3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 18:31:49 +00:00

flip literals in ATEs produced using RI

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-04-06 08:38:01 -07:00
parent 528dc8a3f8
commit a954ab7d8d
7 changed files with 224 additions and 85 deletions

View file

@ -410,6 +410,7 @@ namespace sat {
if (c.is_learned()) {
m_elim_learned_literals += c.size() - new_sz;
}
switch(new_sz) {
case 0:
s.set_conflict(justification());

View file

@ -194,7 +194,9 @@ namespace sat {
if (u != get_parent(v) && safe_reach(u, v)) {
++elim;
add_del(~u, v);
// IF_VERBOSE(1, verbose_stream() << "remove " << u << " -> " << v << "\n");
if (s.get_config().m_drat) s.m_drat.del(~u, v);
s.m_mc.stackv().reset(); // TBD: brittle code
s.add_ate(~u, v);
if (find_binary_watch(wlist, ~v)) {
IF_VERBOSE(10, verbose_stream() << "binary: " << ~u << "\n");
s.assign(~u, justification());

View file

@ -75,33 +75,41 @@ namespace sat {
void model_converter::operator()(model & m) const {
vector<entry>::const_iterator begin = m_entries.begin();
vector<entry>::const_iterator it = m_entries.end();
bool first = false; // true;
bool first = true; // false; // true; // false; // true;
//SASSERT(!m_solver || m_solver->check_clauses(m));
while (it != begin) {
--it;
bool_var v0 = it->var();
SASSERT(it->get_kind() != ELIM_VAR || m[v0] == l_undef);
// if it->get_kind() == BLOCK_LIT, then it might be the case that m[v] != l_undef,
SASSERT(it->get_kind() != ELIM_VAR || v0 == null_bool_var || m[v0] == l_undef);
// if it->get_kind() == BCE, then it might be the case that m[v] != l_undef,
// and the following procedure flips its value.
bool sat = false;
bool var_sign = false;
unsigned index = 0;
literal_vector clause;
VERIFY(legal_to_flip(v0));
VERIFY(v0 == null_bool_var || legal_to_flip(v0));
for (literal l : it->m_clauses) {
if (l == null_literal) {
// end of clause
elim_stack* st = it->m_elim_stack[index];
if (!sat) {
if (!sat && it->get_kind() == ATE) {
IF_VERBOSE(0, display(verbose_stream() << "violated ate\n", *it) << "\n");
IF_VERBOSE(0, for (unsigned v = 0; v < m.size(); ++v) verbose_stream() << v << " := " << m[v] << "\n";);
IF_VERBOSE(0, display(verbose_stream()));
exit(0);
first = false;
}
if (!sat && it->get_kind() != ATE && v0 != null_bool_var) {
VERIFY(legal_to_flip(v0));
m[v0] = var_sign ? l_false : l_true;
}
elim_stack* st = it->m_elim_stack[index];
if (st) {
process_stack(m, clause, st->stack());
}
sat = false;
if (first && m_solver && !m_solver->check_clauses(m)) {
IF_VERBOSE(0, display(verbose_stream() << "after processing stack\n", *it) << "\n");
IF_VERBOSE(0, display(verbose_stream()));
first = false;
}
++index;
@ -191,17 +199,43 @@ namespace sat {
entry & e = m_entries.back();
SASSERT(e.var() == v);
SASSERT(e.get_kind() == k);
VERIFY(legal_to_flip(v));
VERIFY(v == null_bool_var || legal_to_flip(v));
return e;
}
void model_converter::add_ate(clause const& c) {
if (stackv().empty()) return;
insert(mk(ATE, null_bool_var), c);
}
void model_converter::add_ate(literal_vector const& lits) {
if (stackv().empty()) return;
insert(mk(ATE, null_bool_var), lits);
}
void model_converter::add_ate(literal l1, literal l2) {
if (stackv().empty()) return;
insert(mk(ATE, null_bool_var), l1, l2);
}
void model_converter::add_elim_stack(entry & e) {
e.m_elim_stack.push_back(stackv().empty() ? nullptr : alloc(elim_stack, stackv()));
#if 0
if (!stackv().empty() && e.get_kind() == ATE) {
IF_VERBOSE(0, display(verbose_stream(), e) << "\n");
}
#endif
for (auto const& s : stackv()) VERIFY(legal_to_flip(s.second.var()));
stackv().reset();
}
void model_converter::insert(entry & e, clause const & c) {
SASSERT(c.contains(e.var()));
SASSERT(m_entries.begin() <= &e);
SASSERT(&e < m_entries.end());
for (literal l : c) e.m_clauses.push_back(l);
e.m_clauses.push_back(null_literal);
e.m_elim_stack.push_back(nullptr);
add_elim_stack(e);
TRACE("sat_mc_bug", tout << "adding: " << c << "\n";);
}
@ -212,7 +246,7 @@ namespace sat {
e.m_clauses.push_back(l1);
e.m_clauses.push_back(l2);
e.m_clauses.push_back(null_literal);
e.m_elim_stack.push_back(nullptr);
add_elim_stack(e);
TRACE("sat_mc_bug", tout << "adding (binary): " << l1 << " " << l2 << "\n";);
}
@ -224,18 +258,17 @@ namespace sat {
for (unsigned i = 0; i < sz; ++i)
e.m_clauses.push_back(c[i]);
e.m_clauses.push_back(null_literal);
e.m_elim_stack.push_back(nullptr);
add_elim_stack(e);
// TRACE("sat_mc_bug", tout << "adding (wrapper): "; for (literal l : c) tout << l << " "; tout << "\n";);
}
void model_converter::insert(entry & e, literal_vector const& c, elim_stackv const& elims) {
void model_converter::insert(entry & e, literal_vector const& c) {
SASSERT(c.contains(literal(e.var(), false)) || c.contains(literal(e.var(), true)));
SASSERT(m_entries.begin() <= &e);
SASSERT(&e < m_entries.end());
for (literal l : c) e.m_clauses.push_back(l);
e.m_clauses.push_back(null_literal);
e.m_elim_stack.push_back(elims.empty() ? nullptr : alloc(elim_stack, elims));
for (auto const& s : elims) VERIFY(legal_to_flip(s.second.var()));
add_elim_stack(e);
TRACE("sat_mc_bug", tout << "adding: " << c << "\n";);
}
@ -246,7 +279,7 @@ namespace sat {
vector<entry>::const_iterator it = m_entries.begin();
vector<entry>::const_iterator end = m_entries.end();
for (; it != end; ++it) {
SASSERT(it->var() < num_vars);
SASSERT(it->var() == null_bool_var || it->var() < num_vars);
if (it->get_kind() == ELIM_VAR) {
svector<entry>::const_iterator it2 = it;
it2++;
@ -276,7 +309,8 @@ namespace sat {
}
std::ostream& model_converter::display(std::ostream& out, entry const& entry) const {
out << " (" << entry.get_kind() << " " << entry.var();
out << " (" << entry.get_kind() << " ";
if (entry.var() != null_bool_var) out << entry.var();
bool start = true;
unsigned index = 0;
for (literal l : entry.m_clauses) {
@ -306,7 +340,7 @@ namespace sat {
}
out << ")";
for (literal l : entry.m_clauses) {
if (l != null_literal) {
if (l != null_literal && l.var() != null_bool_var) {
if (false && m_solver && m_solver->was_eliminated(l.var())) out << "\neliminated: " << l;
}
}
@ -333,7 +367,7 @@ namespace sat {
for (entry const& e : m_entries) {
for (literal l : e.m_clauses) {
if (l != null_literal) {
if (l.var() > result)
if (l.var() != null_bool_var && l.var() > result)
result = l.var();
}
}
@ -372,9 +406,11 @@ namespace sat {
update_stack.push_back(null_literal);
}
}
swap(e.var(), clause.size(), clause);
update_stack.append(clause);
update_stack.push_back(null_literal);
if (e.var() != null_bool_var) {
swap(e.var(), clause.size(), clause);
update_stack.append(clause);
update_stack.push_back(null_literal);
}
clause.reset();
}
else {

View file

@ -66,11 +66,11 @@ namespace sat {
unsigned ref_count() const { return m_refcount; }
};
enum kind { ELIM_VAR = 0, BLOCK_LIT, CCE, ACCE };
enum kind { ELIM_VAR = 0, BCE, CCE, ACCE, ABCE, ATE };
class entry {
friend class model_converter;
unsigned m_var:30;
unsigned m_kind:2;
bool_var m_var;
kind m_kind;
literal_vector m_clauses; // the different clauses are separated by null_literal
sref_vector<elim_stack> m_elim_stack;
entry(kind k, bool_var v): m_var(v), m_kind(k) {}
@ -82,11 +82,12 @@ namespace sat {
m_elim_stack.append(src.m_elim_stack);
}
bool_var var() const { return m_var; }
kind get_kind() const { return static_cast<kind>(m_kind); }
kind get_kind() const { return m_kind; }
};
private:
vector<entry> m_entries;
solver const* m_solver;
elim_stackv m_elim_stack;
void process_stack(model & m, literal_vector const& clause, elim_stackv const& stack) const;
@ -96,6 +97,8 @@ namespace sat {
void swap(bool_var v, unsigned sz, literal_vector& clause);
void add_elim_stack(entry & e);
public:
model_converter();
~model_converter();
@ -103,11 +106,17 @@ namespace sat {
void operator()(model & m) const;
model_converter& operator=(model_converter const& other);
elim_stackv& stackv() { return m_elim_stack; }
entry & mk(kind k, bool_var v);
void insert(entry & e, clause const & c);
void insert(entry & e, literal l1, literal l2);
void insert(entry & e, clause_wrapper const & c);
void insert(entry & c, literal_vector const& covered_clause, elim_stackv const& elim_stack);
void insert(entry & c, literal_vector const& covered_clause);
void add_ate(literal_vector const& lits);
void add_ate(literal l1, literal l2);
void add_ate(clause const& c);
bool empty() const { return m_entries.empty(); }
@ -137,9 +146,11 @@ namespace sat {
inline std::ostream& operator<<(std::ostream& out, model_converter::kind k) {
switch (k) {
case model_converter::ELIM_VAR: out << "elim"; break;
case model_converter::BLOCK_LIT: out << "blocked"; break;
case model_converter::BCE: out << "bce"; break;
case model_converter::CCE: out << "cce"; break;
case model_converter::ACCE: out << "acce"; break;
case model_converter::ABCE: out << "abce"; break;
case model_converter::ATE: out << "ate"; break;
}
return out;
}

View file

@ -939,16 +939,21 @@ namespace sat {
bool operator==(clause_ante const& a) const {
return a.m_lit1 == m_lit1 && a.m_lit2 == m_lit2 && a.m_clause == m_clause;
}
std::ostream& display(std::ostream& out) const {
std::ostream& display(std::ostream& out, literal lit) const {
if (cls()) {
out << *cls() << " ";
}
else {
out << "(" << ~lit;
}
if (lit1() != null_literal) {
out << lit1() << " ";
out << " " << lit1();
}
if (lit2() != null_literal) {
out << lit2() << " ";
out << " " << lit2();
}
if (!cls()) out << ")";
if (from_ri()) out << "ri";
out << "\n";
return out;
}
@ -978,7 +983,7 @@ namespace sat {
simplifier & s;
int m_counter;
model_converter & mc;
model_converter & m_mc;
queue m_queue;
literal_vector m_covered_clause; // covered clause
@ -987,7 +992,6 @@ namespace sat {
literal_vector m_tautology; // literals that are used in blocking tautology
literal_vector m_new_intersection;
svector<bool> m_in_intersection;
sat::model_converter::elim_stackv m_elim_stack;
unsigned m_ala_qhead;
clause_wrapper m_clause;
@ -995,7 +999,7 @@ namespace sat {
vector<watch_list> & wlist):
s(_s),
m_counter(limit),
mc(_mc),
m_mc(_mc),
m_queue(l, wlist),
m_clause(null_literal, null_literal) {
m_in_intersection.resize(s.s.num_vars() * 2, false);
@ -1069,6 +1073,7 @@ namespace sat {
m_tautology.reset();
if (!process_var(l.var())) return false;
bool first = true;
VERIFY(s.value(l) == l_undef);
for (watched & w : s.get_wlist(l)) {
// when adding a blocked clause, then all non-learned clauses have to be considered for the
// resolution intersection.
@ -1184,18 +1189,18 @@ namespace sat {
if (m_covered_antecedent[i] == clause_ante()) s.mark_visited(lit);
if (s.is_marked(lit)) idx = i;
}
if (false && _blocked.var() == 16774) {
if (false) {
IF_VERBOSE(0, verbose_stream() << "covered: " << m_covered_clause << "\n";
verbose_stream() << "tautology: " << m_tautology << "\n";
verbose_stream() << "index: " << idx << "\n";
for (unsigned i = idx; i > 0; --i) {
m_covered_antecedent[i].display(verbose_stream() << "ante " << m_covered_clause[i] << ":");
m_covered_antecedent[i].display(verbose_stream(), m_covered_clause[i]);
});
}
for (unsigned i = idx; i > 0; --i) {
literal lit = m_covered_clause[i];
s.mark_visited(lit);
continue;
//s.mark_visited(lit);
//continue;
if (!s.is_marked(lit)) continue;
clause_ante const& ante = m_covered_antecedent[i];
if (ante.cls()) {
@ -1222,13 +1227,16 @@ namespace sat {
clause_ante const& ante = m_covered_antecedent[i];
if (ante.from_ri() && blocked != ante.lit1()) {
blocked = ante.lit1();
m_elim_stack.push_back(std::make_pair(j, blocked));
VERIFY(s.value(blocked) == l_undef);
m_mc.stackv().push_back(std::make_pair(j, blocked));
}
m_covered_clause[j++] = lit;
s.unmark_visited(lit);
}
}
for (literal l : m_covered_clause) VERIFY(!s.is_marked(l));
for (bool_var v = 0; v < s.s.num_vars(); ++v) VERIFY(!s.is_marked(literal(v, true)) && !s.is_marked(literal(v, false)));
// unsigned sz0 = m_covered_clause.size();
m_covered_clause.resize(j);
VERIFY(j >= m_clause.size());
@ -1263,6 +1271,7 @@ namespace sat {
return true;
}
if (!s.is_marked(~lit)) {
// if (m_covered_clause[0].var() == 10219) IF_VERBOSE(0, verbose_stream() << "ala: " << l << " " << lit << "\n");
m_covered_clause.push_back(~lit);
m_covered_antecedent.push_back(clause_ante(l, false));
s.mark_visited(~lit);
@ -1292,6 +1301,7 @@ namespace sat {
if (lit1 == null_literal) {
return true;
}
// if (m_covered_clause[0].var() == 10219) IF_VERBOSE(0, verbose_stream() << "ala: " << c << " " << lit1 << "\n");
m_covered_clause.push_back(~lit1);
m_covered_antecedent.push_back(clause_ante(c));
s.mark_visited(~lit1);
@ -1332,13 +1342,17 @@ namespace sat {
return sz0 * 400 < m_covered_clause.size();
}
void reset_mark() {
for (literal l : m_covered_clause) s.unmark_visited(l);
}
template<elim_type et>
elim_type cce(literal& blocked, model_converter::kind& k) {
bool is_tautology = false, first = true;
bool first = true;
unsigned sz = 0, sz0 = m_covered_clause.size();
for (literal l : m_covered_clause) s.mark_visited(l);
shuffle<literal>(m_covered_clause.size(), m_covered_clause.c_ptr(), s.s.m_rand);
m_elim_stack.reset();
m_mc.stackv().reset();
m_ala_qhead = 0;
switch (et) {
@ -1349,7 +1363,7 @@ namespace sat {
k = model_converter::ACCE;
break;
default:
k = model_converter::BLOCK_LIT;
k = model_converter::BCE;
break;
}
@ -1361,48 +1375,77 @@ namespace sat {
* and then check if any of the first sz0 literals are blocked.
*/
while (!is_tautology && m_covered_clause.size() > sz && !above_threshold(sz0)) {
SASSERT(!is_tautology);
if (et == ate_t) {
bool ala = add_ala();
reset_mark();
m_covered_clause.shrink(sz0);
return ala ? ate_t : no_t;
}
if ((et == abce_t || et == acce_t || et == ate_t) && add_ala()) {
for (literal l : m_covered_clause) s.unmark_visited(l);
while (m_covered_clause.size() > sz && !above_threshold(sz0)) {
if ((et == abce_t || et == acce_t) && add_ala()) {
reset_mark();
if (first) {
m_covered_clause.shrink(sz0);
}
else {
/*
* tautology depends on resolution intersection.
* literals used for resolution intersection may have to be flipped.
*/
m_tautology.reset();
for (literal l : m_covered_clause) {
m_tautology.push_back(l);
s.mark_visited(l);
}
minimize_covered_clause(m_covered_clause.size()-1);
}
return ate_t;
}
if (et == ate_t) {
for (literal l : m_covered_clause) s.unmark_visited(l);
return no_t;
}
if (first) {
for (unsigned i = 0; i < sz0; ++i) {
if (check_abce_tautology(m_covered_clause[i])) {
blocked = m_covered_clause[i];
is_tautology = true;
break;
reset_mark();
#if 0
if (sz0 == 3 && blocked.var() == 10219) {
IF_VERBOSE(0, verbose_stream() << "abce: " << m_covered_clause << "\n";
for (literal l : m_covered_clause) verbose_stream() << s.value(l) << "\n";
);
literal l = blocked;
clause_use_list & neg_occs = s.m_use_list.get(~l);
for (auto it = neg_occs.mk_iterator(); !it.at_end(); it.next()) {
clause & c = it.curr();
IF_VERBOSE(0, verbose_stream() << c << "\n");
}
}
#endif
m_covered_clause.shrink(sz0);
if (et == bce_t) return bce_t;
k = model_converter::ABCE;
return abce_t;
}
}
first = false;
}
first = false;
if (is_tautology || et == abce_t || et == bce_t) {
for (literal l : m_covered_clause) s.unmark_visited(l);
m_covered_clause.shrink(sz0);
if (!is_tautology) return no_t;
if (et == bce_t) return bce_t;
return abce_t;
if (et == abce_t || et == bce_t) {
break;
}
/*
* Add resolution intersection while checking if the clause becomes a tautology.
*/
sz = m_covered_clause.size();
if (et == cce_t || et == acce_t) {
is_tautology = add_cla(blocked);
if ((et == cce_t || et == acce_t) && add_cla(blocked)) {
reset_mark();
return et;
}
}
for (literal l : m_covered_clause) s.unmark_visited(l);
return is_tautology ? et : no_t;
reset_mark();
return no_t;
}
// perform covered clause elimination.
@ -1463,13 +1506,14 @@ namespace sat {
case ate_t:
w.set_learned(true);
s.s.set_learned1(l2, l, true);
m_mc.add_ate(m_covered_clause);
break;
case no_t:
break;
default:
block_covered_binary(w, l, blocked, k);
w.set_learned(true);
s.s.set_learned1(l2, l, true);
block_covered_binary(w, l, blocked, k);
break;
}
}
@ -1487,7 +1531,8 @@ namespace sat {
inc_bc(r);
switch (r) {
case ate_t:
s.set_learned(c);
m_mc.add_ate(m_covered_clause);
s.set_learned(c);
break;
case no_t:
break;
@ -1518,32 +1563,33 @@ namespace sat {
}
void block_covered_clause(clause& c, literal l, model_converter::kind k) {
if (false && l.var() == 39021) {
if (false) {
IF_VERBOSE(0, verbose_stream() << "blocked: " << l << " @ " << c << " :covered " << m_covered_clause << "\n";
s.m_use_list.display(verbose_stream() << "use " << l << ":", l);
s.m_use_list.display(verbose_stream() << "use " << ~l << ":", ~l);
/*s.s.display(verbose_stream());*/
display_watch_list(verbose_stream() << ~l << ": ", s.s.m_cls_allocator, s.get_wlist(l)) << "\n";
display_watch_list(verbose_stream() << l << ": ", s.s.m_cls_allocator, s.get_wlist(~l)) << "\n";
);
}
TRACE("blocked_clause", tout << "new blocked clause: " << c << "\n";);
SASSERT(!s.is_external(l));
model_converter::entry& new_entry = mc.mk(k, l.var());
model_converter::entry& new_entry = m_mc.mk(k, l.var());
for (literal lit : c) {
if (lit != l && process_var(lit.var())) {
m_queue.decreased(~lit);
}
}
mc.insert(new_entry, m_covered_clause, m_elim_stack);
m_mc.insert(new_entry, m_covered_clause);
}
void block_covered_binary(watched const& w, literal l1, literal blocked, model_converter::kind k) {
SASSERT(!s.is_external(blocked));
model_converter::entry& new_entry = mc.mk(k, blocked.var());
model_converter::entry& new_entry = m_mc.mk(k, blocked.var());
literal l2 = w.get_literal();
TRACE("blocked_clause", tout << "new blocked clause: " << l2 << " " << l1 << "\n";);
s.set_learned(l1, l2);
mc.insert(new_entry, m_covered_clause, m_elim_stack);
m_mc.insert(new_entry, m_covered_clause);
m_queue.decreased(~l2);
}
@ -1571,6 +1617,13 @@ namespace sat {
for (literal l2 : m_intersection) {
watched* w = find_binary_watch(s.get_wlist(~l), ~l2);
if (!w) {
#if 0
IF_VERBOSE(0, verbose_stream() << "bca " << l << " " << ~l2 << "\n");
if (l.var() == 10219 && l2.var() == 10202) {
IF_VERBOSE(0, s.s.display(verbose_stream()));
exit(0);
}
#endif
s.s.mk_bin_clause(l, ~l2, true);
++s.m_num_bca;
}
@ -1777,13 +1830,19 @@ namespace sat {
}
void simplifier::save_clauses(model_converter::entry & mc_entry, clause_wrapper_vector const & cs) {
model_converter & mc = s.m_mc;
for (auto & e : cs) {
mc.insert(mc_entry, e);
s.m_mc.insert(mc_entry, e);
}
}
void simplifier::add_non_learned_binary_clause(literal l1, literal l2) {
#if 0
if ((l1.var() == 2039 || l2.var() == 2039) &&
(l1.var() == 27042 || l2.var() == 27042)) {
IF_VERBOSE(1, verbose_stream() << "add_bin: " << l1 << " " << l2 << "\n");
}
#endif
#if 0
watched* w;
watch_list & wlist1 = get_wlist(~l1);
watch_list & wlist2 = get_wlist(~l2);
@ -1804,6 +1863,9 @@ namespace sat {
else {
wlist2.push_back(watched(l1, false));
}
#else
s.mk_bin_clause(l1, l2, false);
#endif
}
/**
@ -1820,6 +1882,11 @@ namespace sat {
watch_list::iterator end2 = wlist2.end();
for (; it2 != end2; ++it2) {
if (it2->is_binary_clause() && it2->get_literal() == l) {
if ((l.var() == 2039 || l2.var() == 2039) &&
(l.var() == 27042 || l2.var() == 27042)) {
IF_VERBOSE(1, verbose_stream() << "remove_bin: " << l << " " << l2 << "\n");
}
TRACE("bin_clause_bug", tout << "removing: " << l << " " << it2->get_literal() << "\n";);
m_sub_bin_todo.erase(bin_clause(l2, l, it2->is_learned()));
continue;
@ -1920,6 +1987,13 @@ namespace sat {
m_elim_counter -= num_pos * num_neg + before_lits;
if (false) {
literal l(v, false);
IF_VERBOSE(0,
verbose_stream() << "elim: " << l << "\n";
display_watch_list(verbose_stream() << ~l << ": ", s.m_cls_allocator, get_wlist(l)) << "\n";
display_watch_list(verbose_stream() << l << ": ", s.m_cls_allocator, get_wlist(~l)) << "\n";);
}
// eliminate variable
++s.m_stats.m_elim_var_res;
VERIFY(!is_external(v));
@ -1936,12 +2010,14 @@ namespace sat {
m_elim_counter -= num_pos * num_neg + before_lits;
for (auto & c1 : m_pos_cls) {
for (auto & c2 : m_neg_cls) {
m_new_cls.reset();
if (!resolve(c1, c2, pos_l, m_new_cls))
continue;
// if (v == 39063) IF_VERBOSE(0, verbose_stream() << "elim: " << c1 << " + " << c2 << " -> " << m_new_cls << "\n");
if (false && v == 27041) IF_VERBOSE(0, verbose_stream() << "elim: " << c1 << " + " << c2 << " -> " << m_new_cls << "\n");
TRACE("resolution_new_cls", tout << c1 << "\n" << c2 << "\n-->\n" << m_new_cls << "\n";);
if (cleanup_clause(m_new_cls))
continue; // clause is already satisfied.
@ -2053,7 +2129,7 @@ namespace sat {
m_subsumption = p.subsumption();
m_subsumption_limit = p.subsumption_limit();
m_elim_vars = p.elim_vars();
m_elim_vars_bdd = false && p.elim_vars_bdd(); // buggy
m_elim_vars_bdd = false && p.elim_vars_bdd(); // buggy?
m_elim_vars_bdd_delay = p.elim_vars_bdd_delay();
m_incremental_mode = s.get_config().m_incremental && !p.override_incremental();
}

View file

@ -333,6 +333,12 @@ namespace sat {
}
void solver::mk_bin_clause(literal l1, literal l2, bool learned) {
#if 0
if ((l1.var() == 2039 || l2.var() == 2039) &&
(l1.var() == 27042 || l2.var() == 27042)) {
IF_VERBOSE(1, verbose_stream() << "mk_bin: " << l1 << " " << l2 << " " << learned << "\n");
}
#endif
if (find_binary_watch(get_wlist(~l1), ~l2)) {
assign(l1, justification());
return;
@ -345,13 +351,13 @@ namespace sat {
if (w0) {
if (w0->is_learned() && !learned) {
w0->set_learned(false);
}
w0 = find_binary_watch(get_wlist(~l2), l1);
}
if (w0) {
if (w0->is_learned() && !learned) {
w0->set_learned(false);
}
}
else {
return;
}
w0 = find_binary_watch(get_wlist(~l2), l1);
VERIFY(w0);
w0->set_learned(false);
return;
}
if (m_config.m_drat)
@ -671,7 +677,6 @@ namespace sat {
TRACE("sat_assign_core", tout << l << " " << j << " level: " << scope_lvl() << "\n";);
if (at_base_lvl()) {
if (m_config.m_drat) m_drat.add(l, !j.is_none());
j = justification(); // erase justification for level 0
}
m_assignment[l.index()] = l_true;
@ -1215,7 +1220,7 @@ namespace sat {
}
}
if (num_in > 0 || num_out > 0) {
IF_VERBOSE(1, verbose_stream() << "(sat-sync out: " << num_out << " in: " << num_in << ")\n";);
IF_VERBOSE(2, verbose_stream() << "(sat-sync out: " << num_out << " in: " << num_in << ")\n";);
}
}
}
@ -1657,7 +1662,11 @@ namespace sat {
if (!check_clauses(m_model)) {
IF_VERBOSE(0, verbose_stream() << "failure checking clauses on transformed model\n";);
// IF_VERBOSE(10, m_mc.display(verbose_stream()));
IF_VERBOSE(10, m_mc.display(verbose_stream()));
//IF_VERBOSE(0, display_units(verbose_stream()));
//IF_VERBOSE(0, display(verbose_stream()));
IF_VERBOSE(0, for (bool_var v = 0; v < num; v++) verbose_stream() << v << ": " << m_model[v] << "\n";);
throw solver_exception("check model failed");
}

View file

@ -236,6 +236,10 @@ namespace sat {
void set_learned(clause& c, bool learned);
void set_learned(literal l1, literal l2, bool learned);
void set_learned1(literal l1, literal l2, bool learned);
void add_ate(clause& c) { m_mc.add_ate(c); }
void add_ate(literal l1, literal l2) { m_mc.add_ate(l1, l2); }
void add_ate(literal_vector const& lits) { m_mc.add_ate(lits); }
class scoped_disable_checkpoint {
solver& s;
public: