - if (!first && val.is_pos()) - out << "+"; - if (val.y.is_zero()) - out << val.x << " "; - else - out << val << " "; - } - first = false; - continue; - } - if (c.coeff().is_one()) { - if (!first) - out << "+"; - } - else if (c.coeff().is_minus_one()) - out << "-"; - else { - if (c.coeff().is_pos() && !first) - out << "+"; - if (c.coeff().is_big()) - out << " b*"; - else - out << c.coeff(); - } - out << rslv.column_name(c.var()) << " "; - first = false; - } - out << "\n"; - for (const auto &c : row) { - if (lia.is_fixed(c.var())) - continue; - rslv.print_column_info(c.var(), out); - if (lia.is_base(c.var())) - out << "j" << c.var() << " base\n"; - } - return out; - } - - - }; - - - - // clang-format on - /** - * \brief find integral and minimal, in the absolute values, deltas such that x - alpha*delta is integral too. - */ - bool get_patching_deltas(const rational& x, const rational& alpha, - rational& delta_plus, rational& delta_minus) { - auto a1 = numerator(alpha); - auto a2 = denominator(alpha); - auto x1 = numerator(x); - auto x2 = denominator(x); - if (!divides(x2, a2)) - return false; - - // delta has to be integral. - // We need to find delta such that x1/x2 + (a1/a2)*delta is integral (we are going to flip the delta sign later). - // Then a2*x1/x2 + a1*delta is integral, but x2 and x1 are coprime: - // that means that t = a2/x2 is - // integral. We established that a2 = x2*t Then x1 + a1*delta*(x2/a2) = x1 - // + a1*(delta/t) is integral. Taking into account that t and a1 are - // coprime we have delta = t*k, where k is an integer. - rational t = a2 / x2; - // Now we have x1/x2 + (a1/x2)*k is integral, or (x1 + a1*k)/x2 is integral. - // It is equivalent to x1 + a1*k = x2*m, where m is an integer - // We know that a2 and a1 are coprime, and x2 divides a2, so x2 and a1 are - // coprime. We can find u and v such that u*a1 + v*x2 = 1. - rational u, v; - gcd(a1, x2, u, v); - lp_assert(gcd(a1, x2, u, v).is_one()); - lp_assert((x + (a1 / a2) * (-u * t) * x1).is_int()); - // 1 = (u- l*x2 ) * a1 + (v + l*a1)*x2, for every integer l. - rational d = u * t * x1; - // We can prove that x+alpha*d is integral, - // and any other delta, satisfying x+alpha*delta, is equal to d modulo a2. - delta_plus = mod(d, a2); - lp_assert(delta_plus > 0); - delta_minus = delta_plus - a2; - lp_assert(delta_minus < 0); - - return true; - } - - - - int_solver::int_solver(lar_solver& lar_slv) : - lra(lar_slv), - lrac(lra.m_mpq_lar_core_solver) { - m_imp = alloc(imp, *this); - lra.set_int_solver(this); - } - - int_solver::~int_solver() { - dealloc(m_imp); - } - - - lia_move int_solver::check(lp::explanation * e) { - return m_imp->check(e); - } - - - std::ostream& int_solver::display_inf_rows(std::ostream& out) const { - unsigned num = lra.A_r().column_count(); - for (unsigned v = 0; v < num; v++) { - if (column_is_int(v) && !get_value(v).is_int()) { - display_column(out, v); - } - } - - num = 0; - for (unsigned i = 0; i < lra.A_r().row_count(); i++) { - unsigned j = lrac.m_r_basis[i]; - if (column_is_int_inf(j)) { - num++; - lra.print_row(lra.A_r().m_rows[i], out); - out << "\n"; - } - } - out << "num of int infeasible: " << num << "\n"; - return out; - } - - - u_dependency* int_solver::column_upper_bound_constraint(unsigned j) const { - return lra.get_column_upper_bound_witness(j); - } - - u_dependency* int_solver::column_lower_bound_constraint(unsigned j) const { - return lra.get_column_lower_bound_witness(j); - } - - unsigned int_solver::row_of_basic_column(unsigned j) const { - return lra.row_of_basic_column(j); - } - - lp_settings& int_solver::settings() { - return lra.settings(); - } - - const lp_settings& int_solver::settings() const { - return lra.settings(); - } - - bool int_solver::column_is_int(lpvar j) const { - return lra.column_is_int(j); - } - - bool int_solver::is_real(unsigned j) const { - return !column_is_int(j); - } - - bool int_solver::value_is_int(unsigned j) const { - return lra.column_value_is_int(j); - } - - bool int_solver::is_term(unsigned j) const { - return lra.column_has_term(j); - } - - unsigned int_solver::column_count() const { - return lra.column_count(); - } - - static void set_lower(impq & l, bool & inf_l, impq const & v ) { - if (inf_l || v > l) { - l = v; - inf_l = false; - } - } - - static void set_upper(impq & u, bool & inf_u, impq const & v) { - if (inf_u || v < u) { - u = v; - inf_u = false; - } - } - - // this function assumes that all basic columns dependend on j are feasible - bool int_solver::get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) { - if (lrac.m_r_heading[j] >= 0 || is_fixed(j)) // basic or fixed var - return false; - - TRACE("random_update", display_column(tout, j) << ", is_int = " << column_is_int(j) << "\n";); - impq const & xj = get_value(j); - - inf_l = true; - inf_u = true; - l = u = zero_of_type(); - m = mpq(1); - - if (has_lower(j)) - set_lower(l, inf_l, lower_bound(j) - xj); - - if (has_upper(j)) - set_upper(u, inf_u, upper_bound(j) - xj); - - - const auto & A = lra.A_r(); - TRACE("random_update", tout << "m = " << m << "\n";); - - auto delta = [](mpq const& x, impq const& y, impq const& z) { - if (x.is_one()) - return y - z; - if (x.is_minus_one()) - return z - y; - return (y - z) / x; - }; - - for (auto c : A.column(j)) { - unsigned row_index = c.var(); - const mpq & a = c.coeff(); - unsigned i = lrac.m_r_basis[row_index]; - impq const & xi = get_value(i); - lp_assert(lrac.m_r_solver.column_is_feasible(i)); - if (column_is_int(i) && !a.is_int() && xi.is_int()) - m = lcm(m, denominator(a)); - - if (!inf_l && !inf_u && l == u) - continue; - - if (a.is_neg()) { - if (has_lower(i)) - set_lower(l, inf_l, delta(a, xi, lra.get_lower_bound(i))); - if (has_upper(i)) - set_upper(u, inf_u, delta(a, xi, lra.get_upper_bound(i))); - } - else { - if (has_upper(i)) - set_lower(l, inf_l, delta(a, xi, lra.get_upper_bound(i))); - if (has_lower(i)) - set_upper(u, inf_u, delta(a, xi, lra.get_lower_bound(i))); - } - } - - l += xj; - u += xj; - - TRACE("freedom_interval", - tout << "freedom variable for:\n"; - tout << lra.get_variable_name(j); - tout << "["; - if (inf_l) tout << "-oo"; else tout << l; - tout << "; "; - if (inf_u) tout << "oo"; else tout << u; - tout << "]\n"; - tout << "val = " << get_value(j) << "\n"; - tout << "return " << (inf_l || inf_u || l <= u); - ); - return (inf_l || inf_u || l <= u); - } - - - bool int_solver::is_feasible() const { - lp_assert( - lrac.m_r_solver.calc_current_x_is_feasible_include_non_basis() == - lrac.m_r_solver.current_x_is_feasible()); - return lrac.m_r_solver.current_x_is_feasible(); - } - - const impq & int_solver::get_value(unsigned j) const { - return lrac.m_r_x[j]; - } - - std::ostream& int_solver::display_column(std::ostream & out, unsigned j) const { - return lrac.m_r_solver.print_column_info(j, out); - } - - bool int_solver::is_base(unsigned j) const { - return lrac.m_r_heading[j] >= 0; - } - - bool int_solver::is_boxed(unsigned j) const { - return lrac.m_column_types[j] == column_type::boxed; - } - - bool int_solver::is_fixed(unsigned j) const { - return lrac.m_column_types[j] == column_type::fixed; - } - - bool int_solver::is_free(unsigned j) const { - return lrac.m_column_types[j] == column_type::free_column; - } - - bool int_solver::at_bound(unsigned j) const { - auto & mpq_solver = lrac.m_r_solver; - switch (mpq_solver.m_column_types[j] ) { - case column_type::fixed: - case column_type::boxed: - return - mpq_solver.m_lower_bounds[j] == get_value(j) || - mpq_solver.m_upper_bounds[j] == get_value(j); - case column_type::lower_bound: - return mpq_solver.m_lower_bounds[j] == get_value(j); - case column_type::upper_bound: - return mpq_solver.m_upper_bounds[j] == get_value(j); - default: - return false; - } - } - - bool int_solver::at_lower(unsigned j) const { - auto & mpq_solver = lrac.m_r_solver; - switch (mpq_solver.m_column_types[j] ) { - case column_type::fixed: - case column_type::boxed: - case column_type::lower_bound: - return mpq_solver.m_lower_bounds[j] == get_value(j); - default: - return false; - } - } - - bool int_solver::at_upper(unsigned j) const { - auto & mpq_solver = lrac.m_r_solver; - switch (mpq_solver.m_column_types[j] ) { - case column_type::fixed: - case column_type::boxed: - case column_type::upper_bound: - return mpq_solver.m_upper_bounds[j] == get_value(j); - default: - return false; - } - } - - - std::ostream& int_solver::display_row_info(std::ostream & out, unsigned row_index) const { - auto & rslv = lrac.m_r_solver; - auto const& row = rslv.m_A.m_rows[row_index]; - return display_row(out, row); - } - - std::ostream & int_solver::display_row(std::ostream & out, vector> const & row) const { - return m_imp->display_row(out, row); -} - - bool int_solver::shift_var(unsigned j, unsigned range) { - if (is_fixed(j) || is_base(j)) - return false; - if (settings().get_cancel_flag()) - return false; - bool inf_l = false, inf_u = false; - impq l, u; - mpq m; - if (!get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m)) - return false; - if (settings().get_cancel_flag()) - return false; - const impq & x = get_value(j); - // x, the value of j column, might be shifted on a multiple of m - - if (inf_l && inf_u) { - impq new_val = m * impq(lra.settings().random_next() % (range + 1)) + x; - lra.set_value_for_nbasic_column(j, new_val); - return true; - } - if (column_is_int(j)) { - if (!inf_l) - l = impq(ceil(l)); - if (!inf_u) - u = impq(floor(u)); - } - if (!inf_l && !inf_u && l >= u) - return false; - - - if (inf_u) { - SASSERT(!inf_l); - impq new_val = x + m * impq(lra.settings().random_next() % (range + 1)); - lra.set_value_for_nbasic_column(j, new_val); - return true; - } - - if (inf_l) { - SASSERT(!inf_u); - impq new_val = x - m * impq(lra.settings().random_next() % (range + 1)); - lra.set_value_for_nbasic_column(j, new_val); - return true; - } - - SASSERT(!inf_l && !inf_u); - // The shift has to be a multiple of m: let us look for s, such that the shift is m*s. - // We have new_val = x+m*s <= u, so m*s <= u-x and, finally, s <= floor((u- x)/m) = a - // The symmetric reasoning gives us s >= ceil((l-x)/m) = b - // We randomly pick s in the segment [b, a] - mpq a = floor((u - x) / m); - mpq b = ceil((l - x) / m); - mpq r = a - b; - if (!r.is_pos()) - return false; - TRACE("int_solver", tout << "a = " << a << ", b = " << b << ", r = " << r<< ", m = " << m << "\n";); - if (r < mpq(range)) - range = static_cast(r.get_uint64()); - - mpq s = b + mpq(lra.settings().random_next() % (range + 1)); - impq new_val = x + m * impq(s); - TRACE("int_solver", tout << "new_val = " << new_val << "\n";); - SASSERT(l <= new_val && new_val <= u); - lra.set_value_for_nbasic_column(j, new_val); - return true; - } - - - - void int_solver::simplify(std::function& is_root) { - return; - -#if 0 - - // in-processing simplification can go here, such as bounds improvements. - - if (!lra.is_feasible()) { - lra.find_feasible_solution(); - if (!lra.is_feasible()) - return; - } - - - lp::explanation exp; - m_ex = &exp; - m_t.clear(); - m_k.reset(); - - if (has_inf_int()) - local_gomory(5); - - stopwatch sw; - explanation exp1, exp2; - - // - // identify equalities - // - - m_equalities.reset(); - map value2roots; - - vector> coeffs; - coeffs.push_back({-rational::one(), 0}); - coeffs.push_back({rational::one(), 0}); - - num_checks = 0; - - // make sure values are sampled with respect to the same state of the Simplex. - vector values; - for (lpvar j = 0; j < lra.column_count(); ++j) - values.push_back(get_value(j).x); - - sw.reset(); - sw.start(); - start = random(); - for (lpvar j0 = 0; j0 < lra.column_count(); ++j0) { - lpvar j = (j0 + start) % lra.column_count(); - if (is_fixed(j)) - continue; - if (!lra.column_is_int(j)) - continue; - if (!is_root(j)) - continue; - rational value = values[j]; - if (!value2roots.contains(value)) { - unsigned_vector vec; - vec.push_back(j); - value2roots.insert(value, vec); - continue; - } - auto& roots = value2roots.find(value); - bool has_eq = false; - // - // Super inefficient check. There are better ways. - // 1. call into equality finder: - // the cheap equality finder can also be used. - // 2. value sweeping: - // update partitions of values based on feasible tableaus - // instead of having just the values vector use the values - // collected when the find_feasible_solution succeeds with - // a new assignment. - // 3. a more expensive equality finder: - // use the tableau to extract equalities from tight rows. - // If x = y is implied, there is a set of rows that link x and y - // and such that the variables are at their bounds. - // 4. retain information between calls: - // If simplification is invoked at the same backtracking level (or above) - // form the previous call and it is established that x <= y (but not x == y), then no need to - // recheck the inequality x <= y. - for (auto k : roots) { - bool le = false, ge = false; - u_dependency* dep = nullptr; - lra.push(); - coeffs[0].second = j; - coeffs[1].second = k; - lp::lpvar term_index = lra.add_term(coeffs, UINT_MAX); - term_index = lra.map_term_index_to_column_index(term_index); - lra.push(); - lra.update_column_type_and_bound(term_index, lp::lconstraint_kind::GE, mpq(1), nullptr); - lra.find_feasible_solution(); - if (!lra.is_feasible()) { - lra.get_infeasibility_explanation(exp1); - le = true; - } - lra.pop(1); - ++num_checks; - if (le) { - lra.push(); - lra.update_column_type_and_bound(term_index, lp::lconstraint_kind::LE, mpq(-1), nullptr); - lra.find_feasible_solution(); - if (!lra.is_feasible()) { - lra.get_infeasibility_explanation(exp2); - exp1.add_expl(exp2); - ge = true; - } - lra.pop(1); - ++num_checks; - } - lra.pop(1); - if (le && ge) { - has_eq = true; - m_equalities.push_back({j, k, exp1}); - break; - } - // artificial throttle. - if (num_checks > 10000) - break; - } - if (!has_eq) - roots.push_back(j); - - // artificial throttle. - if (num_checks > 10000) - break; - } - - sw.stop(); - std::cout << "equalities " << m_equalities.size() << " num checks " << num_checks << " time: " << sw.get_seconds() << "\n"; - std::cout.flush(); - - // - // Cuts? Eg. for 0-1 variables or bounded integers? - // - -#endif - } - lar_term const& int_solver::get_term() const { return m_imp->m_t; } - lar_term & int_solver::get_term() { return m_imp->m_t; } - mpq const& int_solver::offset() const { return m_imp->m_k; } - mpq & int_solver::offset() { return m_imp->m_k; } - - bool int_solver::is_upper() const { return m_imp->m_upper; } - bool& int_solver::is_upper() { return m_imp->m_upper; } - explanation* int_solver::expl() { return m_imp->m_ex; } - bool int_solver::column_is_int_inf(unsigned j) const { - return m_imp->column_is_int_inf(j); - } - - bool int_solver::has_lower(unsigned j) const { - return m_imp->has_lower(j); - } - - bool int_solver::has_upper(unsigned j) const { - return m_imp->has_upper(j); - } - - int int_solver::select_int_infeasible_var() { return m_imp->select_int_infeasible_var(); } - bool int_solver::current_solution_is_inf_on_cut() const { return m_imp->current_solution_is_inf_on_cut(); } - const impq & int_solver::lower_bound(unsigned j) const { return m_imp->lower_bound(j);} - const impq & int_solver::upper_bound(unsigned j) const { return m_imp->upper_bound(j);} - -} +/* + Copyright (c) 2017 Microsoft Corporation + Author: Lev Nachmanson +*/ +#include "math/lp/int_solver.h" +#include "math/lp/lar_solver.h" +#include "math/lp/lp_utils.h" +#include "math/lp/monic.h" +#include "math/lp/gomory.h" +#include "math/lp/int_branch.h" +#include "math/lp/int_cube.h" +#include "math/lp/dioph_eq.h" + +namespace lp { + bool get_patching_deltas(const rational& x, const rational& alpha, + rational& delta_plus, rational& delta_minus); + // this will allow to enable and disable tracking of the pivot rows + struct check_return_helper { + lar_solver& lra; + bool m_track_touched_rows; + check_return_helper(lar_solver& ls) : + lra(ls), + m_track_touched_rows(lra.touched_rows_are_tracked()) { + lra.track_touched_rows(false); + } + ~check_return_helper() { + lra.track_touched_rows(m_track_touched_rows); + } + + }; + + struct imp { + int_solver& lia; + lar_solver& lra; + lar_core_solver& lrac; + unsigned m_number_of_calls = 0; + lar_term m_t; // the term to return in the cut + bool m_upper; // cut is an upper bound + explanation *m_ex; // the conflict explanation + mpq m_k; // the right side of the cut + hnf_cutter m_hnf_cutter; + unsigned m_hnf_cut_period; + int_gcd_test m_gcd; + + bool column_is_int_inf(unsigned j) const { + return lra.column_is_int(j) && (!lia.value_is_int(j)); + } + + imp(int_solver& lia): lia(lia), lra(lia.lra), lrac(lia.lrac), m_hnf_cutter(lia), m_gcd(lia) {} + + bool has_lower(unsigned j) const { + switch (lrac.m_column_types()[j]) { + case column_type::fixed: + case column_type::boxed: + case column_type::lower_bound: + return true; + default: + return false; + } + } + + bool has_upper(unsigned j) const { + switch (lrac.m_column_types()[j]) { + case column_type::fixed: + case column_type::boxed: + case column_type::upper_bound: + return true; + default: + return false; + } + } + const impq& upper_bound(unsigned j) const { + return lra.column_upper_bound(j); + } + + const impq& lower_bound(unsigned j) const { + return lra.column_lower_bound(j); + } + + void patch_basic_column(unsigned v) { + SASSERT(!lia.is_fixed(v)); + for (auto const& c : lra.basic2row(v)) + if (patch_basic_column_on_row_cell(v, c)) + return; + } + bool try_patch_column(unsigned v, unsigned j, mpq const& delta) { + const auto & A = lra.A_r(); + if (delta < 0) { + if (has_lower(j) && lia.get_value(j) + impq(delta) < lra.get_lower_bound(j)) + return false; + } + else { + if (lia.has_upper(j) && lia.get_value(j) + impq(delta) > lra.get_upper_bound(j)) + return false; + } + for (auto const& c : A.column(j)) { + unsigned row_index = c.var(); + unsigned bj = lrac.m_r_basis[row_index]; + auto old_val = lia.get_value(bj); + auto new_val = old_val - impq(c.coeff()*delta); + if (has_lower(bj) && new_val < lra.get_lower_bound(bj)) + return false; + if (has_upper(bj) && new_val > lra.get_upper_bound(bj)) + return false; + if (old_val.is_int() && !new_val.is_int()){ + return false; // do not waste resources on this case + } + // if bj == v, then, because we are patching the lra.get_value(v), + // we just need to assert that the lra.get_value(v) would be integral. + lp_assert(bj != v || lra.from_model_in_impq_to_mpq(new_val).is_int()); + } + + lra.set_value_for_nbasic_column(j, lia.get_value(j) + impq(delta)); + return true; + } + + + unsigned random() { + return settings().random_next(); + } + + bool all_columns_are_integral() const { + for (lpvar j = 0; j < lra.number_of_vars(); j++) + if (!lra.column_is_int(j)) + return false; + return true; + } + + bool patch_basic_column_on_row_cell(unsigned v, row_cell const& c) { + if (v == c.var()) + return false; + if (!lra.column_is_int(c.var())) // could use real to patch integer + return false; + if (c.coeff().is_int()) + return false; + mpq a = fractional_part(c.coeff()); + mpq r = fractional_part(lra.get_value(v)); + lp_assert(0 < r && r < 1); + lp_assert(0 < a && a < 1); + mpq delta_plus, delta_minus; + if (!get_patching_deltas(r, a, delta_plus, delta_minus)) + return false; + + if (random() % 2) + return try_patch_column(v, c.var(), delta_plus) || + try_patch_column(v, c.var(), delta_minus); + else + return try_patch_column(v, c.var(), delta_minus) || + try_patch_column(v, c.var(), delta_plus); + } + + lia_move patch_basic_columns() { + lia.settings().stats().m_patches++; + lra.remove_fixed_vars_from_base(); + lp_assert(lia.is_feasible()); + for (unsigned j : lra.r_basis()) + if (!lra.get_value(j).is_int() && lra.column_is_int(j) && !lia.is_fixed(j)) + patch_basic_column(j); + if (!lra.has_inf_int()) { + lia.settings().stats().m_patches_success++; + return lia_move::sat; + } + return lia_move::undef; + } + + lia_move solve_dioph_eq() { + //dioph_eq de(lia); + return lia_move::undef; + } + + lp_settings& settings() { return lra.settings(); } + + bool should_find_cube() { + return m_number_of_calls % settings().m_int_find_cube_period == 0; + } + + bool should_gomory_cut() { + return m_number_of_calls % settings().m_int_gomory_cut_period == 0; + } + + bool should_solve_dioph_eq() { + return lia.settings().dioph_eq() && m_number_of_calls % settings().m_dioph_eq_period == 0; + } + + bool should_hnf_cut() { + return settings().enable_hnf() && m_number_of_calls % settings().hnf_cut_period() == 0; + } + + lia_move hnf_cut() { + lia_move r = m_hnf_cutter.make_hnf_cut(); + if (r == lia_move::undef) + m_hnf_cut_period *= 2; + else + m_hnf_cut_period = settings().hnf_cut_period(); + return r; + } + + + lia_move check(lp::explanation * e) { + SASSERT(lra.ax_is_correct()); + if (!lra.has_inf_int()) + return lia_move::sat; + + m_t.clear(); + m_k.reset(); + m_ex = e; + m_ex->clear(); + m_upper = false; + + lia_move r = lia_move::undef; + + if (m_gcd.should_apply()) + r = m_gcd(); + + check_return_helper pc(lra); + + if (settings().get_cancel_flag()) + return lia_move::undef; + + ++m_number_of_calls; + if (r == lia_move::undef) r = patch_basic_columns(); + if (r == lia_move::undef && should_find_cube()) r = int_cube(lia)(); + if (r == lia_move::undef && should_solve_dioph_eq()) r = solve_dioph_eq(); + if (r == lia_move::undef) lra.move_non_basic_columns_to_bounds(); + if (r == lia_move::undef && should_hnf_cut()) r = hnf_cut(); + + if (r == lia_move::undef && should_gomory_cut()) r = gomory(lia).get_gomory_cuts(2); + + if (r == lia_move::undef) r = int_branch(lia)(); + if (settings().get_cancel_flag()) r = lia_move::undef; + return r; + } + + bool cut_indices_are_columns() const { + for (lar_term::ival p : m_t) { + if (p.j() >= lra.A_r().column_count()) + return false; + } + return true; + } + + bool current_solution_is_inf_on_cut() const { + SASSERT(cut_indices_are_columns()); + const auto & x = lrac.m_r_x; + impq v = m_t.apply(x); + mpq sign = m_upper ? one_of_type() : -one_of_type(); + CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign, + tout << "m_upper = " << m_upper << std::endl; + tout << "v = " << v << ", k = " << m_k << std::endl; + tout << "term:";lra.print_term(m_t, tout) << "\n"; + ); + return v * sign > impq(m_k) * sign; + } + + int select_int_infeasible_var() { + int r_small_box = -1; + int r_small_value = -1; + int r_any_value = -1; + unsigned n_small_box = 1; + unsigned n_small_value = 1; + unsigned n_any_value = 1; + mpq range; + mpq new_range; + mpq small_value(1024); + unsigned prev_usage = 0; + + auto add_column = [&](bool improved, int& result, unsigned& n, unsigned j) { + if (result == -1) + result = j; + else if (improved && ((random() % (++n)) == 0)) + result = j; + }; + + for (unsigned j : lra.r_basis()) { + if (!column_is_int_inf(j)) + continue; + + SASSERT(!lia.is_fixed(j)); + + unsigned usage = lra.usage_in_terms(j); + if (lia.is_boxed(j) && (new_range = lra.bound_span_x(j) - rational(2*usage)) <= small_value) { + + bool improved = new_range <= range || r_small_box == -1; + if (improved) + range = new_range; + add_column(improved, r_small_box, n_small_box, j); + continue; + } + impq const& value = lia.get_value(j); + if (abs(value.x) < small_value || + (lra.column_has_upper_bound(j) && small_value > upper_bound(j).x - value.x) || + (has_lower(j) && small_value > value.x - lower_bound(j).x)) { + TRACE("int_solver", tout << "small j" << j << "\n"); + add_column(true, r_small_value, n_small_value, j); + continue; + } + TRACE("int_solver", tout << "any j" << j << "\n"); + add_column(usage >= prev_usage, r_any_value, n_any_value, j); + if (usage > prev_usage) + prev_usage = usage; + } + + if (r_small_box != -1 && (random() % 3 != 0)) + return r_small_box; + if (r_small_value != -1 && (random() % 3) != 0) + return r_small_value; + if (r_any_value != -1) + return r_any_value; + if (r_small_box != -1) + return r_small_box; + return r_small_value; + } + + std::ostream & display_row(std::ostream & out, lp::row_strip const & row) const { + bool first = true; + auto & rslv = lrac.m_r_solver; + for (const auto &c : row) { + if (lia.is_fixed(c.var())) { + if (!lia.get_value(c.var()).is_zero()) { + impq val = lia.get_value(c.var()) * c.coeff(); + if (!first && val.is_pos()) + out << "+"; + if (val.y.is_zero()) + out << val.x << " "; + else + out << val << " "; + } + first = false; + continue; + } + if (c.coeff().is_one()) { + if (!first) + out << "+"; + } + else if (c.coeff().is_minus_one()) + out << "-"; + else { + if (c.coeff().is_pos() && !first) + out << "+"; + if (c.coeff().is_big()) + out << " b*"; + else + out << c.coeff(); + } + out << rslv.column_name(c.var()) << " "; + first = false; + } + out << "\n"; + for (const auto &c : row) { + if (lia.is_fixed(c.var())) + continue; + rslv.print_column_info(c.var(), out); + if (lia.is_base(c.var())) + out << "j" << c.var() << " base\n"; + } + return out; + } + + + }; + + + + // clang-format on + /** + * \brief find integral and minimal, in the absolute values, deltas such that x - alpha*delta is integral too. + */ + bool get_patching_deltas(const rational& x, const rational& alpha, + rational& delta_plus, rational& delta_minus) { + auto a1 = numerator(alpha); + auto a2 = denominator(alpha); + auto x1 = numerator(x); + auto x2 = denominator(x); + if (!divides(x2, a2)) + return false; + + // delta has to be integral. + // We need to find delta such that x1/x2 + (a1/a2)*delta is integral (we are going to flip the delta sign later). + // Then a2*x1/x2 + a1*delta is integral, but x2 and x1 are coprime: + // that means that t = a2/x2 is + // integral. We established that a2 = x2*t Then x1 + a1*delta*(x2/a2) = x1 + // + a1*(delta/t) is integral. Taking into account that t and