mirror of
https://github.com/Z3Prover/z3
synced 2025-11-10 08:02:01 +00:00
Add finite_set_axioms.cpp implementation and update CMakeLists.txt
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
parent
4bc27b8383
commit
ab7229b01d
2 changed files with 270 additions and 0 deletions
|
|
@ -22,6 +22,8 @@ z3_add_component(rewriter
|
|||
expr_safe_replace.cpp
|
||||
factor_equivs.cpp
|
||||
factor_rewriter.cpp
|
||||
finite_set_axioms.cpp
|
||||
finite_set_rewriter.cpp
|
||||
fpa_rewriter.cpp
|
||||
func_decl_replace.cpp
|
||||
inj_axiom.cpp
|
||||
|
|
|
|||
268
src/ast/rewriter/finite_set_axioms.cpp
Normal file
268
src/ast/rewriter/finite_set_axioms.cpp
Normal file
|
|
@ -0,0 +1,268 @@
|
|||
/*++
|
||||
Copyright (c) 2025 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
finite_set_axioms.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
This module implements axiom schemas that are invoked by saturating constraints
|
||||
with respect to the semantics of set operations.
|
||||
|
||||
Author:
|
||||
|
||||
GitHub Copilot Agent 2025
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#include "ast/ast.h"
|
||||
#include "ast/finite_set_decl_plugin.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "ast/rewriter/finite_set_axioms.h"
|
||||
|
||||
// a ~ set.empty => not (x in a)
|
||||
void finite_set_axioms::in_empty_axiom(expr *x) {
|
||||
expr_ref_vector clause(m);
|
||||
sort* s = x->get_sort();
|
||||
expr_ref empty_set(u.mk_empty(s), m);
|
||||
expr_ref x_in_empty(u.mk_in(x, empty_set), m);
|
||||
clause.push_back(m.mk_not(x_in_empty));
|
||||
m_add_clause(clause);
|
||||
}
|
||||
|
||||
// a := set.union(b, c)
|
||||
// (x in a) <=> (x in b) or (x in c)
|
||||
void finite_set_axioms::in_union_axiom(expr *x, expr *a) {
|
||||
expr* b = nullptr, *c = nullptr;
|
||||
if (!u.is_union(a, b, c))
|
||||
return;
|
||||
|
||||
expr_ref_vector clause(m);
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref x_in_b(u.mk_in(x, b), m);
|
||||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b) or (x in c)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_in_b);
|
||||
clause1.push_back(x_in_c);
|
||||
m_add_clause(clause1);
|
||||
|
||||
// (x in b) => (x in a)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_b));
|
||||
clause2.push_back(x_in_a);
|
||||
m_add_clause(clause2);
|
||||
|
||||
// (x in c) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(x_in_c));
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
}
|
||||
|
||||
// a := set.intersect(b, c)
|
||||
// (x in a) <=> (x in b) and (x in c)
|
||||
void finite_set_axioms::in_intersect_axiom(expr *x, expr *a) {
|
||||
expr* b = nullptr, *c = nullptr;
|
||||
if (!u.is_intersect(a, b, c))
|
||||
return;
|
||||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref x_in_b(u.mk_in(x, b), m);
|
||||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_in_b);
|
||||
m_add_clause(clause1);
|
||||
|
||||
// (x in a) => (x in c)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_a));
|
||||
clause2.push_back(x_in_c);
|
||||
m_add_clause(clause2);
|
||||
|
||||
// (x in b) and (x in c) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(x_in_b));
|
||||
clause3.push_back(m.mk_not(x_in_c));
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
}
|
||||
|
||||
// a := set.difference(b, c)
|
||||
// (x in a) <=> (x in b) and not (x in c)
|
||||
void finite_set_axioms::in_difference_axiom(expr *x, expr *a) {
|
||||
expr* b = nullptr, *c = nullptr;
|
||||
if (!u.is_difference(a, b, c))
|
||||
return;
|
||||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref x_in_b(u.mk_in(x, b), m);
|
||||
expr_ref x_in_c(u.mk_in(x, c), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_in_b);
|
||||
m_add_clause(clause1);
|
||||
|
||||
// (x in a) => not (x in c)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_a));
|
||||
clause2.push_back(m.mk_not(x_in_c));
|
||||
m_add_clause(clause2);
|
||||
|
||||
// (x in b) and not (x in c) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(x_in_b));
|
||||
clause3.push_back(x_in_c);
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
}
|
||||
|
||||
// a := set.singleton(b)
|
||||
// (x in a) <=> (x == b)
|
||||
void finite_set_axioms::in_singleton_axiom(expr *x, expr *a) {
|
||||
expr* b = nullptr;
|
||||
if (!u.is_singleton(a, b))
|
||||
return;
|
||||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref x_eq_b(m.mk_eq(x, b), m);
|
||||
|
||||
// (x in a) => (x == b)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_eq_b);
|
||||
m_add_clause(clause1);
|
||||
|
||||
// (x == b) => (x in a)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_eq_b));
|
||||
clause2.push_back(x_in_a);
|
||||
m_add_clause(clause2);
|
||||
}
|
||||
|
||||
// a := set.range(lo, hi)
|
||||
// (x in a) <=> (lo <= x <= hi)
|
||||
void finite_set_axioms::in_range_axiom(expr *x, expr *a) {
|
||||
expr* lo = nullptr, *hi = nullptr;
|
||||
if (!u.is_range(a, lo, hi))
|
||||
return;
|
||||
|
||||
arith_util arith(m);
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref lo_le_x(arith.mk_le(lo, x), m);
|
||||
expr_ref x_le_hi(arith.mk_le(x, hi), m);
|
||||
|
||||
// (x in a) => (lo <= x)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(lo_le_x);
|
||||
m_add_clause(clause1);
|
||||
|
||||
// (x in a) => (x <= hi)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_a));
|
||||
clause2.push_back(x_le_hi);
|
||||
m_add_clause(clause2);
|
||||
|
||||
// (lo <= x) and (x <= hi) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(lo_le_x));
|
||||
clause3.push_back(m.mk_not(x_le_hi));
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
}
|
||||
|
||||
// a := set.map(f, b)
|
||||
// (x in a) <=> set.map_inverse(f, x, b) in b
|
||||
void finite_set_axioms::in_map_axiom(expr *x, expr *a) {
|
||||
expr* f = nullptr, *b = nullptr;
|
||||
if (!u.is_map(a, f, b))
|
||||
return;
|
||||
|
||||
// For now, we provide a placeholder implementation
|
||||
// The full implementation would require skolemization
|
||||
// to express the inverse relationship properly.
|
||||
// This would be: exists y. f(y) = x and y in b
|
||||
}
|
||||
|
||||
// a := set.map(f, b)
|
||||
// (x in b) => f(x) in a
|
||||
void finite_set_axioms::in_map_image_axiom(expr *x, expr *a) {
|
||||
expr* f = nullptr, *b = nullptr;
|
||||
if (!u.is_map(a, f, b))
|
||||
return;
|
||||
|
||||
expr_ref x_in_b(u.mk_in(x, b), m);
|
||||
|
||||
// Apply function f to x
|
||||
app* f_app = to_app(f);
|
||||
expr_ref fx(m.mk_app(f_app->get_decl(), x), m);
|
||||
expr_ref fx_in_a(u.mk_in(fx, a), m);
|
||||
|
||||
// (x in b) => f(x) in a
|
||||
expr_ref_vector clause(m);
|
||||
clause.push_back(m.mk_not(x_in_b));
|
||||
clause.push_back(fx_in_a);
|
||||
m_add_clause(clause);
|
||||
}
|
||||
|
||||
// a := set.select(p, b)
|
||||
// (x in a) <=> (x in b) and p(x)
|
||||
void finite_set_axioms::in_select_axiom(expr *x, expr *a) {
|
||||
expr* p = nullptr, *b = nullptr;
|
||||
if (!u.is_select(a, p, b))
|
||||
return;
|
||||
|
||||
expr_ref x_in_a(u.mk_in(x, a), m);
|
||||
expr_ref x_in_b(u.mk_in(x, b), m);
|
||||
|
||||
// Apply predicate p to x
|
||||
app* p_app = to_app(p);
|
||||
expr_ref px(m.mk_app(p_app->get_decl(), x), m);
|
||||
|
||||
// (x in a) => (x in b)
|
||||
expr_ref_vector clause1(m);
|
||||
clause1.push_back(m.mk_not(x_in_a));
|
||||
clause1.push_back(x_in_b);
|
||||
m_add_clause(clause1);
|
||||
|
||||
// (x in a) => p(x)
|
||||
expr_ref_vector clause2(m);
|
||||
clause2.push_back(m.mk_not(x_in_a));
|
||||
clause2.push_back(px);
|
||||
m_add_clause(clause2);
|
||||
|
||||
// (x in b) and p(x) => (x in a)
|
||||
expr_ref_vector clause3(m);
|
||||
clause3.push_back(m.mk_not(x_in_b));
|
||||
clause3.push_back(m.mk_not(px));
|
||||
clause3.push_back(x_in_a);
|
||||
m_add_clause(clause3);
|
||||
}
|
||||
|
||||
// a := set.singleton(b)
|
||||
// set.size(a) = 1
|
||||
void finite_set_axioms::size_singleton_axiom(expr *a) {
|
||||
expr* b = nullptr;
|
||||
if (!u.is_singleton(a, b))
|
||||
return;
|
||||
|
||||
arith_util arith(m);
|
||||
expr_ref size_a(u.mk_size(a), m);
|
||||
expr_ref one(arith.mk_int(1), m);
|
||||
expr_ref eq(m.mk_eq(size_a, one), m);
|
||||
|
||||
expr_ref_vector clause(m);
|
||||
clause.push_back(eq);
|
||||
m_add_clause(clause);
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue