mirror of
https://github.com/Z3Prover/z3
synced 2025-04-12 12:08:18 +00:00
more seq overhaul
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
76735476d4
commit
a9c4984a16
|
@ -2566,31 +2566,34 @@ bool seq_rewriter::is_string(unsigned n, expr* const* es, zstring& s) const {
|
|||
|
||||
bool seq_rewriter::solve_itos(unsigned szl, expr* const* ls, unsigned szr, expr* const* rs,
|
||||
expr_ref_vector& lhs, expr_ref_vector& rhs, bool& is_sat) {
|
||||
|
||||
expr* l, *r;
|
||||
expr* n = nullptr;
|
||||
is_sat = true;
|
||||
if (szl == 1 && m_util.str.is_itos(ls[0], l)) {
|
||||
if (szr == 1 && m_util.str.is_itos(rs[0], r)) {
|
||||
lhs.push_back(l);
|
||||
rhs.push_back(r);
|
||||
if (szl == 1 && m_util.str.is_itos(ls[0], n) &&
|
||||
solve_itos(n, szr, rs, lhs, rhs)) {
|
||||
return true;
|
||||
}
|
||||
if (szr == 1 && m_util.str.is_itos(rs[0], n) &&
|
||||
solve_itos(n, szl, ls, rhs, lhs)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* itos(n) = <numeric string> -> n = numeric
|
||||
*/
|
||||
|
||||
bool seq_rewriter::solve_itos(expr* n, unsigned sz, expr* const* es, expr_ref_vector& lhs, expr_ref_vector& rhs) {
|
||||
zstring s;
|
||||
if (is_string(sz, es, s)) {
|
||||
std::string s1 = s.encode();
|
||||
rational r(s1.c_str());
|
||||
if (s1 == r.to_string()) {
|
||||
lhs.push_back(n);
|
||||
rhs.push_back(m_autil.mk_numeral(r, true));
|
||||
return true;
|
||||
}
|
||||
zstring s;
|
||||
if (is_string(szr, rs, s)) {
|
||||
std::string s1 = s.encode();
|
||||
rational r(s1.c_str());
|
||||
if (s1 == r.to_string()) {
|
||||
lhs.push_back(l);
|
||||
rhs.push_back(m_autil.mk_numeral(r, true));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (szr == 1 && szl >= 1 && m_util.str.is_itos(rs[0], r) && !m_util.str.is_itos(ls[0])) {
|
||||
return solve_itos(szr, rs, szl, ls, rhs, lhs, is_sat);
|
||||
}
|
||||
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -153,6 +153,7 @@ class seq_rewriter {
|
|||
expr_ref_vector& lhs, expr_ref_vector& rhs, bool& is_sat);
|
||||
bool solve_itos(unsigned n, expr* const* l, unsigned m, expr* const* r,
|
||||
expr_ref_vector& lhs, expr_ref_vector& rhs, bool& is_sat);
|
||||
bool solve_itos(expr* n, unsigned sz, expr* const* es, expr_ref_vector& lhs, expr_ref_vector& rhs);
|
||||
bool min_length(unsigned n, expr* const* es, unsigned& len);
|
||||
expr* concat_non_empty(unsigned n, expr* const* es);
|
||||
|
||||
|
|
|
@ -209,7 +209,7 @@ public:
|
|||
}
|
||||
|
||||
template <enum with_deps_t wd>
|
||||
void power(const interval& a, unsigned n, interval& b) {
|
||||
void power(const interval& a, unsigned n, interval& b) {
|
||||
if (with_deps == wd) {
|
||||
interval_deps_combine_rule combine_rule;
|
||||
m_imanager.power(a, n, b, combine_rule);
|
||||
|
|
|
@ -14,6 +14,7 @@ z3_add_component(smt
|
|||
qi_queue.cpp
|
||||
seq_axioms.cpp
|
||||
seq_skolem.cpp
|
||||
seq_eq_solver.cpp
|
||||
smt_almost_cg_table.cpp
|
||||
smt_arith_value.cpp
|
||||
smt_case_split_queue.cpp
|
||||
|
|
|
@ -120,13 +120,13 @@ void seq_axioms::add_extract_axiom(expr* e) {
|
|||
expr_ref xey = mk_concat(x, e, y);
|
||||
expr_ref zero(a.mk_int(0), m);
|
||||
|
||||
literal i_ge_0 = mk_literal(a.mk_ge(i, zero));
|
||||
literal i_le_ls = mk_literal(a.mk_le(mk_sub(i, ls), zero));
|
||||
literal ls_le_i = mk_literal(a.mk_le(mk_sub(ls, i), zero));
|
||||
literal ls_ge_li = mk_literal(a.mk_ge(ls_minus_i_l, zero));
|
||||
literal l_ge_0 = mk_literal(a.mk_ge(l, zero));
|
||||
literal l_le_0 = mk_literal(a.mk_le(l, zero));
|
||||
literal ls_le_0 = mk_literal(a.mk_le(ls, zero));
|
||||
literal i_ge_0 = mk_ge(i, zero);
|
||||
literal i_le_ls = mk_le(mk_sub(i, ls), zero);
|
||||
literal ls_le_i = mk_le(mk_sub(ls, i), zero);
|
||||
literal ls_ge_li = mk_ge(ls_minus_i_l, zero);
|
||||
literal l_ge_0 = mk_ge(l, zero);
|
||||
literal l_le_0 = mk_le(l, zero);
|
||||
literal ls_le_0 = mk_le(ls, zero);
|
||||
literal le_is_0 = mk_eq(le, zero);
|
||||
|
||||
|
||||
|
@ -214,8 +214,8 @@ void seq_axioms::add_extract_prefix_axiom(expr* e, expr* s, expr* l) {
|
|||
expr_ref zero(a.mk_int(0), m);
|
||||
expr_ref y = m_sk.mk_post(s, l);
|
||||
expr_ref ey = mk_concat(e, y);
|
||||
literal l_ge_0 = mk_literal(a.mk_ge(l, zero));
|
||||
literal l_le_s = mk_literal(a.mk_le(mk_sub(l, ls), zero));
|
||||
literal l_ge_0 = mk_ge(l, zero);
|
||||
literal l_le_s = mk_le(mk_sub(l, ls), zero);
|
||||
add_axiom(~l_ge_0, ~l_le_s, mk_seq_eq(s, ey));
|
||||
add_axiom(~l_ge_0, ~l_le_s, mk_eq(l, le));
|
||||
add_axiom(~l_ge_0, ~l_le_s, mk_eq(ls_minus_l, mk_len(y)));
|
||||
|
@ -236,8 +236,8 @@ void seq_axioms::add_extract_suffix_axiom(expr* e, expr* s, expr* i) {
|
|||
expr_ref zero(a.mk_int(0), m);
|
||||
expr_ref xe = mk_concat(x, e);
|
||||
literal le_is_0 = mk_eq_empty(e);
|
||||
literal i_ge_0 = mk_literal(a.mk_ge(i, zero));
|
||||
literal i_le_s = mk_literal(a.mk_le(mk_sub(i, ls), zero));
|
||||
literal i_ge_0 = mk_ge(i, zero);
|
||||
literal i_le_s = mk_le(mk_sub(i, ls), zero);
|
||||
add_axiom(~i_ge_0, ~i_le_s, mk_seq_eq(s, xe));
|
||||
add_axiom(~i_ge_0, ~i_le_s, mk_eq(i, lx));
|
||||
add_axiom(i_ge_0, le_is_0);
|
||||
|
@ -328,7 +328,7 @@ void seq_axioms::add_indexof_axiom(expr* i) {
|
|||
add_axiom(~s_eq_empty, i_eq_0);
|
||||
add_axiom(~cnt, s_eq_empty, mk_seq_eq(t, xsy));
|
||||
add_axiom(~cnt, s_eq_empty, mk_eq(i, lenx));
|
||||
add_axiom(~cnt, mk_literal(a.mk_ge(i, zero)));
|
||||
add_axiom(~cnt, mk_ge(i, zero));
|
||||
tightest_prefix(s, x);
|
||||
}
|
||||
else {
|
||||
|
@ -336,8 +336,8 @@ void seq_axioms::add_indexof_axiom(expr* i) {
|
|||
// offset > len(t) => indexof(t, s, offset) = -1
|
||||
// offset = len(t) & |s| = 0 => indexof(t, s, offset) = offset
|
||||
expr_ref len_t = mk_len(t);
|
||||
literal offset_ge_len = mk_literal(a.mk_ge(mk_sub(offset, len_t), zero));
|
||||
literal offset_le_len = mk_literal(a.mk_le(mk_sub(offset, len_t), zero));
|
||||
literal offset_ge_len = mk_ge(mk_sub(offset, len_t), zero);
|
||||
literal offset_le_len = mk_le(mk_sub(offset, len_t), zero);
|
||||
literal i_eq_offset = mk_eq(i, offset);
|
||||
add_axiom(~offset_ge_len, s_eq_empty, i_eq_m1);
|
||||
add_axiom(offset_le_len, i_eq_m1);
|
||||
|
@ -347,7 +347,7 @@ void seq_axioms::add_indexof_axiom(expr* i) {
|
|||
expr_ref y = m_sk.mk_indexof_right(t, s, offset);
|
||||
expr_ref indexof0(seq.str.mk_index(y, s, zero), m);
|
||||
expr_ref offset_p_indexof0(a.mk_add(offset, indexof0), m);
|
||||
literal offset_ge_0 = mk_literal(a.mk_ge(offset, zero));
|
||||
literal offset_ge_0 = mk_ge(offset, zero);
|
||||
|
||||
// 0 <= offset & offset < len(t) => t = xy
|
||||
// 0 <= offset & offset < len(t) => len(x) = offset
|
||||
|
@ -360,7 +360,7 @@ void seq_axioms::add_indexof_axiom(expr* i) {
|
|||
add_axiom(~offset_ge_0, offset_ge_len,
|
||||
~mk_eq(indexof0, minus_one), i_eq_m1);
|
||||
add_axiom(~offset_ge_0, offset_ge_len,
|
||||
~mk_literal(a.mk_ge(indexof0, zero)),
|
||||
~mk_ge(indexof0, zero),
|
||||
mk_eq(offset_p_indexof0, i));
|
||||
|
||||
// offset < 0 => -1 = i
|
||||
|
@ -451,8 +451,8 @@ void seq_axioms::add_at_axiom(expr* e) {
|
|||
expr_ref one(a.mk_int(1), m);
|
||||
expr_ref emp(seq.str.mk_empty(m.get_sort(e)), m);
|
||||
expr_ref len_s = mk_len(s);
|
||||
literal i_ge_0 = mk_literal(a.mk_ge(i, zero));
|
||||
literal i_ge_len_s = mk_literal(a.mk_ge(mk_sub(i, mk_len(s)), zero));
|
||||
literal i_ge_0 = mk_ge(i, zero);
|
||||
literal i_ge_len_s = mk_ge(mk_sub(i, mk_len(s)), zero);
|
||||
expr_ref len_e = mk_len(e);
|
||||
|
||||
rational iv;
|
||||
|
@ -480,7 +480,7 @@ void seq_axioms::add_at_axiom(expr* e) {
|
|||
add_axiom(i_ge_0, mk_eq(e, emp));
|
||||
add_axiom(~i_ge_len_s, mk_eq(e, emp));
|
||||
add_axiom(~i_ge_0, i_ge_len_s, mk_eq(one, len_e));
|
||||
add_axiom(mk_literal(a.mk_le(len_e, one)));
|
||||
add_axiom(mk_le(len_e, one));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -500,8 +500,8 @@ void seq_axioms::add_nth_axiom(expr* e) {
|
|||
}
|
||||
else {
|
||||
expr_ref zero(a.mk_int(0), m);
|
||||
literal i_ge_0 = mk_literal(a.mk_ge(i, zero));
|
||||
literal i_ge_len_s = mk_literal(a.mk_ge(mk_sub(i, mk_len(s)), zero));
|
||||
literal i_ge_0 = mk_ge(i, zero);
|
||||
literal i_ge_len_s = mk_ge(mk_sub(i, mk_len(s)), zero);
|
||||
// at(s,i) = [nth(s,i)]
|
||||
expr_ref rhs(s, m);
|
||||
expr_ref lhs(seq.str.mk_unit(e), m);
|
||||
|
@ -520,12 +520,12 @@ void seq_axioms::add_itos_axiom(expr* e) {
|
|||
// itos(n) = "" <=> n < 0
|
||||
expr_ref zero(a.mk_int(0), m);
|
||||
literal eq1 = mk_literal(seq.str.mk_is_empty(e));
|
||||
literal ge0 = mk_literal(a.mk_ge(n, zero));
|
||||
literal ge0 = mk_ge(n, zero);
|
||||
// n >= 0 => itos(n) != ""
|
||||
// itos(n) = "" or n >= 0
|
||||
add_axiom(~eq1, ~ge0);
|
||||
add_axiom(eq1, ge0);
|
||||
add_axiom(mk_literal(a.mk_ge(mk_len(e), zero)));
|
||||
add_axiom(mk_ge(mk_len(e), 0));
|
||||
|
||||
// n >= 0 => stoi(itos(n)) = n
|
||||
app_ref stoi(seq.str.mk_stoi(e), m);
|
||||
|
@ -550,37 +550,74 @@ void seq_axioms::add_stoi_axiom(expr* e) {
|
|||
TRACE("seq", tout << mk_pp(e, m) << "\n";);
|
||||
expr* s = nullptr;
|
||||
VERIFY (seq.str.is_stoi(e, s));
|
||||
add_axiom(mk_literal(a.mk_ge(e, a.mk_int(-1))));
|
||||
add_axiom(mk_ge(e, -1));
|
||||
add_axiom(~mk_literal(seq.str.mk_is_empty(s)), mk_eq(seq.str.mk_stoi(s), a.mk_int(-1)));
|
||||
}
|
||||
|
||||
/**
|
||||
stoi(s) >= 0 =>
|
||||
s != empty
|
||||
s = unit(head) + tail
|
||||
stoi(s) = 10*digit(head) + stoi(tail) or tail = empty
|
||||
stoi(s) = digit(head) or tail != empty
|
||||
is_digit(head)
|
||||
(tail = empty or stoi(tail) >= 0)
|
||||
|
||||
stoi(s) >= 0, len(s) <= k => stoi(s) = stoi(s, k)
|
||||
len(s) > 0 => stoi(s, 0) = digit(nth_i(s, 0))
|
||||
0 < i, len(s) <= i => stoi(s, i) = stoi(s, i - 1)
|
||||
0 < i, len(s) > i => stoi(s, i) = 10*stoi(s, i - 1) + digit(nth_i(s, i - 1))
|
||||
|
||||
Define auxiliary function with the property:
|
||||
for 0 <= i < len(s)
|
||||
stoi(s, i) := stoi(extract(s, 0, i+1))
|
||||
|
||||
for 0 < i < len(s):
|
||||
len(s) > i => stoi(s, i) := stoi(extract(s, 0, i))*10 + stoi(extract(s, i, 1))
|
||||
len(s) <= i => stoi(s, i) := stoi(extract(s, 0, i-1), i-1)
|
||||
|
||||
*/
|
||||
void seq_axioms::add_stoi_non_empty_axiom(expr* e) {
|
||||
void seq_axioms::add_stoi_axiom(expr* e, unsigned k) {
|
||||
SASSERT(k > 0);
|
||||
expr* s = nullptr;
|
||||
VERIFY (seq.str.is_stoi(e, s));
|
||||
expr_ref head(m), tail(m);
|
||||
m_sk.decompose(s, head, tail);
|
||||
expr_ref first_char = mk_nth(s, a.mk_int(0));
|
||||
literal ge0 = mk_literal(a.mk_ge(e, a.mk_int(0)));
|
||||
literal tail_empty = mk_eq_empty(tail);
|
||||
expr_ref first_digit = m_sk.mk_digit2int(first_char);
|
||||
expr_ref stoi_tail(seq.str.mk_stoi(tail), m);
|
||||
add_axiom(~ge0, ~mk_literal(seq.str.mk_is_empty(s)));
|
||||
add_axiom(~ge0, mk_seq_eq(s, mk_concat(head, tail)));
|
||||
add_axiom(~ge0, tail_empty, mk_eq(a.mk_add(a.mk_mul(a.mk_int(10), first_digit), stoi_tail), e));
|
||||
add_axiom(~ge0, ~tail_empty, mk_eq(first_digit, e));
|
||||
add_axiom(~ge0, is_digit(first_char));
|
||||
add_axiom(~ge0, tail_empty, mk_literal(a.mk_ge(stoi_tail, a.mk_int(0))));
|
||||
auto stoi2 = [&](unsigned j) { return m_sk.mk("seq.stoi", s, a.mk_int(j), a.mk_int()); };
|
||||
auto digit = [&](unsigned j) { return m_sk.mk_digit2int(mk_nth(s, a.mk_int(j))); };
|
||||
expr_ref len = mk_len(s);
|
||||
literal ge0 = mk_ge(e, 0);
|
||||
literal lek = mk_le(len, k);
|
||||
add_axiom(~ge0, ~mk_eq(len, a.mk_int(0)));
|
||||
add_axiom(~ge0, ~lek, mk_eq(e, stoi2(k-1)));
|
||||
add_axiom(mk_eq(len, a.mk_int(0)), mk_eq(stoi2(0), digit(0)));
|
||||
for (unsigned i = 1; i < k; ++i) {
|
||||
add_axiom(mk_le(len, i), mk_eq(stoi2(i), a.mk_add(a.mk_mul(a.mk_int(10), stoi2(i-1)), digit(i))));
|
||||
add_axiom(~mk_le(len, i), mk_eq(stoi2(i), stoi2(i-1)));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Let s := itos(e)
|
||||
|
||||
Relate values of e with len(s) where len(s) is bounded by k.
|
||||
|
||||
|s| = 0 => e < 0
|
||||
|
||||
|s| <= 1 => e < 10
|
||||
|s| <= 2 => e < 100
|
||||
|s| <= 3 => e < 1000
|
||||
|
||||
|s| >= 1 => e >= 0
|
||||
|s| >= 2 => e >= 10
|
||||
|s| >= 3 => e >= 100
|
||||
|
||||
*/
|
||||
|
||||
void seq_axioms::add_itos_axiom(expr* s, unsigned k) {
|
||||
expr* e = nullptr;
|
||||
VERIFY(seq.str.is_itos(s, e));
|
||||
expr_ref len = mk_len(s);
|
||||
add_axiom(mk_ge(e, 10), mk_le(len, 1));
|
||||
add_axiom(mk_le(e, -1), mk_ge(len, 1));
|
||||
rational lo(1);
|
||||
for (unsigned i = 1; i <= k; ++i) {
|
||||
lo *= rational(10);
|
||||
add_axiom(mk_ge(e, lo), mk_le(len, i));
|
||||
add_axiom(mk_le(e, lo - 1), mk_ge(len, i + 1));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
e1 < e2 => prefix(e1, e2) or e1 = xcy e1 < e2 => prefix(e1, e2) or
|
||||
|
@ -644,7 +681,7 @@ void seq_axioms::add_suffix_axiom(expr* e) {
|
|||
expr* e1 = nullptr, *e2 = nullptr;
|
||||
VERIFY(seq.str.is_suffix(e, e1, e2));
|
||||
literal lit = mk_literal(e);
|
||||
literal e1_gt_e2 = mk_literal(a.mk_ge(mk_sub(mk_len(e1), mk_len(e2)), a.mk_int(1)));
|
||||
literal e1_gt_e2 = mk_ge(mk_sub(mk_len(e1), mk_len(e2)), 1);
|
||||
sort* char_sort = nullptr;
|
||||
VERIFY(seq.is_seq(m.get_sort(e1), char_sort));
|
||||
expr_ref x = m_sk.mk(symbol("seq.suffix.x"), e1, e2);
|
||||
|
@ -661,7 +698,7 @@ void seq_axioms::add_prefix_axiom(expr* e) {
|
|||
expr* e1 = nullptr, *e2 = nullptr;
|
||||
VERIFY(seq.str.is_prefix(e, e1, e2));
|
||||
literal lit = mk_literal(e);
|
||||
literal e1_gt_e2 = mk_literal(a.mk_ge(mk_sub(mk_len(e1), mk_len(e2)), a.mk_int(1)));
|
||||
literal e1_gt_e2 = mk_ge(mk_sub(mk_len(e1), mk_len(e2)), 1);
|
||||
sort* char_sort = nullptr;
|
||||
VERIFY(seq.is_seq(m.get_sort(e1), char_sort));
|
||||
expr_ref x = m_sk.mk(symbol("seq.prefix.x"), e1, e2);
|
||||
|
@ -686,50 +723,6 @@ literal seq_axioms::is_digit(expr* ch) {
|
|||
add_axiom(~isd, hi);
|
||||
return isd;
|
||||
}
|
||||
// n >= 0 & len(e) >= i + 1 => is_digit(e_i) for i = 0..k-1
|
||||
// n >= 0 & len(e) = k => n = sum 10^i*digit(e_i)
|
||||
// n < 0 & len(e) = k => \/_i ~is_digit(e_i) for i = 0..k-1
|
||||
// 10^k <= n < 10^{k+1}-1 => len(e) => k
|
||||
|
||||
void seq_axioms::add_si_axiom(expr* e, expr* n, unsigned k) {
|
||||
zstring s;
|
||||
expr_ref ith_char(m), num(m), coeff(m);
|
||||
expr_ref_vector nums(m), chars(m);
|
||||
expr_ref len = mk_len(e);
|
||||
literal len_eq_k = th.mk_preferred_eq(len, a.mk_int(k));
|
||||
literal ge0 = mk_literal(a.mk_ge(n, a.mk_int(0)));
|
||||
literal_vector digits;
|
||||
digits.push_back(~len_eq_k);
|
||||
digits.push_back(ge0);
|
||||
ensure_digit_axiom();
|
||||
for (unsigned i = 0; i < k; ++i) {
|
||||
ith_char = mk_nth(e, a.mk_int(i));
|
||||
literal isd = is_digit(ith_char);
|
||||
literal len_ge_i1 = mk_literal(a.mk_ge(len, a.mk_int(i+1)));
|
||||
add_axiom(~len_ge_i1, ~ge0, isd);
|
||||
digits.push_back(~isd);
|
||||
chars.push_back(seq.str.mk_unit(ith_char));
|
||||
nums.push_back(m_sk.mk_digit2int(ith_char));
|
||||
}
|
||||
ctx().mk_th_axiom(th.get_id(), digits.size(), digits.c_ptr());
|
||||
rational c(1);
|
||||
for (unsigned i = k; i-- > 0; c *= rational(10)) {
|
||||
coeff = a.mk_int(c);
|
||||
nums[i] = a.mk_mul(coeff, nums.get(i));
|
||||
}
|
||||
num = a.mk_add(nums.size(), nums.c_ptr());
|
||||
m_rewrite(num);
|
||||
add_axiom(~len_eq_k, ~ge0, th.mk_preferred_eq(n, num));
|
||||
add_axiom(~len_eq_k, ~ge0, th.mk_preferred_eq(e, seq.str.mk_concat(chars)));
|
||||
|
||||
SASSERT(k > 0);
|
||||
rational lb = power(rational(10), k - 1);
|
||||
rational ub = power(rational(10), k) - 1;
|
||||
literal lbl = mk_literal(a.mk_ge(n, a.mk_int(lb)));
|
||||
literal ge_k = mk_literal(a.mk_ge(len, a.mk_int(k)));
|
||||
// n >= lb => len(s) >= k
|
||||
add_axiom(~lbl, ge_k);
|
||||
}
|
||||
|
||||
void seq_axioms::ensure_digit_axiom() {
|
||||
if (!m_digits_initialized) {
|
||||
|
@ -745,7 +738,10 @@ void seq_axioms::ensure_digit_axiom() {
|
|||
|
||||
expr_ref seq_axioms::add_length_limit(expr* s, unsigned k) {
|
||||
expr_ref bound_tracker = m_sk.mk_length_limit(s, k);
|
||||
literal bound_predicate = mk_literal(a.mk_le(mk_len(s), a.mk_int(k)));
|
||||
expr* s0 = nullptr;
|
||||
if (seq.str.is_stoi(s, s0))
|
||||
s = s0;
|
||||
literal bound_predicate = mk_le(mk_len(s), k);
|
||||
add_axiom(~mk_literal(bound_tracker), bound_predicate);
|
||||
return bound_tracker;
|
||||
}
|
||||
|
|
|
@ -47,6 +47,12 @@ namespace smt {
|
|||
expr_ref mk_concat(expr* e1, expr* e2, expr* e3) { return expr_ref(seq.str.mk_concat(e1, e2, e3), m); }
|
||||
expr_ref mk_concat(expr* e1, expr* e2) { return expr_ref(seq.str.mk_concat(e1, e2), m); }
|
||||
expr_ref mk_nth(expr* e, expr* i) { return expr_ref(seq.str.mk_nth_i(e, i), m); }
|
||||
literal mk_ge(expr* e, int k) { return mk_ge(e, a.mk_int(k)); }
|
||||
literal mk_le(expr* e, int k) { return mk_le(e, a.mk_int(k)); }
|
||||
literal mk_ge(expr* e, rational const& k) { return mk_ge(e, a.mk_int(k)); }
|
||||
literal mk_le(expr* e, rational const& k) { return mk_le(e, a.mk_int(k)); }
|
||||
literal mk_ge(expr* x, expr* y) { return mk_literal(a.mk_ge(x, y)); }
|
||||
literal mk_le(expr* x, expr* y) { return mk_literal(a.mk_le(x, y)); }
|
||||
void add_axiom(literal l1, literal l2 = null_literal, literal l3 = null_literal,
|
||||
literal l4 = null_literal, literal l5 = null_literal) { add_axiom5(l1, l2, l3, l4, l5); }
|
||||
|
||||
|
@ -78,12 +84,12 @@ namespace smt {
|
|||
void add_nth_axiom(expr* n);
|
||||
void add_itos_axiom(expr* n);
|
||||
void add_stoi_axiom(expr* n);
|
||||
void add_stoi_non_empty_axiom(expr* e);
|
||||
void add_stoi_axiom(expr* e, unsigned k);
|
||||
void add_itos_axiom(expr* s, unsigned k);
|
||||
void add_lt_axiom(expr* n);
|
||||
void add_le_axiom(expr* n);
|
||||
void add_unit_axiom(expr* n);
|
||||
literal is_digit(expr* ch);
|
||||
void add_si_axiom(expr* e, expr* n, unsigned k);
|
||||
|
||||
expr_ref add_length_limit(expr* s, unsigned k);
|
||||
};
|
||||
|
|
1620
src/smt/seq_eq_solver.cpp
Normal file
1620
src/smt/seq_eq_solver.cpp
Normal file
File diff suppressed because it is too large
Load diff
|
@ -136,13 +136,18 @@ bool seq_skolem::is_step(expr* e, expr*& s, expr*& idx, expr*& re, expr*& i, exp
|
|||
}
|
||||
}
|
||||
|
||||
bool seq_skolem::is_tail(expr* e, expr*& s, unsigned& idx) const {
|
||||
bool seq_skolem::is_tail_u(expr* e, expr*& s, unsigned& idx) const {
|
||||
expr* i = nullptr;
|
||||
rational r;
|
||||
return is_tail_match(e, s, i) && a.is_numeral(i, r) && r.is_unsigned() && (idx = r.get_unsigned(), true);
|
||||
return is_tail(e, s, i) && a.is_numeral(i, r) && r.is_unsigned() && (idx = r.get_unsigned(), true);
|
||||
}
|
||||
|
||||
bool seq_skolem::is_tail_match(expr* e, expr*& s, expr*& idx) const {
|
||||
bool seq_skolem::is_tail(expr* e, expr*& s) const {
|
||||
expr* i = nullptr;
|
||||
return is_tail(e, s, i);
|
||||
}
|
||||
|
||||
bool seq_skolem::is_tail(expr* e, expr*& s, expr*& idx) const {
|
||||
return is_tail(e) && (s = to_app(e)->get_arg(0), idx = to_app(e)->get_arg(1), true);
|
||||
}
|
||||
|
||||
|
|
|
@ -95,8 +95,9 @@ namespace smt {
|
|||
bool is_post(expr* e, expr*& s, expr*& start);
|
||||
bool is_pre(expr* e, expr*& s, expr*& i);
|
||||
bool is_eq(expr* e, expr*& a, expr*& b) const;
|
||||
bool is_tail_match(expr* e, expr*& s, expr*& idx) const;
|
||||
bool is_tail(expr* e, expr*& s, unsigned& idx) const;
|
||||
bool is_tail(expr* e, expr*& s, expr*& idx) const;
|
||||
bool is_tail_u(expr* e, expr*& s, unsigned& idx) const;
|
||||
bool is_tail(expr* e, expr*& s) const;
|
||||
bool is_digit(expr* e) const { return is_skolem(symbol("seq.is_digit"), e); }
|
||||
bool is_max_unfolding(expr* e) const { return is_skolem(m_max_unfolding, e); }
|
||||
bool is_length_limit(expr* e) const { return is_skolem(m_length_limit, e); }
|
||||
|
|
|
@ -122,7 +122,7 @@ namespace smt {
|
|||
return true_literal;
|
||||
}
|
||||
context & ctx = get_context();
|
||||
app * eq = ctx.mk_eq_atom(a, b);
|
||||
app_ref eq(ctx.mk_eq_atom(a, b), get_manager());
|
||||
TRACE("mk_var_bug", tout << "mk_eq: " << eq->get_id() << " " << a->get_id() << " " << b->get_id() << "\n";
|
||||
tout << mk_ll_pp(a, get_manager()) << "\n" << mk_ll_pp(b, get_manager()););
|
||||
ctx.internalize(eq, gate_ctx);
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -389,13 +389,12 @@ namespace smt {
|
|||
obj_hashtable<expr> m_axiom_set;
|
||||
unsigned m_axioms_head; // index of first axiom to add.
|
||||
bool m_incomplete; // is the solver (clearly) incomplete for the fragment.
|
||||
expr_ref_vector m_int_string;
|
||||
obj_map<expr, unsigned> m_si_axioms;
|
||||
obj_hashtable<expr> m_has_length; // is length applied
|
||||
expr_ref_vector m_length; // length applications themselves
|
||||
obj_map<expr, unsigned> m_length_limit_map; // sequences that have length limit predicates
|
||||
expr_ref_vector m_length_limit; // length limit predicates
|
||||
scoped_ptr_vector<apply> m_replay; // set of actions to replay
|
||||
expr_ref_vector m_int_string;
|
||||
obj_hashtable<expr> m_has_length; // is length applied
|
||||
expr_ref_vector m_length; // length applications themselves
|
||||
obj_map<expr, unsigned> m_length_limit_map; // sequences that have length limit predicates
|
||||
expr_ref_vector m_length_limit; // length limit predicates
|
||||
scoped_ptr_vector<apply> m_replay; // set of actions to replay
|
||||
model_generator* m_mg;
|
||||
th_rewriter m_rewrite; // rewriter that converts strings to character concats
|
||||
th_rewriter m_str_rewrite; // rewriter that coonverts character concats to strings
|
||||
|
@ -518,6 +517,7 @@ namespace smt {
|
|||
bool solve_nth_eq1(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep);
|
||||
bool solve_nth_eq2(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep);
|
||||
bool solve_itos(expr_ref_vector const& ls, expr_ref_vector const& rs, dependency* dep);
|
||||
bool solve_itos(expr* n, expr_ref_vector const& rs, dependency* dep);
|
||||
bool is_binary_eq(expr_ref_vector const& l, expr_ref_vector const& r, expr_ref& x, ptr_vector<expr>& xunits, ptr_vector<expr>& yunits, expr_ref& y);
|
||||
bool is_quat_eq(expr_ref_vector const& ls, expr_ref_vector const& rs, expr_ref& x1, expr_ref_vector& xs, expr_ref& x2, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2);
|
||||
bool is_ternary_eq(expr_ref_vector const& ls, expr_ref_vector const& rs, expr_ref& x, expr_ref_vector& xs, expr_ref& y1, expr_ref_vector& ys, expr_ref& y2, bool flag1);
|
||||
|
@ -541,7 +541,7 @@ namespace smt {
|
|||
bool solve_ne(unsigned i);
|
||||
bool solve_nc(unsigned i);
|
||||
bool branch_nqs();
|
||||
void branch_nq(ne const& n);
|
||||
lbool branch_nq(ne const& n);
|
||||
|
||||
struct cell {
|
||||
cell* m_parent;
|
||||
|
@ -622,10 +622,6 @@ namespace smt {
|
|||
|
||||
expr_ref add_elim_string_axiom(expr* n);
|
||||
void add_in_re_axiom(expr* n);
|
||||
bool add_itos_val_axiom(expr* n);
|
||||
bool add_stoi_val_axiom(expr* n);
|
||||
bool add_si_axiom(expr* e, expr* n);
|
||||
void add_itos_length_axiom(expr* n);
|
||||
literal mk_literal(expr* n);
|
||||
literal mk_simplified_literal(expr* n);
|
||||
literal mk_eq_empty(expr* n, bool phase = true);
|
||||
|
@ -650,6 +646,9 @@ namespace smt {
|
|||
|
||||
void mk_decompose(expr* e, expr_ref& head, expr_ref& tail);
|
||||
|
||||
// unfold definitions based on length limits
|
||||
void propagate_length_limit(expr* n);
|
||||
|
||||
void set_incomplete(app* term);
|
||||
|
||||
// automata utilities
|
||||
|
|
|
@ -19,9 +19,10 @@ Revision History:
|
|||
#ifndef THEORY_SEQ_EMPTY_H_
|
||||
#define THEORY_SEQ_EMPTY_H_
|
||||
|
||||
#include "smt/smt_theory.h"
|
||||
#include "ast/seq_decl_plugin.h"
|
||||
#include "model/seq_factory.h"
|
||||
#include "smt/smt_theory.h"
|
||||
#include "smt/smt_model_generator.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
|
|
Loading…
Reference in a new issue