mirror of
https://github.com/Z3Prover/z3
synced 2025-08-12 14:10:54 +00:00
fix a bug in the lar_solver::m_status update during push/pop
Signed-off-by: Lev Nachmanson <levnach@microsoft.com> progress in gomory cut Signed-off-by: Lev Nachmanson <levnach@microsoft.com> the first version of Gomory cut, probably broken Signed-off-by: Lev Nachmanson <levnach@microsoft.com> rename a function Signed-off-by: Lev Nachmanson <levnach@microsoft.com> gomory cut worked on a toy example Signed-off-by: Lev Nachmanson <levnach@microsoft.com> track the set of integer variables that are not set to integer values Signed-off-by: Lev Nachmanson <levnach@microsoft.com>
This commit is contained in:
parent
0164ea9abb
commit
aba7dcab3e
21 changed files with 682 additions and 455 deletions
|
@ -19,9 +19,8 @@ void int_solver::fix_non_base_columns() {
|
|||
}
|
||||
if (!change)
|
||||
return;
|
||||
if (m_lar_solver->find_feasible_solution() == INFEASIBLE)
|
||||
if (m_lar_solver->find_feasible_solution() == lp_status::INFEASIBLE)
|
||||
failed();
|
||||
init_inf_int_set();
|
||||
lp_assert(is_feasible() && inf_int_set_is_correct());
|
||||
}
|
||||
|
||||
|
@ -59,14 +58,22 @@ void int_solver::trace_inf_rows() const {
|
|||
tout << "num of int infeasible: " << num << "\n";
|
||||
}
|
||||
|
||||
int_set& int_solver::inf_int_set() {
|
||||
return m_lar_solver->m_inf_int_set;
|
||||
}
|
||||
|
||||
const int_set& int_solver::inf_int_set() const {
|
||||
return m_lar_solver->m_inf_int_set;
|
||||
}
|
||||
|
||||
int int_solver::find_inf_int_base_column() {
|
||||
if (m_inf_int_set.is_empty())
|
||||
if (inf_int_set().is_empty())
|
||||
return -1;
|
||||
int j = find_inf_int_boxed_base_column_with_smallest_range();
|
||||
if (j != -1)
|
||||
return j;
|
||||
unsigned k = settings().random_next() % m_inf_int_set.m_index.size();
|
||||
return m_inf_int_set.m_index[k];
|
||||
unsigned k = settings().random_next() % inf_int_set().m_index.size();
|
||||
return inf_int_set().m_index[k];
|
||||
}
|
||||
|
||||
int int_solver::find_inf_int_boxed_base_column_with_smallest_range() {
|
||||
|
@ -77,7 +84,7 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range() {
|
|||
unsigned n = 0;
|
||||
lar_core_solver & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
||||
|
||||
for (int j : m_inf_int_set.m_index) {
|
||||
for (int j : inf_int_set().m_index) {
|
||||
lp_assert(is_base(j) && column_is_int_inf(j));
|
||||
if (!is_boxed(j))
|
||||
continue;
|
||||
|
@ -108,197 +115,263 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range() {
|
|||
|
||||
}
|
||||
|
||||
bool int_solver::mk_gomory_cut(unsigned row_index, explanation & ex) {
|
||||
lp_assert(false);
|
||||
return true;
|
||||
/*
|
||||
const auto & row = m_lar_solver->A_r().m_rows[row_index];
|
||||
// The following assertion is wrong. It may be violated in mixed-integer problems.
|
||||
// SASSERT(!all_coeff_int(r));
|
||||
theory_var x_i = r.get_base_var();
|
||||
|
||||
SASSERT(is_int(x_i));
|
||||
// The following assertion is wrong. It may be violated in mixed-real-interger problems.
|
||||
// The check is_gomory_cut_target will discard rows where any variable contains infinitesimals.
|
||||
// SASSERT(m_value[x_i].is_rational()); // infinitesimals are not used for integer variables
|
||||
SASSERT(!m_value[x_i].is_int()); // the base variable is not assigned to an integer value.