a1 are + // coprime we have delta = t*k, where k is an integer. + rational t = a2 / x2; + // Now we have x1/x2 + (a1/x2)*k is integral, or (x1 + a1*k)/x2 is integral. + // It is equivalent to x1 + a1*k = x2*m, where m is an integer + // We know that a2 and a1 are coprime, and x2 divides a2, so x2 and a1 are + // coprime. We can find u and v such that u*a1 + v*x2 = 1. + rational u, v; + gcd(a1, x2, u, v); + lp_assert(gcd(a1, x2, u, v).is_one()); + lp_assert((x + (a1 / a2) * (-u * t) * x1).is_int()); + // 1 = (u- l*x2 ) * a1 + (v + l*a1)*x2, for every integer l. + rational d = u * t * x1; + // We can prove that x+alpha*d is integral, + // and any other delta, satisfying x+alpha*delta, is equal to d modulo a2. + delta_plus = mod(d, a2); + lp_assert(delta_plus > 0); + delta_minus = delta_plus - a2; + lp_assert(delta_minus < 0); + + return true; + } + + + + int_solver::int_solver(lar_solver& lar_slv) : + lra(lar_slv), + lrac(lra.m_mpq_lar_core_solver) { + m_imp = alloc(imp, *this); + lra.set_int_solver(this); + } + + int_solver::~int_solver() { + dealloc(m_imp); + } + + + lia_move int_solver::check(lp::explanation * e) { + return m_imp->check(e); + } + + + std::ostream& int_solver::display_inf_rows(std::ostream& out) const { + unsigned num = lra.A_r().column_count(); + for (unsigned v = 0; v < num; v++) { + if (column_is_int(v) && !get_value(v).is_int()) { + display_column(out, v); + } + } + + num = 0; + for (unsigned i = 0; i < lra.A_r().row_count(); i++) { + unsigned j = lrac.m_r_basis[i]; + if (column_is_int_inf(j)) { + num++; + lra.print_row(lra.A_r().m_rows[i], out); + out << "\n"; + } + } + out << "num of int infeasible: " << num << "\n"; + return out; + } + + + u_dependency* int_solver::column_upper_bound_constraint(unsigned j) const { + return lra.get_column_upper_bound_witness(j); + } + + u_dependency* int_solver::column_lower_bound_constraint(unsigned j) const { + return lra.get_column_lower_bound_witness(j); + } + + unsigned int_solver::row_of_basic_column(unsigned j) const { + return lra.row_of_basic_column(j); + } + + lp_settings& int_solver::settings() { + return lra.settings(); + } + + const lp_settings& int_solver::settings() const { + return lra.settings(); + } + + bool int_solver::column_is_int(lpvar j) const { + return lra.column_is_int(j); + } + + bool int_solver::is_real(unsigned j) const { + return !column_is_int(j); + } + + bool int_solver::value_is_int(unsigned j) const { + return lra.column_value_is_int(j); + } + + bool int_solver::is_term(unsigned j) const { + return lra.column_has_term(j); + } + + unsigned int_solver::column_count() const { + return lra.column_count(); + } + + + static void set_lower(impq & l, bool & inf_l, impq const & v ) { + if (inf_l || v > l) { + l = v; + inf_l = false; + } + } + + static void set_upper(impq & u, bool & inf_u, impq const & v) { + if (inf_u || v < u) { + u = v; + inf_u = false; + } + } + + // this function assumes that all basic columns dependend on j are feasible + bool int_solver::get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) { + if (lrac.m_r_heading[j] >= 0 || is_fixed(j)) // basic or fixed var + return false; + + TRACE("random_update", display_column(tout, j) << ", is_int = " << column_is_int(j) << "\n";); + impq const & xj = get_value(j); + + inf_l = true; + inf_u = true; + l = u = zero_of_type(); + m = mpq(1); + + if (has_lower(j)) + set_lower(l, inf_l, lower_bound(j) - xj); + + if (has_upper(j)) + set_upper(u, inf_u, upper_bound(j) - xj); + + + const auto & A = lra.A_r(); + TRACE("random_update", tout << "m = " << m << "\n";); + + auto delta = [](mpq const& x, impq const& y, impq const& z) { + if (x.is_one()) + return y - z; + if (x.is_minus_one()) + return z - y; + return (y - z) / x; + }; + + for (auto c : A.column(j)) { + unsigned row_index = c.var(); + const mpq & a = c.coeff(); + unsigned i = lrac.m_r_basis[row_index]; + impq const & xi = get_value(i); + lp_assert(lrac.m_r_solver.column_is_feasible(i)); + if (column_is_int(i) && !a.is_int() && xi.is_int()) + m = lcm(m, denominator(a)); + + if (!inf_l && !inf_u && l == u) + continue; + + if (a.is_neg()) { + if (has_lower(i)) + set_lower(l, inf_l, delta(a, xi, lra.get_lower_bound(i))); + if (has_upper(i)) + set_upper(u, inf_u, delta(a, xi, lra.get_upper_bound(i))); + } + else { + if (has_upper(i)) + set_lower(l, inf_l, delta(a, xi, lra.get_upper_bound(i))); + if (has_lower(i)) + set_upper(u, inf_u, delta(a, xi, lra.get_lower_bound(i))); + } + } + + l += xj; + u += xj; + + TRACE("freedom_interval", + tout << "freedom variable for:\n"; + tout << lra.get_variable_name(j); + tout << "["; + if (inf_l) tout << "-oo"; else tout << l; + tout << "; "; + if (inf_u) tout << "oo"; else tout << u; + tout << "]\n"; + tout << "val = " << get_value(j) << "\n"; + tout << "return " << (inf_l || inf_u || l <= u); + ); + return (inf_l || inf_u || l <= u); + } + + + bool int_solver::is_feasible() const { + lp_assert( + lrac.m_r_solver.calc_current_x_is_feasible_include_non_basis() == + lrac.m_r_solver.current_x_is_feasible()); + return lrac.m_r_solver.current_x_is_feasible(); + } + + const impq & int_solver::get_value(unsigned j) const { + return lrac.m_r_x[j]; + } + + std::ostream& int_solver::display_column(std::ostream & out, unsigned j) const { + return lrac.m_r_solver.print_column_info(j, out); + } + + bool int_solver::is_base(unsigned j) const { + return lrac.m_r_heading[j] >= 0; + } + + bool int_solver::is_boxed(unsigned j) const { + return lrac.m_column_types[j] == column_type::boxed; + } + + bool int_solver::is_fixed(unsigned j) const { + return lrac.m_column_types[j] == column_type::fixed; + } + + bool int_solver::is_free(unsigned j) const { + return lrac.m_column_types[j] == column_type::free_column; + } + + bool int_solver::at_bound(unsigned j) const { + auto & mpq_solver = lrac.m_r_solver; + switch (mpq_solver.m_column_types[j] ) { + case column_type::fixed: + case column_type::boxed: + return + mpq_solver.m_lower_bounds[j] == get_value(j) || + mpq_solver.m_upper_bounds[j] == get_value(j); + case column_type::lower_bound: + return mpq_solver.m_lower_bounds[j] == get_value(j); + case column_type::upper_bound: + return mpq_solver.m_upper_bounds[j] == get_value(j); + default: + return false; + } + } + + bool int_solver::at_lower(unsigned j) const { + auto & mpq_solver = lrac.m_r_solver; + switch (mpq_solver.m_column_types[j] ) { + case column_type::fixed: + case column_type::boxed: + case column_type::lower_bound: + return mpq_solver.m_lower_bounds[j] == get_value(j); + default: + return false; + } + } + + bool int_solver::at_upper(unsigned j) const { + auto & mpq_solver = lrac.m_r_solver; + switch (mpq_solver.m_column_types[j] ) { + case column_type::fixed: + case column_type::boxed: + case column_type::upper_bound: + return mpq_solver.m_upper_bounds[j] == get_value(j); + default: + return false; + } + } + + + std::ostream& int_solver::display_row_info(std::ostream & out, unsigned row_index) const { + auto & rslv = lrac.m_r_solver; + auto const& row = rslv.m_A.m_rows[row_index]; + return display_row(out, row); + } + + std::ostream & int_solver::display_row(std::ostream & out, vector> const & row) const { + return m_imp->display_row(out, row); +} + + bool int_solver::shift_var(unsigned j, unsigned range) { + if (is_fixed(j) || is_base(j)) + return false; + if (settings().get_cancel_flag()) + return false; + bool inf_l = false, inf_u = false; + impq l, u; + mpq m; + if (!get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m)) + return false; + if (settings().get_cancel_flag()) + return false; + const impq & x = get_value(j); + // x, the value of j column, might be shifted on a multiple of m + + if (inf_l && inf_u) { + impq new_val = m * impq(lra.settings().random_next() % (range + 1)) + x; + lra.set_value_for_nbasic_column(j, new_val); + return true; + } + if (column_is_int(j)) { + if (!inf_l) + l = impq(ceil(l)); + if (!inf_u) + u = impq(floor(u)); + } + if (!inf_l && !inf_u && l >= u) + return false; + + + if (inf_u) { + SASSERT(!inf_l); + impq new_val = x + m * impq(lra.settings().random_next() % (range + 1)); + lra.set_value_for_nbasic_column(j, new_val); + return true; + } + + if (inf_l) { + SASSERT(!inf_u); + impq new_val = x - m * impq(lra.settings().random_next() % (range + 1)); + lra.set_value_for_nbasic_column(j, new_val); + return true; + } + + SASSERT(!inf_l && !inf_u); + // The shift has to be a multiple of m: let us look for s, such that the shift is m*s. + // We have new_val = x+m*s <= u, so m*s <= u-x and, finally, s <= floor((u- x)/m) = a + // The symmetric reasoning gives us s >= ceil((l-x)/m) = b + // We randomly pick s in the segment [b, a] + mpq a = floor((u - x) / m); + mpq b = ceil((l - x) / m); + mpq r = a - b; + if (!r.is_pos()) + return false; + TRACE("int_solver", tout << "a = " << a << ", b = " << b << ", r = " << r<< ", m = " << m << "\n";); + if (r < mpq(range)) + range = static_cast(r.get_uint64()); + + mpq s = b + mpq(lra.settings().random_next() % (range + 1)); + impq new_val = x + m * impq(s); + TRACE("int_solver", tout << "new_val = " << new_val << "\n";); + SASSERT(l <= new_val && new_val <= u); + lra.set_value_for_nbasic_column(j, new_val); + return true; + } + + + + void int_solver::simplify(std::function& is_root) { + return; + +#if 0 + + // in-processing simplification can go here, such as bounds improvements. + + if (!lra.is_feasible()) { + lra.find_feasible_solution(); + if (!lra.is_feasible()) + return; + } + + + lp::explanation exp; + m_ex = &exp; + m_t.clear(); + m_k.reset(); + + if (has_inf_int()) + local_gomory(5); + + stopwatch sw; + explanation exp1, exp2; + + // + // identify equalities + // + + m_equalities.reset(); + map value2roots; + + vector> coeffs; + coeffs.push_back({-rational::one(), 0}); + coeffs.push_back({rational::one(), 0}); + + num_checks = 0; + + // make sure values are sampled with respect to the same state of the Simplex. + vector values; + for (lpvar j = 0; j < lra.column_count(); ++j) + values.push_back(get_value(j).x); + + sw.reset(); + sw.start(); + start = random(); + for (lpvar j0 = 0; j0 < lra.column_count(); ++j0) { + lpvar j = (j0 + start) % lra.column_count(); + if (is_fixed(j)) + continue; + if (!lra.column_is_int(j)) + continue; + if (!is_root(j)) + continue; + rational value = values[j]; + if (!value2roots.contains(value)) { + unsigned_vector vec; + vec.push_back(j); + value2roots.insert(value, vec); + continue; + } + auto& roots = value2roots.find(value); + bool has_eq = false; + // + // Super inefficient check. There are better ways. + // 1. call into equality finder: + // the cheap equality finder can also be used. + // 2. value sweeping: + // update partitions of values based on feasible tableaus + // instead of having just the values vector use the values + // collected when the find_feasible_solution succeeds with + // a new assignment. + // 3. a more expensive equality finder: + // use the tableau to extract equalities from tight rows. + // If x = y is implied, there is a set of rows that link x and y + // and such that the variables are at their bounds. + // 4. retain information between calls: + // If simplification is invoked at the same backtracking level (or above) + // form the previous call and it is established that x <= y (but not x == y), then no need to + // recheck the inequality x <= y. + for (auto k : roots) { + bool le = false, ge = false; + u_dependency* dep = nullptr; + lra.push(); + coeffs[0].second = j; + coeffs[1].second = k; + lp::lpvar term_index = lra.add_term(coeffs, UINT_MAX); + term_index = lra.map_term_index_to_column_index(term_index); + lra.push(); + lra.update_column_type_and_bound(term_index, lp::lconstraint_kind::GE, mpq(1), nullptr); + lra.find_feasible_solution(); + if (!lra.is_feasible()) { + lra.get_infeasibility_explanation(exp1); + le = true; + } + lra.pop(1); + ++num_checks; + if (le) { + lra.push(); + lra.update_column_type_and_bound(term_index, lp::lconstraint_kind::LE, mpq(-1), nullptr); + lra.find_feasible_solution(); + if (!lra.is_feasible()) { + lra.get_infeasibility_explanation(exp2); + exp1.add_expl(exp2); + ge = true; + } + lra.pop(1); + ++num_checks; + } + lra.pop(1); + if (le && ge) { + has_eq = true; + m_equalities.push_back({j, k, exp1}); + break; + } + // artificial throttle. + if (num_checks > 10000) + break; + } + if (!has_eq) + roots.push_back(j); + + // artificial throttle. + if (num_checks > 10000) + break; + } + + sw.stop(); + std::cout << "equalities " << m_equalities.size() << " num checks " << num_checks << " time: " << sw.get_seconds() << "\n"; + std::cout.flush(); + + // + // Cuts? Eg. for 0-1 variables or bounded integers? + // + +#endif + } + lar_term const& int_solver::get_term() const { return m_imp->m_t; } + lar_term & int_solver::get_term() { return m_imp->m_t; } + mpq const& int_solver::offset() const { return m_imp->m_k; } + mpq & int_solver::offset() { return m_imp->m_k; } + + bool int_solver::is_upper() const { return m_imp->m_upper; } + bool& int_solver::is_upper() { return m_imp->m_upper; } + explanation* int_solver::expl() { return m_imp->m_ex; } + bool int_solver::column_is_int_inf(unsigned j) const { + return m_imp->column_is_int_inf(j); + } + + bool int_solver::has_lower(unsigned j) const { + return m_imp->has_lower(j); + } + + bool int_solver::has_upper(unsigned j) const { + return m_imp->has_upper(j); + } + + int int_solver::select_int_infeasible_var() { return m_imp->select_int_infeasible_var(); } + bool int_solver::current_solution_is_inf_on_cut() const { return m_imp->current_solution_is_inf_on_cut(); } + const impq & int_solver::lower_bound(unsigned j) const { return m_imp->lower_bound(j);} + const impq & int_solver::upper_bound(unsigned j) const { return m_imp->upper_bound(j);} + +} diff --git a/src/math/lp/int_solver.h b/src/math/lp/int_solver.h index 64d452196..02d6aa519 100644 --- a/src/math/lp/int_solver.h +++ b/src/math/lp/int_solver.h @@ -40,7 +40,7 @@ class int_solver { friend class int_gcd_test; friend class hnf_cutter; friend struct imp; - + friend class dioph_eq; lar_solver& lra; lar_core_solver& lrac; imp* m_imp; diff --git a/src/math/lp/lia_move.h b/src/math/lp/lia_move.h index 75ff67dcd..a082efb06 100644 --- a/src/math/lp/lia_move.h +++ b/src/math/lp/lia_move.h @@ -18,6 +18,8 @@ Revision History: --*/ #pragma once +#include +#include "util/debug.h" namespace lp { enum class lia_move { sat, diff --git a/src/math/lp/static_matrix.cpp b/src/math/lp/static_matrix.cpp index a46b5abc0..a67175e93 100644 --- a/src/math/lp/static_matrix.cpp +++ b/src/math/lp/static_matrix.cpp @@ -26,6 +26,13 @@ Revision History: #include "math/lp/lp_primal_core_solver.h" #include "math/lp/lar_solver.h" namespace lp { +mpq get_denominators_lcm(const row_strip & row) { + mpq r(1); + for (auto & c : row) + r = lcm(r, denominator(c.coeff())); + return r; +} + template std::set> lp::static_matrix::get_domain(); template std::set> lp::static_matrix >::get_domain(); template void static_matrix::add_column_to_vector(mpq const&, unsigned int, mpq*) const; diff --git a/src/math/lp/static_matrix.h b/src/math/lp/static_matrix.h index 5bbd000ca..e52caca45 100644 --- a/src/math/lp/static_matrix.h +++ b/src/math/lp/static_matrix.h @@ -45,6 +45,8 @@ typedef vector column_strip; template using row_strip = vector>; +mpq get_denominators_lcm(const row_strip & row); + template std::ostream& operator<<(std::ostream& out, const row_strip& r) { for (auto const& c : r)