3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-10 08:02:01 +00:00

Add finite_set_axioms.cpp implementation and update CMakeLists.txt

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
copilot-swe-agent[bot] 2025-10-14 08:27:57 +00:00
parent 4bc27b8383
commit ab7229b01d
2 changed files with 270 additions and 0 deletions

View file

@ -22,6 +22,8 @@ z3_add_component(rewriter
expr_safe_replace.cpp
factor_equivs.cpp
factor_rewriter.cpp
finite_set_axioms.cpp
finite_set_rewriter.cpp
fpa_rewriter.cpp
func_decl_replace.cpp
inj_axiom.cpp

View file

@ -0,0 +1,268 @@
/*++
Copyright (c) 2025 Microsoft Corporation
Module Name:
finite_set_axioms.cpp
Abstract:
This module implements axiom schemas that are invoked by saturating constraints
with respect to the semantics of set operations.
Author:
GitHub Copilot Agent 2025
Revision History:
--*/
#include "ast/ast.h"
#include "ast/finite_set_decl_plugin.h"
#include "ast/arith_decl_plugin.h"
#include "ast/rewriter/finite_set_axioms.h"
// a ~ set.empty => not (x in a)
void finite_set_axioms::in_empty_axiom(expr *x) {
expr_ref_vector clause(m);
sort* s = x->get_sort();
expr_ref empty_set(u.mk_empty(s), m);
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
clause.push_back(m.mk_not(x_in_empty));
m_add_clause(clause);
}
// a := set.union(b, c)
// (x in a) <=> (x in b) or (x in c)
void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
expr* b = nullptr, *c = nullptr;
if (!u.is_union(a, b, c))
return;
expr_ref_vector clause(m);
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref x_in_b(u.mk_in(x, b), m);
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b) or (x in c)
expr_ref_vector clause1(m);
clause1.push_back(m.mk_not(x_in_a));
clause1.push_back(x_in_b);
clause1.push_back(x_in_c);
m_add_clause(clause1);
// (x in b) => (x in a)
expr_ref_vector clause2(m);
clause2.push_back(m.mk_not(x_in_b));
clause2.push_back(x_in_a);
m_add_clause(clause2);
// (x in c) => (x in a)
expr_ref_vector clause3(m);
clause3.push_back(m.mk_not(x_in_c));
clause3.push_back(x_in_a);
m_add_clause(clause3);
}
// a := set.intersect(b, c)
// (x in a) <=> (x in b) and (x in c)
void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) {
expr* b = nullptr, *c = nullptr;
if (!u.is_intersect(a, b, c))
return;
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref x_in_b(u.mk_in(x, b), m);
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b)
expr_ref_vector clause1(m);
clause1.push_back(m.mk_not(x_in_a));
clause1.push_back(x_in_b);
m_add_clause(clause1);
// (x in a) => (x in c)
expr_ref_vector clause2(m);
clause2.push_back(m.mk_not(x_in_a));
clause2.push_back(x_in_c);
m_add_clause(clause2);
// (x in b) and (x in c) => (x in a)
expr_ref_vector clause3(m);
clause3.push_back(m.mk_not(x_in_b));
clause3.push_back(m.mk_not(x_in_c));
clause3.push_back(x_in_a);
m_add_clause(clause3);
}
// a := set.difference(b, c)
// (x in a) <=> (x in b) and not (x in c)
void finite_set_axioms::in_difference_axiom(expr *x, expr *a) {
expr* b = nullptr, *c = nullptr;
if (!u.is_difference(a, b, c))
return;
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref x_in_b(u.mk_in(x, b), m);
expr_ref x_in_c(u.mk_in(x, c), m);
// (x in a) => (x in b)
expr_ref_vector clause1(m);
clause1.push_back(m.mk_not(x_in_a));
clause1.push_back(x_in_b);
m_add_clause(clause1);
// (x in a) => not (x in c)
expr_ref_vector clause2(m);
clause2.push_back(m.mk_not(x_in_a));
clause2.push_back(m.mk_not(x_in_c));
m_add_clause(clause2);
// (x in b) and not (x in c) => (x in a)
expr_ref_vector clause3(m);
clause3.push_back(m.mk_not(x_in_b));
clause3.push_back(x_in_c);
clause3.push_back(x_in_a);
m_add_clause(clause3);
}
// a := set.singleton(b)
// (x in a) <=> (x == b)
void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
expr* b = nullptr;
if (!u.is_singleton(a, b))
return;
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref x_eq_b(m.mk_eq(x, b), m);
// (x in a) => (x == b)
expr_ref_vector clause1(m);
clause1.push_back(m.mk_not(x_in_a));
clause1.push_back(x_eq_b);
m_add_clause(clause1);
// (x == b) => (x in a)
expr_ref_vector clause2(m);
clause2.push_back(m.mk_not(x_eq_b));
clause2.push_back(x_in_a);
m_add_clause(clause2);
}
// a := set.range(lo, hi)
// (x in a) <=> (lo <= x <= hi)
void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
expr* lo = nullptr, *hi = nullptr;
if (!u.is_range(a, lo, hi))
return;
arith_util arith(m);
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref lo_le_x(arith.mk_le(lo, x), m);
expr_ref x_le_hi(arith.mk_le(x, hi), m);
// (x in a) => (lo <= x)
expr_ref_vector clause1(m);
clause1.push_back(m.mk_not(x_in_a));
clause1.push_back(lo_le_x);
m_add_clause(clause1);
// (x in a) => (x <= hi)
expr_ref_vector clause2(m);
clause2.push_back(m.mk_not(x_in_a));
clause2.push_back(x_le_hi);
m_add_clause(clause2);
// (lo <= x) and (x <= hi) => (x in a)
expr_ref_vector clause3(m);
clause3.push_back(m.mk_not(lo_le_x));
clause3.push_back(m.mk_not(x_le_hi));
clause3.push_back(x_in_a);
m_add_clause(clause3);
}
// a := set.map(f, b)
// (x in a) <=> set.map_inverse(f, x, b) in b
void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
expr* f = nullptr, *b = nullptr;
if (!u.is_map(a, f, b))
return;
// For now, we provide a placeholder implementation
// The full implementation would require skolemization
// to express the inverse relationship properly.
// This would be: exists y. f(y) = x and y in b
}
// a := set.map(f, b)
// (x in b) => f(x) in a
void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
expr* f = nullptr, *b = nullptr;
if (!u.is_map(a, f, b))
return;
expr_ref x_in_b(u.mk_in(x, b), m);
// Apply function f to x
app* f_app = to_app(f);
expr_ref fx(m.mk_app(f_app->get_decl(), x), m);
expr_ref fx_in_a(u.mk_in(fx, a), m);
// (x in b) => f(x) in a
expr_ref_vector clause(m);
clause.push_back(m.mk_not(x_in_b));
clause.push_back(fx_in_a);
m_add_clause(clause);
}
// a := set.select(p, b)
// (x in a) <=> (x in b) and p(x)
void finite_set_axioms::in_select_axiom(expr *x, expr *a) {
expr* p = nullptr, *b = nullptr;
if (!u.is_select(a, p, b))
return;
expr_ref x_in_a(u.mk_in(x, a), m);
expr_ref x_in_b(u.mk_in(x, b), m);
// Apply predicate p to x
app* p_app = to_app(p);
expr_ref px(m.mk_app(p_app->get_decl(), x), m);
// (x in a) => (x in b)
expr_ref_vector clause1(m);
clause1.push_back(m.mk_not(x_in_a));
clause1.push_back(x_in_b);
m_add_clause(clause1);
// (x in a) => p(x)
expr_ref_vector clause2(m);
clause2.push_back(m.mk_not(x_in_a));
clause2.push_back(px);
m_add_clause(clause2);
// (x in b) and p(x) => (x in a)
expr_ref_vector clause3(m);
clause3.push_back(m.mk_not(x_in_b));
clause3.push_back(m.mk_not(px));
clause3.push_back(x_in_a);
m_add_clause(clause3);
}
// a := set.singleton(b)
// set.size(a) = 1
void finite_set_axioms::size_singleton_axiom(expr *a) {
expr* b = nullptr;
if (!u.is_singleton(a, b))
return;
arith_util arith(m);
expr_ref size_a(u.mk_size(a), m);
expr_ref one(arith.mk_int(1), m);
expr_ref eq(m.mk_eq(size_a, one), m);
expr_ref_vector clause(m);
clause.push_back(eq);
m_add_clause(clause);
}