|
||||
bool int_solver::is_gomory_cut_target() {
|
||||
m_iter_on_gomory_row->reset();
|
||||
unsigned j;
|
||||
TRACE("gomory_cut", m_lar_solver->print_linear_iterator(m_iter_on_gomory_row, tout);
|
||||
m_iter_on_gomory_row->reset();
|
||||
);
|
||||
|
||||
if (constrain_free_vars(r) || !is_gomory_cut_target(r)) {
|
||||
TRACE("gomory_cut", tout << "failed to apply gomory cut:\n";
|
||||
tout << "constrain_free_vars(r): " << constrain_free_vars(r) << "\n";);
|
||||
return false;
|
||||
while (m_iter_on_gomory_row->next(j)) {
|
||||
// All non base variables must be at their bounds and assigned to rationals (that is, infinitesimals are not allowed).
|
||||
if (j != m_gomory_cut_inf_column && (!at_bound(j) || !is_zero(get_value(j).y))) {
|
||||
TRACE("gomory_cut", tout << "row is not gomory cut target:\n";
|
||||
display_column(tout, j);
|
||||
tout << "at_bound: " << at_bound(j) << "\n";
|
||||
tout << "infinitesimal: " << !is_zero(get_value(j).y) << "\n";);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
m_iter_on_gomory_row->reset();
|
||||
return true;
|
||||
}
|
||||
|
||||
TRACE("gomory_cut", tout << "applying cut at:\n"; display_row_info(tout, r););
|
||||
|
||||
void int_solver::real_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, lar_term& pol, explanation & expl) {
|
||||
mpq f_0 = fractional_part(get_value(m_gomory_cut_inf_column));
|
||||
mpq new_a;
|
||||
if (at_lower(x_j)) {
|
||||
if (a.is_pos()) {
|
||||
new_a = a / (1 - f_0);
|
||||
}
|
||||
else {
|
||||
new_a = a / f_0;
|
||||
new_a.neg();
|
||||
}
|
||||
k += lower_bound(x_j).x * k; // k.addmul(new_a, lower_bound(x_j).x); // is it a faster operation
|
||||
|
||||
antecedents ante(*this);
|
||||
expl.push_justification(column_low_bound_constraint(x_j), new_a);
|
||||
}
|
||||
else {
|
||||
lp_assert(at_upper(x_j));
|
||||
if (a.is_pos()) {
|
||||
new_a = a / f_0;
|
||||
new_a.neg(); // the upper terms are inverted.
|
||||
}
|
||||
else {
|
||||
new_a = a / (mpq(1) - f_0);
|
||||
}
|
||||
k += upper_bound(x_j).x * k; // k.addmul(new_a, upper_bound(x_j).get_rational());
|
||||
expl.push_justification(column_upper_bound_constraint(x_j), new_a);
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << a << "*v" << x_j << " k: " << k << "\n";);
|
||||
pol.add_monoid(new_a, x_j);
|
||||
}
|
||||
|
||||
m_stats.m_gomory_cuts++;
|
||||
constraint_index int_solver::column_upper_bound_constraint(unsigned j) const {
|
||||
return m_lar_solver->get_column_upper_bound_witness(j);
|
||||
}
|
||||
|
||||
// gomory will be pol >= k
|
||||
numeral k(1);
|
||||
buffer<row_entry> pol;
|
||||
|
||||
numeral f_0 = Ext::fractional_part(m_value[x_i]);
|
||||
numeral one_minus_f_0 = numeral(1) - f_0;
|
||||
SASSERT(!f_0.is_zero());
|
||||
SASSERT(!one_minus_f_0.is_zero());
|
||||
|
||||
numeral lcm_den(1);
|
||||
unsigned num_ints = 0;
|
||||
constraint_index int_solver::column_low_bound_constraint(unsigned j) const {
|
||||
return m_lar_solver->get_column_low_bound_witness(j);
|
||||
}
|
||||
|
||||
typename vector<row_entry>::const_iterator it = r.begin_entries();
|
||||
typename vector<row_entry>::const_iterator end = r.end_entries();
|
||||
for (; it != end; ++it) {
|
||||
if (!it->is_dead() && it->m_var != x_i) {
|
||||
theory_var x_j = it->m_var;
|
||||
numeral a_ij = it->m_coeff;
|
||||
a_ij.neg(); // make the used format compatible with the format used in: Integrating Simplex with DPLL(T)
|
||||
if (is_real(x_j)) {
|
||||
numeral new_a_ij;
|
||||
if (at_lower(x_j)) {
|
||||
if (a_ij.is_pos()) {
|
||||
new_a_ij = a_ij / one_minus_f_0;
|
||||
}
|
||||
else {
|
||||
new_a_ij = a_ij / f_0;
|
||||
new_a_ij.neg();
|
||||
}
|
||||
k.addmul(new_a_ij, lower_bound(x_j).get_rational());
|
||||
lower(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
|
||||
}
|
||||
else {
|
||||
SASSERT(at_upper(x_j));
|
||||
if (a_ij.is_pos()) {
|
||||
new_a_ij = a_ij / f_0;
|
||||
new_a_ij.neg(); // the upper terms are inverted.
|
||||
}
|
||||
else {
|
||||
new_a_ij = a_ij / one_minus_f_0;
|
||||
}
|
||||
k.addmul(new_a_ij, upper_bound(x_j).get_rational());
|
||||
upper(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << a_ij << "*v" << x_j << " k: " << k << "\n";);
|
||||
pol.push_back(row_entry(new_a_ij, x_j));
|
||||
|
||||
void int_solver::int_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, lar_term & pol, explanation& expl, mpq & lcm_den) {
|
||||
mpq f_0 = fractional_part(get_value(m_gomory_cut_inf_column));
|
||||
lp_assert(is_int(x_j));
|
||||
mpq f_j = fractional_part(a);
|
||||
TRACE("gomory_cut_detail",
|
||||
tout << a << "*v" << x_j << "\n";
|
||||
tout << "fractional_part: " << fractional_part(a) << "\n";
|
||||
tout << "f_j: " << f_j << "\n";
|
||||
tout << "f_0: " << f_0 << "\n";
|
||||
tout << "one_minus_f_0: " << 1 - f_0 << "\n";);
|
||||
if (!f_j.is_zero()) {
|
||||
mpq new_a;
|
||||
if (at_lower(x_j)) {
|
||||
auto one_minus_f_0 = 1 - f_0;
|
||||
if (f_j <= one_minus_f_0) {
|
||||
new_a = f_j / one_minus_f_0;
|
||||
}
|
||||
else {
|
||||
++num_ints;
|
||||
SASSERT(is_int(x_j));
|
||||
numeral f_j = Ext::fractional_part(a_ij);
|
||||
TRACE("gomory_cut_detail",
|
||||
tout << a_ij << "*v" << x_j << "\n";
|
||||
tout << "fractional_part: " << Ext::fractional_part(a_ij) << "\n";
|
||||
tout << "f_j: " << f_j << "\n";
|
||||
tout << "f_0: " << f_0 << "\n";
|
||||
tout << "one_minus_f_0: " << one_minus_f_0 << "\n";);
|
||||
if (!f_j.is_zero()) {
|
||||
numeral new_a_ij;
|
||||
if (at_lower(x_j)) {
|
||||
if (f_j <= one_minus_f_0) {
|
||||
new_a_ij = f_j / one_minus_f_0;
|
||||
}
|
||||
else {
|
||||
new_a_ij = (numeral(1) - f_j) / f_0;
|
||||
}
|
||||
k.addmul(new_a_ij, lower_bound(x_j).get_rational());
|
||||
lower(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
|
||||
}
|
||||
else {
|
||||
SASSERT(at_upper(x_j));
|
||||
if (f_j <= f_0) {
|
||||
new_a_ij = f_j / f_0;
|
||||
}
|
||||
else {
|
||||
new_a_ij = (numeral(1) - f_j) / one_minus_f_0;
|
||||
}
|
||||
new_a_ij.neg(); // the upper terms are inverted
|
||||
k.addmul(new_a_ij, upper_bound(x_j).get_rational());
|
||||
upper(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "new_a_ij: " << new_a_ij << " k: " << k << "\n";);
|
||||
pol.push_back(row_entry(new_a_ij, x_j));
|
||||
lcm_den = lcm(lcm_den, denominator(new_a_ij));
|
||||
}
|
||||
new_a = (1 - f_j) / f_0;
|
||||
}
|
||||
k.addmul(new_a, lower_bound(x_j).x);
|
||||
expl.push_justification(column_low_bound_constraint(x_j), new_a);
|
||||
}
|
||||
}
|
||||
|
||||
CTRACE("empty_pol", pol.empty(), display_row_info(tout, r););
|
||||
|
||||
expr_ref bound(get_manager());
|
||||
if (pol.empty()) {
|
||||
SASSERT(k.is_pos());
|
||||
// conflict 0 >= k where k is positive
|
||||
set_conflict(ante, ante, "gomory-cut");
|
||||
return true;
|
||||
}
|
||||
else if (pol.size() == 1) {
|
||||
theory_var v = pol[0].m_var;
|
||||
k /= pol[0].m_coeff;
|
||||
bool is_lower = pol[0].m_coeff.is_pos();
|
||||
if (is_int(v) && !k.is_int()) {
|
||||
k = is_lower?ceil(k):floor(k);
|
||||
else {
|
||||
SASSERT(at_upper(x_j));
|
||||
if (f_j <= f_0) {
|
||||
new_a = f_j / f_0;
|
||||
}
|
||||
else {
|
||||
new_a = (mpq(1) - f_j) / 1 - f_0;
|
||||
}
|
||||
new_a.neg(); // the upper terms are inverted
|
||||
k.addmul(new_a, upper_bound(x_j).x);
|
||||
expl.push_justification(column_upper_bound_constraint(x_j), new_a);
|
||||
}
|
||||
rational _k = k.to_rational();
|
||||
if (is_lower)
|
||||
bound = m_util.mk_ge(get_enode(v)->get_owner(), m_util.mk_numeral(_k, is_int(v)));
|
||||
else
|
||||
bound = m_util.mk_le(get_enode(v)->get_owner(), m_util.mk_numeral(_k, is_int(v)));
|
||||
TRACE("gomory_cut_detail", tout << "new_a: " << new_a << " k: " << k << "\n";);
|
||||
pol.add_monoid(new_a, x_j);
|
||||
lcm_den = lcm(lcm_den, denominator(new_a));
|
||||
}
|
||||
else {
|
||||
}
|
||||
|
||||
lia_move int_solver::report_conflict_from_gomory_cut(mpq & k) {
|
||||
TRACE("empty_pol",
|
||||
display_row_info(tout,
|
||||
m_lar_solver->m_mpq_lar_core_solver.m_r_heading[m_gomory_cut_inf_column]););
|
||||
lp_assert(k.is_pos());
|
||||
// conflict 0 >= k where k is positive
|
||||
k.neg(); // returning 0 <= -k
|
||||
return lia_move::conflict;
|
||||
}
|
||||
|
||||
void int_solver::gomory_cut_adjust_t_and_k_for_size_gt_1(
|
||||
vector<std::pair<mpq, unsigned>> & pol,
|
||||
lar_term & t,
|
||||
mpq &k,
|
||||
unsigned num_ints,
|
||||
mpq & lcm_den) {
|
||||
if (num_ints > 0) {
|
||||
lcm_den = lcm(lcm_den, denominator(k));
|
||||
TRACE("gomory_cut_detail", tout << "k: " << k << " lcm_den: " << lcm_den << "\n";
|
||||
for (unsigned i = 0; i < pol.size(); i++) {
|
||||
tout << pol[i].m_coeff << " " << pol[i].m_var << "\n";
|
||||
}
|
||||
tout << "k: " << k << "\n";);
|
||||
SASSERT(lcm_den.is_pos());
|
||||
linear_combination_iterator_on_vector<mpq> pi(pol);
|
||||
m_lar_solver->print_linear_iterator(&pi, tout);
|
||||
tout << "\nk: " << k << "\n";);
|
||||
lp_assert(lcm_den.is_pos());
|
||||
if (!lcm_den.is_one()) {
|
||||
// normalize coefficients of integer parameters to be integers.
|
||||
unsigned n = pol.size();
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
pol[i].m_coeff *= lcm_den;
|
||||
SASSERT(!is_int(pol[i].m_var) || pol[i].m_coeff.is_int());
|
||||
for (auto & pi: pol) {
|
||||
pi.first *= lcm_den;
|
||||
SASSERT(!is_int(pi.second) || pi.first.is_int());
|
||||
}
|
||||
k *= lcm_den;
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "after *lcm\n";
|
||||
TRACE("gomory_cut_detail", tout << "after *lcm_den\n";
|
||||
for (unsigned i = 0; i < pol.size(); i++) {
|
||||
tout << pol[i].m_coeff << " * v" << pol[i].m_var << "\n";
|
||||
tout << pol[i].first << " * v" << pol[i].second << "\n";
|
||||
}
|
||||
tout << "k: " << k << "\n";);
|
||||
}
|
||||
mk_polynomial_ge(pol.size(), pol.c_ptr(), k.to_rational(), bound);
|
||||
}
|
||||
TRACE("gomory_cut", tout << "new cut:\n" << bound << "\n"; ante.display(tout););
|
||||
literal l = null_literal;
|
||||
context & ctx = get_context();
|
||||
ctx.internalize(bound, true);
|
||||
l = ctx.get_literal(bound);
|
||||
ctx.mark_as_relevant(l);
|
||||
dump_lemmas(l, ante);
|
||||
ctx.assign(l, ctx.mk_justification(
|
||||
gomory_cut_justification(
|
||||
get_id(), ctx.get_region(),
|
||||
ante.lits().size(), ante.lits().c_ptr(),
|
||||
ante.eqs().size(), ante.eqs().c_ptr(), ante, l)));
|
||||
return true;
|
||||
*/
|
||||
t.clear();
|
||||
// negate everything to return -pol <= -k
|
||||
for (const auto & pi: pol)
|
||||
t.add_monoid(-pi.first, pi.second);
|
||||
k.neg();
|
||||
}
|
||||
|
||||
|
||||
void int_solver::gomory_cut_adjust_t_and_k_for_size_1(const vector<std::pair<mpq, unsigned>> & pol, lar_term& t, mpq &k) {
|
||||
lp_assert(pol.size() == 1);
|
||||
unsigned j = pol[0].second;
|
||||
k /= pol[0].first;
|
||||
bool is_lower = pol[0].first.is_pos();
|
||||
if (is_int(j) && !k.is_int()) {
|
||||
k = is_lower?ceil(k):floor(k);
|
||||
}
|
||||
if (is_lower) { // returning -t <= -k which is equivalent to t >= k
|
||||
k.neg();
|
||||
t.negate();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
lia_move int_solver::report_gomory_cut(lar_term& t, mpq& k, mpq &lcm_den, unsigned num_ints) {
|
||||
lp_assert(!t.is_empty());
|
||||
auto pol = t.coeffs_as_vector();
|
||||
if (pol.size() == 1)
|
||||
gomory_cut_adjust_t_and_k_for_size_1(pol, t, k);
|
||||
else
|
||||
gomory_cut_adjust_t_and_k_for_size_gt_1(pol, t, k, num_ints, lcm_den);
|
||||
m_lar_solver->subs_terms_for_debugging(t); // todo: remove later
|
||||
return lia_move::cut;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
lia_move int_solver::mk_gomory_cut(lar_term& t, mpq& k, explanation & expl) {
|
||||
|
||||
lp_assert(column_is_int_inf(m_gomory_cut_inf_column));
|
||||
|
||||
TRACE("gomory_cut", tout << "applying cut at:\n"; m_lar_solver->print_linear_iterator(m_iter_on_gomory_row, tout); tout << std::endl; m_iter_on_gomory_row->reset(););
|
||||
|
||||
// gomory will be t >= k
|
||||
k = 1;
|
||||
mpq lcm_den(1);
|
||||
unsigned num_ints = 0;
|
||||
unsigned x_j;
|
||||
mpq a;
|
||||
while (m_iter_on_gomory_row->next(a, x_j)) {
|
||||
if (x_j == m_gomory_cut_inf_column)
|
||||
continue;
|
||||
// make the format compatible with the format used in: Integrating Simplex with DPLL(T)
|
||||
a.neg();
|
||||
if (is_real(x_j))
|
||||
real_case_in_gomory_cut(a, x_j, k, t, expl);
|
||||
else {
|
||||
num_ints++;
|
||||
int_case_in_gomory_cut(a, x_j, k, t, expl, lcm_den);
|
||||
}
|
||||
}
|
||||
|
||||
if (t.is_empty())
|
||||
return report_conflict_from_gomory_cut(k);
|
||||
|
||||
return report_gomory_cut(t, k, lcm_den, num_ints);
|
||||
|
||||
}
|
||||
|
||||
void int_solver::init_check_data() {
|
||||
init_inf_int_set();
|
||||
unsigned n = m_lar_solver->A_r().column_count();
|
||||
m_old_values_set.resize(n);
|
||||
m_old_values_data.resize(n);
|
||||
}
|
||||
|
||||
int int_solver::find_next_free_var_in_gomory_row() {
|
||||
lp_assert(m_iter_on_gomory_row != nullptr);
|
||||
unsigned j;
|
||||
while(m_iter_on_gomory_row->next(j)) {
|
||||
if (j != m_gomory_cut_inf_column && is_free(j))
|
||||
return static_cast<int>(j);
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
lia_move int_solver::proceed_with_gomory_cut(lar_term& t, mpq& k, explanation& ex) {
|
||||
int j = find_next_free_var_in_gomory_row();
|
||||
if (j != -1) {
|
||||
m_found_free_var_in_gomory_row = true;
|
||||
lp_assert(t.is_empty());
|
||||
t.add_monoid(mpq(1), j);
|
||||
k = zero_of_type<mpq>();
|
||||
return lia_move::branch; // branch on a free column
|
||||
}
|
||||
if (m_found_free_var_in_gomory_row || !is_gomory_cut_target()) {
|
||||
m_found_free_var_in_gomory_row = false;
|
||||
delete m_iter_on_gomory_row;
|
||||
m_iter_on_gomory_row = nullptr;
|
||||
return lia_move::continue_with_check;
|
||||
}
|
||||
|
||||
lia_move ret = mk_gomory_cut(t, k, ex);
|
||||
delete m_iter_on_gomory_row;
|
||||
m_iter_on_gomory_row = nullptr;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex) {
|
||||
lp_assert(m_lar_solver->m_mpq_lar_core_solver.r_basis_is_OK());
|
||||
lp_assert(is_feasible());
|
||||
if (m_iter_on_gomory_row != nullptr) {
|
||||
auto ret = proceed_with_gomory_cut(t, k, ex);
|
||||
TRACE("gomory_cut", tout << "term t = "; m_lar_solver->print_term_as_indices(t, tout););
|
||||
if (ret != lia_move::continue_with_check)
|
||||
return ret;
|
||||
}
|
||||
|
||||
init_check_data();
|
||||
lp_assert(inf_int_set_is_correct());
|
||||
// currently it is a reimplementation of
|
||||
|
@ -327,11 +400,13 @@ lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex) {
|
|||
|
||||
|
||||
if ((++m_branch_cut_counter) % settings().m_int_branch_cut_threshold == 0) {
|
||||
move_non_base_vars_to_bounds();
|
||||
move_non_base_vars_to_bounds(); // todo track changed variables
|
||||
lp_status st = m_lar_solver->find_feasible_solution();
|
||||
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
|
||||
return lia_move::give_up;
|
||||
}
|
||||
lp_assert(inf_int_set_is_correct());
|
||||
// init_inf_int_set(); // todo - can we avoid this call?
|
||||
int j = find_inf_int_base_column();
|
||||
if (j != -1) {
|
||||
TRACE("arith_int", tout << "j = " << j << " does not have an integer assignment: " << get_value(j) << "\n";);
|
||||
|
@ -349,7 +424,7 @@ lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex) {
|
|||
TRACE("arith_int", tout << "j" << j << " does not have an integer assignment: " << get_value(j) << "\n";);
|
||||
|
||||
lp_assert(t.is_empty());
|
||||
t.add_to_map(j, mpq(1));
|
||||
t.add_monoid(1, j);
|
||||
k = floor(get_value(j));
|
||||
TRACE("arith_int", tout << "branching v" << j << " = " << get_value(j) << "\n";
|
||||
display_column(tout, j);
|
||||
|
@ -754,6 +829,10 @@ bool int_solver::is_int(unsigned j) const {
|
|||
return m_lar_solver->column_is_int(j);
|
||||
}
|
||||
|
||||
bool int_solver::is_real(unsigned j) const {
|
||||
return !is_int(j);
|
||||
}
|
||||
|
||||
bool int_solver::value_is_int(unsigned j) const {
|
||||
return m_lar_solver->m_mpq_lar_core_solver.m_r_x[j].is_int();
|
||||
}
|
||||
|
@ -777,7 +856,7 @@ void int_solver::display_column(std::ostream & out, unsigned j) const {
|
|||
|
||||
bool int_solver::inf_int_set_is_correct() const {
|
||||
for (unsigned j = 0; j < m_lar_solver->A_r().column_count(); j++) {
|
||||
if (m_inf_int_set.contains(j) != is_int(j) && (!value_is_int(j)))
|
||||
if (inf_int_set().contains(j) != (is_int(j) && (!value_is_int(j))))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -787,20 +866,11 @@ bool int_solver::column_is_int_inf(unsigned j) const {
|
|||
return is_int(j) && (!value_is_int(j));
|
||||
}
|
||||
|
||||
void int_solver::init_inf_int_set() {
|
||||
m_inf_int_set.clear();
|
||||
m_inf_int_set.resize(m_lar_solver->A_r().column_count());
|
||||
for (unsigned j : m_lar_solver->m_mpq_lar_core_solver.m_r_basis) {
|
||||
if (column_is_int_inf(j))
|
||||
m_inf_int_set.insert(j);
|
||||
}
|
||||
}
|
||||
|
||||
void int_solver::update_column_in_inf_set_set(unsigned j) {
|
||||
void int_solver::update_column_in_int_inf_set(unsigned j) {
|
||||
if (is_int(j) && (!value_is_int(j)))
|
||||
m_inf_int_set.insert(j);
|
||||
inf_int_set().insert(j);
|
||||
else
|
||||
m_inf_int_set.erase(j);
|
||||
inf_int_set().erase(j);
|
||||
}
|
||||
|
||||
bool int_solver::is_base(unsigned j) const {
|
||||
|
@ -811,8 +881,73 @@ bool int_solver::is_boxed(unsigned j) const {
|
|||
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::boxed;
|
||||
}
|
||||
|
||||
bool int_solver::is_free(unsigned j) const {
|
||||
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::free_column;
|
||||
}
|
||||
|
||||
bool int_solver::at_bound(unsigned j) const {
|
||||
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
||||
switch (mpq_solver.m_column_types[j] ) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
return
|
||||
mpq_solver.m_low_bounds[j] == get_value(j) ||
|
||||
mpq_solver.m_upper_bounds[j] == get_value(j);
|
||||
case column_type::low_bound:
|
||||
return mpq_solver.m_low_bounds[j] == get_value(j);
|
||||
case column_type::upper_bound:
|
||||
return mpq_solver.m_upper_bounds[j] == get_value(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool int_solver::at_lower(unsigned j) const {
|
||||
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
||||
switch (mpq_solver.m_column_types[j] ) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::low_bound:
|
||||
return mpq_solver.m_low_bounds[j] == get_value(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool int_solver::at_upper(unsigned j) const {
|
||||
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
||||
switch (mpq_solver.m_column_types[j] ) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::upper_bound:
|
||||
return mpq_solver.m_upper_bounds[j] == get_value(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
lp_settings& int_solver::settings() {
|
||||
return m_lar_solver->settings();
|
||||
}
|
||||
|
||||
void int_solver::display_row_info(std::ostream & out, unsigned row_index) const {
|
||||
auto & rslv = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
||||
auto it = m_lar_solver->get_iterator_on_row(row_index);
|
||||
mpq a;
|
||||
unsigned j;
|
||||
while (it->next(a, j)) {
|
||||
if (numeric_traits<mpq>::is_pos(a))
|
||||
out << "+";
|
||||
out << a << rslv.column_name(j) << " ";
|
||||
}
|
||||
|
||||
it->reset();
|
||||
while(it->next(j)) {
|
||||
rslv.print_column_bound_info(j, out);
|
||||
}
|
||||
rslv.print_column_bound_info(rslv.m_basis[row_index], out);
|
||||
delete it;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue