mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 00:26:38 +00:00
add support for non-unit coefficients
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
90bd5f186b
commit
a81a00a93c
4 changed files with 210 additions and 90 deletions
|
@ -29,9 +29,11 @@ namespace polysat {
|
|||
* \returns True iff a forbidden interval exists and the output parameters were set.
|
||||
*/
|
||||
|
||||
bool forbidden_intervals::get_interval(signed_constraint const& c, pvar v, eval_interval& out_interval, vector<signed_constraint>& out_side_cond) {
|
||||
bool forbidden_intervals::get_interval(signed_constraint const& c, pvar v, rational & coeff, eval_interval& out_interval, vector<signed_constraint>& out_side_cond) {
|
||||
if (!c->is_ule())
|
||||
return false;
|
||||
|
||||
coeff = 1;
|
||||
|
||||
struct backtrack {
|
||||
bool released = false;
|
||||
|
@ -61,21 +63,26 @@ namespace polysat {
|
|||
SASSERT(b1.is_val());
|
||||
SASSERT(b2.is_val());
|
||||
|
||||
coeff = a1;
|
||||
|
||||
_backtrack.released = true;
|
||||
|
||||
// LOG("add " << c << " " << a1 << " " << b1 << " " << a2 << " " << b2);
|
||||
|
||||
if (match_linear1(c, a1, b1, e1, a2, b2, e2, out_interval, out_side_cond))
|
||||
if (match_linear1(c, coeff, b1, e1, a2, b2, e2, out_interval, out_side_cond))
|
||||
return true;
|
||||
if (match_linear2(c, a1, b1, e1, a2, b2, e2, out_interval, out_side_cond))
|
||||
if (match_linear2(c, coeff, b1, e1, a2, b2, e2, out_interval, out_side_cond))
|
||||
return true;
|
||||
if (match_linear3(c, a1, b1, e1, a2, b2, e2, out_interval, out_side_cond))
|
||||
if (match_linear3(c, coeff, b1, e1, a2, b2, e2, out_interval, out_side_cond))
|
||||
return true;
|
||||
|
||||
|
||||
#if 0
|
||||
if (match_linear4(c, a1, b1, e1, a2, b2, e2, out_interval, out_side_cond))
|
||||
return true;
|
||||
if (match_linear5(c, a1, b1, e1, a2, b2, e2, out_interval, out_side_cond))
|
||||
return true;
|
||||
|
||||
#endif
|
||||
_backtrack.released = false;
|
||||
return false;
|
||||
}
|
||||
|
@ -114,7 +121,7 @@ namespace polysat {
|
|||
};
|
||||
|
||||
eval_interval forbidden_intervals::to_interval(
|
||||
signed_constraint const& c, bool is_trivial, rational const& coeff,
|
||||
signed_constraint const& c, bool is_trivial, rational & coeff,
|
||||
rational & lo_val, pdd & lo,
|
||||
rational & hi_val, pdd & hi) {
|
||||
|
||||
|
@ -131,9 +138,12 @@ namespace polysat {
|
|||
return eval_interval::full();
|
||||
}
|
||||
|
||||
if (!coeff.is_one()) {
|
||||
rational pow2 = m.max_value() + 1;
|
||||
SASSERT(coeff == m.max_value());
|
||||
rational pow2 = m.max_value() + 1;
|
||||
|
||||
if (coeff > pow2/2) {
|
||||
|
||||
coeff = pow2 - coeff;
|
||||
SASSERT(coeff > 0);
|
||||
// Transform according to: y \in [l;u[ <=> -y \in [1-u;1-l[
|
||||
// -y \in [1-u;1-l[
|
||||
// <=> -y - (1 - u) < (1 - l) - (1 - u) { by: y \in [l;u[ <=> y - l < u - l }
|
||||
|
@ -156,14 +166,14 @@ namespace polysat {
|
|||
}
|
||||
|
||||
/**
|
||||
* Match e1 + t <= e2, with t = 2^j1*y
|
||||
* Match e1 + t <= e2, with t = a1*y
|
||||
* condition for empty/full: e2 == -1
|
||||
*/
|
||||
bool forbidden_intervals::match_linear1(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational const & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond) {
|
||||
if (a2.is_zero() && coefficient_is_01(e1.manager(), a1)) {
|
||||
if (a2.is_zero() && !a1.is_zero()) {
|
||||
SASSERT(!a1.is_zero());
|
||||
bool is_trivial = (b2 + 1).is_zero();
|
||||
push_eq(is_trivial, e2 + 1, side_cond);
|
||||
|
@ -178,36 +188,37 @@ namespace polysat {
|
|||
}
|
||||
|
||||
/**
|
||||
* e1 <= e2 + t, with t = 2^j2*y
|
||||
* e1 <= e2 + t, with t = a2*y
|
||||
* condition for empty/full: e1 == 0
|
||||
*/
|
||||
bool forbidden_intervals::match_linear2(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational const & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond) {
|
||||
if (a1.is_zero() && coefficient_is_01(e1.manager(), a2)) {
|
||||
if (a1.is_zero() && !a2.is_zero()) {
|
||||
SASSERT(!a2.is_zero());
|
||||
a1 = a2;
|
||||
bool is_trivial = b1.is_zero();
|
||||
push_eq(is_trivial, e1, side_cond);
|
||||
auto lo = -e2;
|
||||
rational lo_val = (-b2).val();
|
||||
auto hi = e1 - e2;
|
||||
rational hi_val = (b1 - b2).val();
|
||||
interval = to_interval(c, is_trivial, a2, lo_val, lo, hi_val, hi);
|
||||
interval = to_interval(c, is_trivial, a1, lo_val, lo, hi_val, hi);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* e1 + t <= e2 + t, with t = 2^j1*y = 2^j2*y
|
||||
* condition for empty/full: e1 == e2/
|
||||
* e1 + t <= e2 + t, with t = a1*y = a2*y
|
||||
* condition for empty/full: e1 == e2
|
||||
*/
|
||||
bool forbidden_intervals::match_linear3(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational const & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond) {
|
||||
if (coefficient_is_01(e1.manager(), a1) && coefficient_is_01(e1.manager(), a2) && a1 == a2 && !a1.is_zero()) {
|
||||
if (a1 == a2 && !a1.is_zero()) {
|
||||
bool is_trivial = b1.val() == b2.val();
|
||||
push_eq(is_trivial, e1 - e2, side_cond);
|
||||
auto lo = -e2;
|
||||
|
@ -220,12 +231,13 @@ namespace polysat {
|
|||
return false;
|
||||
}
|
||||
|
||||
#if 0
|
||||
/**
|
||||
* a1*y + e1 = 0, with a1 odd
|
||||
*/
|
||||
bool forbidden_intervals::match_linear4(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond) {
|
||||
if (a1.is_odd() && a2.is_zero() && b2.val().is_zero()) {
|
||||
push_eq(true, e2, side_cond);
|
||||
|
@ -257,8 +269,8 @@ namespace polysat {
|
|||
* - c < ax + b
|
||||
*/
|
||||
bool forbidden_intervals::match_linear5(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond) {
|
||||
auto& m = e1.manager();
|
||||
|
||||
|
@ -323,4 +335,5 @@ namespace polysat {
|
|||
}
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -24,40 +24,42 @@ namespace polysat {
|
|||
solver& s;
|
||||
|
||||
void push_eq(bool is_trivial, pdd const& p, vector<signed_constraint>& side_cond);
|
||||
eval_interval to_interval(signed_constraint const& c, bool is_trivial, rational const& coeff,
|
||||
eval_interval to_interval(signed_constraint const& c, bool is_trivial, rational& coeff,
|
||||
rational & lo_val, pdd & lo, rational & hi_val, pdd & hi);
|
||||
|
||||
|
||||
std::tuple<bool, rational, pdd, pdd> linear_decompose(pvar v, pdd const& p, vector<signed_constraint>& out_side_cond);
|
||||
|
||||
bool match_linear1(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational const & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond);
|
||||
|
||||
bool match_linear2(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational const & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond);
|
||||
|
||||
bool match_linear3(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational const & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond);
|
||||
|
||||
#if 0
|
||||
bool match_linear4(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond);
|
||||
|
||||
bool match_linear5(signed_constraint const& c,
|
||||
rational const& a1, pdd const& b1, pdd const& e1,
|
||||
rational const& a2, pdd const& b2, pdd const& e2,
|
||||
rational & a1, pdd const& b1, pdd const& e1,
|
||||
rational & a2, pdd const& b2, pdd const& e2,
|
||||
eval_interval& interval, vector<signed_constraint>& side_cond);
|
||||
#endif
|
||||
|
||||
bool coefficient_is_01(dd::pdd_manager& m, rational const& r) { return r.is_zero() || r.is_one() || r == m.max_value(); };
|
||||
// bool coefficient_is_01(dd::pdd_manager& m, rational const& r) { return r.is_zero() || r.is_one() || r == m.max_value(); };
|
||||
public:
|
||||
forbidden_intervals(solver& s) :s(s) {}
|
||||
bool get_interval(signed_constraint const& c, pvar v, eval_interval& out_interval, vector<signed_constraint>& side_cond);
|
||||
bool get_interval(signed_constraint const& c, pvar v, rational & coeff, eval_interval& out_interval, vector<signed_constraint>& side_cond);
|
||||
};
|
||||
}
|
||||
|
|
|
@ -35,50 +35,66 @@ namespace polysat {
|
|||
}
|
||||
|
||||
viable::entry* viable::alloc_entry() {
|
||||
rational coeff(1);
|
||||
if (m_alloc.empty())
|
||||
return alloc(entry);
|
||||
return alloc(entry, coeff);
|
||||
auto* e = m_alloc.back();
|
||||
e->side_cond.reset();
|
||||
e->coeff = coeff;
|
||||
m_alloc.pop_back();
|
||||
return e;
|
||||
}
|
||||
|
||||
void viable::pop_viable() {
|
||||
auto& [v, e] = m_trail.back();
|
||||
e->remove_from(m_viable[v], e);
|
||||
auto& [v, is_unit, e] = m_trail.back();
|
||||
auto& vec = is_unit ? m_units[v] : m_non_units[v];
|
||||
e->remove_from(vec, e);
|
||||
m_alloc.push_back(e);
|
||||
m_trail.pop_back();
|
||||
}
|
||||
|
||||
void viable::push_viable() {
|
||||
auto& [v, e] = m_trail.back();
|
||||
SASSERT(e->prev() != e || !m_viable[v]);
|
||||
auto& [v, is_unit, e] = m_trail.back();
|
||||
SASSERT(e->prev() != e || !m_units[v]);
|
||||
SASSERT(e->prev() != e || e->next() == e);
|
||||
SASSERT(is_unit);
|
||||
(void)is_unit;
|
||||
if (e->prev() != e) {
|
||||
e->prev()->insert_after(e);
|
||||
if (e->interval.lo_val() < e->next()->interval.lo_val())
|
||||
m_viable[v] = e;
|
||||
m_units[v] = e;
|
||||
}
|
||||
else
|
||||
m_viable[v] = e;
|
||||
m_units[v] = e;
|
||||
m_trail.pop_back();
|
||||
}
|
||||
|
||||
bool viable::intersect(pvar v, signed_constraint const& c) {
|
||||
auto& fi = s.m_forbidden_intervals;
|
||||
entry* ne = alloc_entry();
|
||||
if (!fi.get_interval(c, v, ne->interval, ne->side_cond) || ne->interval.is_currently_empty()) {
|
||||
if (!fi.get_interval(c, v, ne->coeff, ne->interval, ne->side_cond) || ne->interval.is_currently_empty()) {
|
||||
m_alloc.push_back(ne);
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
else if (ne->coeff == 1) {
|
||||
ne->src = c;
|
||||
return intersect(v, ne);
|
||||
}
|
||||
else {
|
||||
ne->src = c;
|
||||
m_trail.push_back({ v, false, ne });
|
||||
s.m_trail.push_back(trail_instr_t::viable_add_i);
|
||||
ne->init(ne);
|
||||
if (!m_non_units[v])
|
||||
m_non_units[v] = ne;
|
||||
else
|
||||
ne->insert_after(m_non_units[v]);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
bool viable::intersect(pvar v, entry* ne) {
|
||||
entry* e = m_viable[v];
|
||||
entry* e = m_units[v];
|
||||
if (e && e->interval.is_full()) {
|
||||
m_alloc.push_back(ne);
|
||||
return false;
|
||||
|
@ -90,20 +106,20 @@ namespace polysat {
|
|||
}
|
||||
|
||||
auto create_entry = [&]() {
|
||||
m_trail.push_back({ v, ne });
|
||||
m_trail.push_back({ v, true, ne });
|
||||
s.m_trail.push_back(trail_instr_t::viable_add_i);
|
||||
ne->init(ne);
|
||||
return ne;
|
||||
};
|
||||
|
||||
auto remove_entry = [&](entry* e) {
|
||||
m_trail.push_back({ v, e });
|
||||
m_trail.push_back({ v, true, e });
|
||||
s.m_trail.push_back(trail_instr_t::viable_rem_i);
|
||||
e->remove_from(m_viable[v], e);
|
||||
e->remove_from(m_units[v], e);
|
||||
};
|
||||
|
||||
if (!e)
|
||||
m_viable[v] = create_entry();
|
||||
m_units[v] = create_entry();
|
||||
else {
|
||||
entry* first = e;
|
||||
do {
|
||||
|
@ -114,8 +130,8 @@ namespace polysat {
|
|||
while (ne->interval.contains(e->interval)) {
|
||||
entry* n = e->next();
|
||||
remove_entry(e);
|
||||
if (!m_viable[v]) {
|
||||
m_viable[v] = create_entry();
|
||||
if (!m_units[v]) {
|
||||
m_units[v] = create_entry();
|
||||
return true;
|
||||
}
|
||||
if (e == first)
|
||||
|
@ -130,8 +146,8 @@ namespace polysat {
|
|||
}
|
||||
e->insert_before(create_entry());
|
||||
if (e == first)
|
||||
m_viable[v] = e->prev();
|
||||
SASSERT(well_formed(m_viable[v]));
|
||||
m_units[v] = e->prev();
|
||||
SASSERT(well_formed(m_units[v]));
|
||||
return true;
|
||||
}
|
||||
e = e->next();
|
||||
|
@ -140,32 +156,86 @@ namespace polysat {
|
|||
// otherwise, append to end of list
|
||||
first->insert_before(create_entry());
|
||||
}
|
||||
SASSERT(well_formed(m_viable[v]));
|
||||
SASSERT(well_formed(m_units[v]));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool viable::has_viable(pvar v) {
|
||||
auto* e = m_viable[v];
|
||||
/**
|
||||
* Traverse all interval constraints with coefficients to check whether current value 'val' for
|
||||
* 'v' is feasible. If not, extract a (maximal) interval to block 'v' from being assigned val.
|
||||
*/
|
||||
bool viable::refine_viable(pvar v, rational const& val) {
|
||||
auto* e = m_non_units[v];
|
||||
if (!e)
|
||||
return true;
|
||||
entry* first = e;
|
||||
do {
|
||||
rational coeff_val = mod(e->coeff * val, s.var2pdd(v).max_value() + 1);
|
||||
if (e->interval.currently_contains(coeff_val)) {
|
||||
rational delta_l = floor((coeff_val - e->interval.lo_val()) / e->coeff);
|
||||
rational delta_u = floor((e->interval.hi_val() - coeff_val - 1) / e->coeff);
|
||||
rational lo = val - delta_l;
|
||||
rational hi = val + delta_u + 1;
|
||||
|
||||
if (e->interval.lo_val() < e->interval.hi_val()) {
|
||||
// pass
|
||||
}
|
||||
else if (e->interval.lo_val() <= coeff_val) {
|
||||
hi = val + 1;
|
||||
if (hi > s.var2pdd(v).max_value())
|
||||
hi = 0;
|
||||
}
|
||||
else {
|
||||
SASSERT(coeff_val < e->interval.hi_val());
|
||||
lo = val;
|
||||
}
|
||||
SASSERT(hi <= s.var2pdd(v).max_value());
|
||||
LOG("forbidden interval [" << lo << ", " << hi << "[\n");
|
||||
entry* ne = alloc_entry();
|
||||
ne->src = e->src;
|
||||
ne->side_cond = e->side_cond;
|
||||
ne->coeff = 1;
|
||||
pdd lop = s.var2pdd(v).mk_val(lo); // TODO?
|
||||
pdd hip = s.var2pdd(v).mk_val(hi);
|
||||
ne->interval = eval_interval::proper(lop, lo, hip, hi);
|
||||
intersect(v, ne);
|
||||
return false;
|
||||
}
|
||||
e = e->next();
|
||||
}
|
||||
while (e != first);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool viable::has_viable(pvar v) {
|
||||
refined:
|
||||
auto* e = m_units[v];
|
||||
|
||||
#define CHECK_RETURN(val) { if (refine_viable(v, val)) return true; else goto refined; }
|
||||
|
||||
if (!e)
|
||||
CHECK_RETURN(rational::zero());
|
||||
entry* first = e;
|
||||
entry* last = e->prev();
|
||||
|
||||
// quick check: last interval doesn't wrap around, so hi_val
|
||||
// has not been covered
|
||||
if (last->interval.lo_val() < last->interval.hi_val())
|
||||
return true;
|
||||
CHECK_RETURN(last->interval.hi_val());
|
||||
|
||||
do {
|
||||
if (e->interval.is_full())
|
||||
return false;
|
||||
entry* n = e->next();
|
||||
if (n == e)
|
||||
return true;
|
||||
CHECK_RETURN(e->interval.hi_val());
|
||||
if (!n->interval.currently_contains(e->interval.hi_val()))
|
||||
return true;
|
||||
if (n == first)
|
||||
return e->interval.lo_val() <= e->interval.hi_val();
|
||||
CHECK_RETURN(e->interval.hi_val());
|
||||
if (n == first) {
|
||||
if (e->interval.lo_val() > e->interval.hi_val())
|
||||
return false;
|
||||
CHECK_RETURN(e->interval.hi_val());
|
||||
}
|
||||
e = n;
|
||||
}
|
||||
while (e != first);
|
||||
|
@ -173,9 +243,9 @@ namespace polysat {
|
|||
}
|
||||
|
||||
bool viable::is_viable(pvar v, rational const& val) {
|
||||
auto* e = m_viable[v];
|
||||
auto* e = m_units[v];
|
||||
if (!e)
|
||||
return true;
|
||||
return refine_viable(v, val);
|
||||
entry* first = e;
|
||||
entry* last = first->prev();
|
||||
if (last->interval.currently_contains(val))
|
||||
|
@ -183,15 +253,18 @@ namespace polysat {
|
|||
for (; e != last; e = e->next()) {
|
||||
if (e->interval.currently_contains(val))
|
||||
return false;
|
||||
if (val < e->interval.lo_val())
|
||||
return true;
|
||||
if (val < e->interval.lo_val())
|
||||
return refine_viable(v, val);
|
||||
}
|
||||
return true;
|
||||
return refine_viable(v, val);
|
||||
}
|
||||
|
||||
rational viable::min_viable(pvar v) {
|
||||
refined:
|
||||
rational lo(0);
|
||||
auto* e = m_viable[v];
|
||||
auto* e = m_units[v];
|
||||
if (!e && !refine_viable(v, lo))
|
||||
goto refined;
|
||||
if (!e)
|
||||
return lo;
|
||||
entry* first = e;
|
||||
|
@ -205,13 +278,18 @@ namespace polysat {
|
|||
e = e->next();
|
||||
}
|
||||
while (e != first);
|
||||
SASSERT(is_viable(v, lo));
|
||||
if (!refine_viable(v, lo))
|
||||
goto refined;
|
||||
SASSERT(is_viable(v, lo));
|
||||
return lo;
|
||||
}
|
||||
|
||||
rational viable::max_viable(pvar v) {
|
||||
refined:
|
||||
rational hi = s.var2pdd(v).max_value();
|
||||
auto* e = m_viable[v];
|
||||
auto* e = m_units[v];
|
||||
if (!e && !refine_viable(v, hi))
|
||||
goto refined;
|
||||
if (!e)
|
||||
return hi;
|
||||
entry* last = e->prev();
|
||||
|
@ -223,13 +301,20 @@ namespace polysat {
|
|||
e = e->prev();
|
||||
}
|
||||
while (e != last);
|
||||
if (!refine_viable(v, hi))
|
||||
goto refined;
|
||||
SASSERT(is_viable(v, hi));
|
||||
return hi;
|
||||
}
|
||||
|
||||
dd::find_t viable::find_viable(pvar v, rational& lo) {
|
||||
refined:
|
||||
lo = 0;
|
||||
auto* e = m_viable[v];
|
||||
auto* e = m_units[v];
|
||||
if (!e && !refine_viable(v, lo))
|
||||
goto refined;
|
||||
if (!e && !refine_viable(v, rational::one()))
|
||||
goto refined;
|
||||
if (!e)
|
||||
return dd::find_t::multiple;
|
||||
if (e->interval.is_full())
|
||||
|
@ -244,6 +329,10 @@ namespace polysat {
|
|||
if (last->interval.lo_val() < last->interval.hi_val() &&
|
||||
last->interval.hi_val() < max_value) {
|
||||
lo = last->interval.hi_val();
|
||||
if (!refine_viable(v, lo))
|
||||
goto refined;
|
||||
if (!refine_viable(v, max_value))
|
||||
goto refined;
|
||||
return dd::find_t::multiple;
|
||||
}
|
||||
|
||||
|
@ -271,6 +360,10 @@ namespace polysat {
|
|||
e = e->prev();
|
||||
}
|
||||
while (e != last);
|
||||
if (!refine_viable(v, lo))
|
||||
goto refined;
|
||||
if (!refine_viable(v, hi))
|
||||
goto refined;
|
||||
if (lo == hi)
|
||||
return dd::find_t::singleton;
|
||||
else
|
||||
|
@ -280,7 +373,7 @@ namespace polysat {
|
|||
bool viable::resolve(pvar v, conflict& core) {
|
||||
if (has_viable(v))
|
||||
return false;
|
||||
auto* e = m_viable[v];
|
||||
auto* e = m_units[v];
|
||||
entry* first = e;
|
||||
SASSERT(e);
|
||||
core.reset();
|
||||
|
@ -317,9 +410,9 @@ namespace polysat {
|
|||
}
|
||||
|
||||
void viable::log(pvar v) {
|
||||
if (!well_formed(m_viable[v]))
|
||||
if (!well_formed(m_units[v]))
|
||||
LOG("v" << v << " not well formed");
|
||||
auto* e = m_viable[v];
|
||||
auto* e = m_units[v];
|
||||
if (!e)
|
||||
return;
|
||||
entry* first = e;
|
||||
|
@ -331,16 +424,17 @@ namespace polysat {
|
|||
}
|
||||
|
||||
void viable::log() {
|
||||
for (pvar v = 0; v < std::min(10u, m_viable.size()); ++v)
|
||||
for (pvar v = 0; v < std::min(10u, m_units.size()); ++v)
|
||||
log(v);
|
||||
}
|
||||
|
||||
std::ostream& viable::display(std::ostream& out, pvar v) const {
|
||||
auto* e = m_viable[v];
|
||||
std::ostream& viable::display(std::ostream& out, pvar v, entry* e) const {
|
||||
if (!e)
|
||||
return out;
|
||||
entry* first = e;
|
||||
do {
|
||||
if (e->coeff != 1)
|
||||
out << e->coeff << " * v" << v << " ";
|
||||
out << e->interval << " " << e->side_cond << " " << e->src << " ";
|
||||
e = e->next();
|
||||
}
|
||||
|
@ -348,8 +442,14 @@ namespace polysat {
|
|||
return out;
|
||||
}
|
||||
|
||||
std::ostream& viable::display(std::ostream& out, pvar v) const {
|
||||
display(out, v, m_units[v]);
|
||||
display(out, v, m_non_units[v]);
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& viable::display(std::ostream& out) const {
|
||||
for (pvar v = 0; v < m_viable.size(); ++v)
|
||||
for (pvar v = 0; v < m_units.size(); ++v)
|
||||
display(out << "v" << v << ": ", v);
|
||||
return out;
|
||||
}
|
||||
|
|
|
@ -32,13 +32,14 @@ namespace polysat {
|
|||
solver& s;
|
||||
|
||||
struct entry : public dll_base<entry>, public fi_record {
|
||||
public:
|
||||
entry() : fi_record({ eval_interval::full(), {}, {} }) {}
|
||||
rational coeff;
|
||||
entry(rational const& m) : fi_record({ eval_interval::full(), {}, {} }), coeff(m) {}
|
||||
};
|
||||
|
||||
ptr_vector<entry> m_alloc;
|
||||
ptr_vector<entry> m_viable; // set of viable values.
|
||||
svector<std::pair<pvar, entry*>> m_trail; // undo stack
|
||||
ptr_vector<entry> m_units; // set of viable values based on unit multipliers
|
||||
ptr_vector<entry> m_non_units; // entries that have non-unit multipliers
|
||||
svector<std::tuple<pvar, bool, entry*>> m_trail; // undo stack
|
||||
|
||||
bool well_formed(entry* e);
|
||||
|
||||
|
@ -46,15 +47,19 @@ namespace polysat {
|
|||
|
||||
bool intersect(pvar v, entry* e);
|
||||
|
||||
bool refine_viable(pvar v, rational const& val);
|
||||
|
||||
std::ostream& display(std::ostream& out, pvar v, entry* e) const;
|
||||
|
||||
public:
|
||||
viable(solver& s);
|
||||
|
||||
~viable();
|
||||
|
||||
// declare and remove var
|
||||
void push(unsigned) { m_viable.push_back(nullptr); }
|
||||
void push(unsigned) { m_units.push_back(nullptr); m_non_units.push_back(nullptr); }
|
||||
|
||||
void pop() { m_viable.pop_back(); }
|
||||
void pop() { m_units.pop_back(); m_non_units.pop_back(); }
|
||||
|
||||
void pop_viable();
|
||||
|
||||
|
@ -135,8 +140,8 @@ namespace polysat {
|
|||
pvar var;
|
||||
public:
|
||||
constraints(viable& v, pvar var) : v(v), var(var) {}
|
||||
iterator begin() const { return iterator(v.m_viable[var], false); }
|
||||
iterator end() const { return iterator(v.m_viable[var], true); }
|
||||
iterator begin() const { return iterator(v.m_units[var], false); }
|
||||
iterator end() const { return iterator(v.m_units[var], true); }
|
||||
};
|
||||
|
||||
constraints get_constraints(pvar v) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue