mirror of
https://github.com/Z3Prover/z3
synced 2025-04-08 10:25:18 +00:00
working on python interp
This commit is contained in:
parent
c007a5e5bd
commit
ab13987884
|
@ -38,6 +38,7 @@ Revision History:
|
|||
#include"iz3hash.h"
|
||||
#include"iz3pp.h"
|
||||
#include"iz3checker.h"
|
||||
#include"scoped_proof.h"
|
||||
|
||||
using namespace stl_ext;
|
||||
|
||||
|
@ -290,6 +291,85 @@ extern "C" {
|
|||
opts->map[name] = value;
|
||||
}
|
||||
|
||||
Z3_ast_vector Z3_API Z3_get_interpolant(__in Z3_context c, __in Z3_ast pf, __in Z3_ast pat, __in Z3_params p){
|
||||
Z3_TRY;
|
||||
LOG_Z3_get_interpolant(c, pf, pat, p);
|
||||
RESET_ERROR_CODE();
|
||||
|
||||
Z3_ast_vector_ref * v = alloc(Z3_ast_vector_ref, mk_c(c)->m());
|
||||
mk_c(c)->save_object(v);
|
||||
|
||||
ast *_pf = to_ast(pf);
|
||||
ast *_pat = to_ast(pat);
|
||||
|
||||
ptr_vector<ast> interp;
|
||||
ptr_vector<ast> cnsts; // to throw away
|
||||
|
||||
ast_manager &_m = mk_c(c)->m();
|
||||
|
||||
iz3interpolate(_m,
|
||||
_pf,
|
||||
cnsts,
|
||||
_pat,
|
||||
interp,
|
||||
(interpolation_options_struct *) 0 // ignore params for now
|
||||
);
|
||||
|
||||
// copy result back
|
||||
for(unsigned i = 0; i < interp.size(); i++){
|
||||
v->m_ast_vector.push_back(interp[i]);
|
||||
_m.dec_ref(interp[i]);
|
||||
}
|
||||
RETURN_Z3(of_ast_vector(v));
|
||||
Z3_CATCH_RETURN(0);
|
||||
}
|
||||
|
||||
Z3_lbool Z3_API Z3_compute_interpolant(__in Z3_context c, __in Z3_ast pat, __in Z3_params p, __out Z3_ast_vector *out_interp){
|
||||
Z3_TRY;
|
||||
LOG_Z3_compute_interpolant(c, pat, p, out_interp);
|
||||
RESET_ERROR_CODE();
|
||||
|
||||
|
||||
params_ref &_p = to_params(p)->m_params;
|
||||
scoped_ptr<solver_factory> sf = mk_smt_solver_factory();
|
||||
scoped_ptr<solver> m_solver((*sf)(mk_c(c)->m(), _p, true, true, true, ::symbol::null));
|
||||
m_solver.get()->updt_params(_p); // why do we have to do this?
|
||||
scoped_proof_mode spm(mk_c(c)->m(),PGM_FINE);
|
||||
|
||||
ast *_pat = to_ast(pat);
|
||||
|
||||
ptr_vector<ast> interp;
|
||||
ptr_vector<ast> cnsts; // to throw away
|
||||
|
||||
ast_manager &_m = mk_c(c)->m();
|
||||
|
||||
model_ref m;
|
||||
lbool _status = iz3interpolate(_m,
|
||||
*(m_solver.get()),
|
||||
_pat,
|
||||
cnsts,
|
||||
interp,
|
||||
m,
|
||||
0 // ignore params for now
|
||||
);
|
||||
|
||||
Z3_lbool status = of_lbool(_status);
|
||||
|
||||
Z3_ast_vector_ref *v = 0;
|
||||
if(_status == l_false){
|
||||
// copy result back
|
||||
v = alloc(Z3_ast_vector_ref, mk_c(c)->m());
|
||||
mk_c(c)->save_object(v);
|
||||
for(unsigned i = 0; i < interp.size(); i++){
|
||||
v->m_ast_vector.push_back(interp[i]);
|
||||
_m.dec_ref(interp[i]);
|
||||
}
|
||||
}
|
||||
*out_interp = of_ast_vector(v);
|
||||
|
||||
return status;
|
||||
Z3_CATCH_RETURN(Z3_L_UNDEF);
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
|
|
@ -7253,3 +7253,18 @@ def parse_smt2_file(f, sorts={}, decls={}, ctx=None):
|
|||
dsz, dnames, ddecls = _dict2darray(decls, ctx)
|
||||
return _to_expr_ref(Z3_parse_smtlib2_file(ctx.ref(), f, ssz, snames, ssorts, dsz, dnames, ddecls), ctx)
|
||||
|
||||
def Interp(a):
|
||||
ctx = main_ctx()
|
||||
s = BoolSort(ctx)
|
||||
a = s.cast(a)
|
||||
return BoolRef(Z3_mk_interp(ctx.ref(), a.as_ast()), ctx)
|
||||
|
||||
def tree_interpolant(f,p=None,ctx=None):
|
||||
ctx = _get_ctx(ctx)
|
||||
ptr = (ctypes.POINTER(AstVectorObj) * 1)()
|
||||
if p == None:
|
||||
p = ParamsRef(ctx)
|
||||
res = Z3_compute_interpolant(ctx.ref(),f.as_ast(),p.params,ptr[0])
|
||||
if res == Z3_L_FALSE:
|
||||
return AstVector(ptr[0],ctx)
|
||||
raise NoInterpolant()
|
||||
|
|
|
@ -109,3 +109,6 @@ class FuncEntryObj(ctypes.c_void_p):
|
|||
class RCFNumObj(ctypes.c_void_p):
|
||||
def __init__(self, e): self._as_parameter_ = e
|
||||
def from_param(obj): return obj
|
||||
|
||||
class NoInterpolant():
|
||||
def __init__(self):
|
||||
|
|
|
@ -7699,6 +7699,105 @@ END_MLAPI_EXCLUDE
|
|||
|
||||
Z3_context Z3_API Z3_mk_interpolation_context(__in Z3_config cfg);
|
||||
|
||||
/** Compute an interpolant from a refutation. This takes a proof of
|
||||
"false" from a set of formulas C, and an interpolation
|
||||
pattern. The pattern pat is a formula combining the formulas in C
|
||||
using logical conjunction and the "interp" operator (see
|
||||
#Z3_mk_interp). This interp operator is logically the identity
|
||||
operator. It marks the sub-formulas of the pattern for which interpolants should
|
||||
be computed. The interpolant is a map sigma from marked subformulas to
|
||||
formulas, such that, for each marked subformula phi of pat (where phi sigma
|
||||
is phi with sigma(psi) substituted for each subformula psi of phi such that
|
||||
psi in dom(sigma)):
|
||||
|
||||
1) phi sigma implies sigma(phi), and
|
||||
|
||||
2) sigma(phi) is in the common uninterpreted vocabulary between
|
||||
the formulas of C occurring in phi and those not occurring in
|
||||
phi
|
||||
|
||||
and moreover pat sigma implies false. In the simplest case
|
||||
an interpolant for the pattern "(and (interp A) B)" maps A
|
||||
to an interpolant for A /\ B.
|
||||
|
||||
The return value is a vector of formulas representing sigma. The
|
||||
vector contains sigma(phi) for each marked subformula of pat, in
|
||||
pre-order traversal. This means that subformulas of phi occur before phi
|
||||
in the vector. Also, subformulas that occur multiply in pat will
|
||||
occur multiply in the result vector.
|
||||
|
||||
In particular, calling Z3_get_interpolant on a pattern of the
|
||||
form (interp ... (interp (and (interp A_1) A_2)) ... A_N) will
|
||||
result in a sequence interpolant for A_1, A_2,... A_N.
|
||||
|
||||
Neglecting interp markers, the pattern must be a conjunction of
|
||||
formulas in C, the set of premises of the proof. Otherwise an
|
||||
error is flagged.
|
||||
|
||||
Any premises of the proof not present in the pattern are
|
||||
treated as "background theory". Predicate and function symbols
|
||||
occurring in the background theory are treated as interpreted and
|
||||
thus always allowed in the interpolant.
|
||||
|
||||
Interpolant may not necessarily be computable from all
|
||||
proofs. To be sure an interpolant can be computed, the proof
|
||||
must be generated by an SMT solver for which interpoaltion is
|
||||
supported, and the premises must be expressed using only
|
||||
theories and operators for which interpolation is supported.
|
||||
|
||||
Currently, the only SMT solver that is supported is the legacy
|
||||
SMT solver. Such a solver is available as the default solver in
|
||||
#Z3_context objects produced by #Z3_mk_interpolation_context.
|
||||
Currently, the theories supported are equality with
|
||||
uninterpreted functions, linear integer arithmetic, and the
|
||||
theory of arrays (in SMT-LIB terms, this is AUFLIA).
|
||||
Quantifiers are allowed. Use of any other operators (including
|
||||
"labels") may result in failure to compute an interpolant from a
|
||||
proof.
|
||||
|
||||
Parameters:
|
||||
|
||||
\param c logical context.
|
||||
\param pf a refutation from premises (assertions) C
|
||||
\param pat an interpolation pattern over C
|
||||
\param p parameters
|
||||
|
||||
def_API('Z3_get_interpolant', AST_VECTOR, (_in(CONTEXT), _in(AST), _in(AST), _in(PARAMS)))
|
||||
*/
|
||||
|
||||
Z3_ast_vector Z3_API Z3_get_interpolant(__in Z3_context c, __in Z3_ast pf, __in Z3_ast pat, __in Z3_params p);
|
||||
|
||||
/* Compute an interpolant for an unsatisfiable conjunction of formulas.
|
||||
|
||||
This takes as an argument an interpolation pattern as in
|
||||
#Z3_get_interpolant. This is a conjunction, some subformulas of
|
||||
which are marked with the "interp" operator (see #Z3_mk_interp).
|
||||
|
||||
The conjunction is first checked for unsatisfiability. The result
|
||||
of this check is returned in the out parameter "status". If the result
|
||||
is unsat, an interpolant is computed from the refutation as in #Z3_get_interpolant
|
||||
and returned as a vector of formulas. Otherwise the return value is
|
||||
an empty formula.
|
||||
|
||||
See #Z3_get_interpolant for a discussion of supported theories.
|
||||
|
||||
The advantage of this function over #Z3_get_interpolant is that
|
||||
it is not necessary to create a suitable SMT solver and generate
|
||||
a proof. The disadvantage is that it is not possible to use the
|
||||
solver incrementally.
|
||||
|
||||
Parameters:
|
||||
|
||||
\param c logical context.
|
||||
\param pat an interpolation pattern
|
||||
\param p parameters
|
||||
\param status returns the status of the sat check
|
||||
|
||||
def_API('Z3_compute_interpolant', INT, (_in(CONTEXT), _in(AST), _in(PARAMS), _out(AST_VECTOR)))
|
||||
*/
|
||||
|
||||
Z3_lbool Z3_API Z3_compute_interpolant(__in Z3_context c, __in Z3_ast pat, __in Z3_params p, __out Z3_ast_vector *interp);
|
||||
|
||||
|
||||
/** Constant reprepresenting a root of a formula tree for tree interpolation */
|
||||
#define IZ3_ROOT SHRT_MAX
|
||||
|
|
|
@ -41,6 +41,7 @@ Revision History:
|
|||
#include "iz3hash.h"
|
||||
#include "iz3interp.h"
|
||||
|
||||
#include"scoped_proof.h"
|
||||
|
||||
|
||||
using namespace stl_ext;
|
||||
|
@ -503,6 +504,8 @@ lbool iz3interpolate(ast_manager &_m_manager,
|
|||
return res;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void interpolation_options_struct::apply(iz3base &b){
|
||||
for(stl_ext::hash_map<std::string,std::string>::iterator it = map.begin(), en = map.end();
|
||||
it != en;
|
||||
|
|
|
@ -76,6 +76,7 @@ void iz3interpolate(ast_manager &_m_manager,
|
|||
ptr_vector<ast> &interps,
|
||||
interpolation_options_struct * options);
|
||||
|
||||
|
||||
/* Compute an interpolant from an ast representing an interpolation
|
||||
problem, if unsat, else return a model (if enabled). Uses the
|
||||
given solver to produce the proof/model. Also returns a vector
|
||||
|
@ -90,4 +91,5 @@ lbool iz3interpolate(ast_manager &_m_manager,
|
|||
model_ref &m,
|
||||
interpolation_options_struct * options);
|
||||
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue