mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 13:28:47 +00:00
port Grobner
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
6009b738d6
commit
a7418db611
|
@ -52,13 +52,16 @@ inline std::ostream & operator<<(std::ostream& out, expr_type t) {
|
|||
class nex;
|
||||
|
||||
class nex_scalar;
|
||||
class nex_pow; // forward definitions
|
||||
|
||||
// This is the class of non-linear expressions
|
||||
|
||||
class nex {
|
||||
public:
|
||||
// the scalar and the variable have size 1
|
||||
virtual unsigned size() const { return 1; }
|
||||
virtual expr_type type() const = 0;
|
||||
virtual std::ostream& print(std::ostream&) const = 0;
|
||||
virtual std::ostream& print(std::ostream&) const = 0;
|
||||
nex() {}
|
||||
bool is_elementary() const {
|
||||
switch(type()) {
|
||||
|
@ -69,7 +72,10 @@ public:
|
|||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
virtual unsigned number_of_child_powers() const { return 0; }
|
||||
virtual const nex* get_child_exp(unsigned) const { return this; }
|
||||
virtual unsigned get_child_pow(unsigned) const { return 1; }
|
||||
virtual bool all_factors_are_elementary() const { return true; }
|
||||
bool is_sum() const { return type() == expr_type::SUM; }
|
||||
bool is_mul() const { return type() == expr_type::MUL; }
|
||||
bool is_var() const { return type() == expr_type::VAR; }
|
||||
|
@ -80,7 +86,7 @@ public:
|
|||
virtual bool contains(lpvar j) const { return false; }
|
||||
virtual int get_degree() const = 0;
|
||||
// simplifies the expression and also assigns the address of "this" to *e
|
||||
|
||||
virtual const rational& coeff() const { return rational::one(); }
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
virtual void sort() {};
|
||||
|
@ -93,6 +99,8 @@ std::ostream& operator<<(std::ostream& out, const nex&);
|
|||
class nex_var : public nex {
|
||||
lpvar m_j;
|
||||
public:
|
||||
unsigned number_of_child_powers() const { return 1; }
|
||||
nex_pow get_nex_pow(unsigned j);
|
||||
nex_var(lpvar j) : m_j(j) {}
|
||||
nex_var() {}
|
||||
expr_type type() const { return expr_type::VAR; }
|
||||
|
@ -174,6 +182,11 @@ class nex_mul : public nex {
|
|||
rational m_coeff;
|
||||
vector<nex_pow> m_children;
|
||||
public:
|
||||
virtual const nex* get_child_exp(unsigned j) const { return m_children[j].e(); }
|
||||
virtual unsigned get_child_pow(unsigned j) const { return m_children[j].pow(); }
|
||||
|
||||
unsigned number_of_child_powers() const { return m_children.size(); }
|
||||
|
||||
nex_mul() : m_coeff(rational(1)) {}
|
||||
|
||||
template <typename T>
|
||||
|
|
|
@ -244,12 +244,14 @@ nla_grobner::equation* nla_grobner::simplify_using_processed(equation* eq) {
|
|||
|
||||
}
|
||||
|
||||
nex_mul* nla_grobner::get_highest_monomial(nex* e) const {
|
||||
const nex* nla_grobner::get_highest_monomial(const nex* e) const {
|
||||
switch (e->type()) {
|
||||
case expr_type::MUL:
|
||||
return to_mul(e);
|
||||
case expr_type::SUM:
|
||||
return to_mul((*to_sum(e))[0]);
|
||||
return *(to_sum(e)->begin());
|
||||
case expr_type::VAR:
|
||||
return e;
|
||||
default:
|
||||
TRACE("grobner", tout << *e << "\n";);
|
||||
return nullptr;
|
||||
|
@ -259,7 +261,7 @@ nex_mul* nla_grobner::get_highest_monomial(nex* e) const {
|
|||
// target 2fg + 3fp + e = 0
|
||||
// target is replaced by 2(-k/3 - l/3)g + 3(-k/3 - l/3)p + e = -2/3kg -2/3lg - kp -lp + e
|
||||
bool nla_grobner::simplify_target_monomials(equation * source, equation * target) {
|
||||
const nex_mul * high_mon = get_highest_monomial(source->exp());
|
||||
auto * high_mon = get_highest_monomial(source->exp());
|
||||
if (high_mon == nullptr)
|
||||
return false;
|
||||
SASSERT(high_mon->all_factors_are_elementary());
|
||||
|
@ -280,7 +282,7 @@ bool nla_grobner::simplify_target_monomials(equation * source, equation * target
|
|||
}
|
||||
|
||||
bool nla_grobner::simplify_target_monomials_sum_check_only(nex_sum* targ_sum,
|
||||
const nex_mul* high_mon) {
|
||||
const nex* high_mon) const {
|
||||
for (auto t : *targ_sum) {
|
||||
if (!t->is_mul()) continue; // what if t->is_var()
|
||||
if (divide_ignore_coeffs_check_only(to_mul(t), high_mon)) {
|
||||
|
@ -295,7 +297,7 @@ bool nla_grobner::simplify_target_monomials_sum_check_only(nex_sum* targ_sum,
|
|||
|
||||
bool nla_grobner::simplify_target_monomials_sum(equation * source,
|
||||
equation * target, nex_sum* targ_sum,
|
||||
const nex_mul* high_mon) {
|
||||
const nex* high_mon) {
|
||||
if (!simplify_target_monomials_sum_check_only(targ_sum, high_mon))
|
||||
return false;
|
||||
unsigned targ_orig_size = targ_sum->size();
|
||||
|
@ -307,7 +309,7 @@ bool nla_grobner::simplify_target_monomials_sum(equation * source,
|
|||
return true;
|
||||
}
|
||||
|
||||
nex_mul* nla_grobner::divide_ignore_coeffs(nex* ej, const nex_mul* h) {
|
||||
nex_mul* nla_grobner::divide_ignore_coeffs(nex* ej, const nex* h) {
|
||||
if (!ej->is_mul())
|
||||
return nullptr;
|
||||
nex_mul* m = to_mul(ej);
|
||||
|
@ -317,16 +319,16 @@ nex_mul* nla_grobner::divide_ignore_coeffs(nex* ej, const nex_mul* h) {
|
|||
}
|
||||
|
||||
// return true if h divides t
|
||||
bool nla_grobner::divide_ignore_coeffs_check_only(nex_mul* t , const nex_mul* h) {
|
||||
bool nla_grobner::divide_ignore_coeffs_check_only(nex_mul* t , const nex* h) const {
|
||||
SASSERT(m_nex_creator.is_simplified(t) && m_nex_creator.is_simplified(h));
|
||||
unsigned j = 0; // points to t
|
||||
for(auto & p : *h) {
|
||||
for(unsigned k = 0; k < h->number_of_child_powers(); k++) {
|
||||
lpvar h_var = to_var(h->get_child_exp(k))->var();
|
||||
bool p_swallowed = false;
|
||||
lpvar h_var = to_var(p.e())->var();
|
||||
for (; j < t->size() && !p_swallowed; j++) {
|
||||
auto &tp = (*t)[j];
|
||||
if (to_var(tp.e())->var() == h_var) {
|
||||
if (tp.pow() >= p.pow()) {
|
||||
if (tp.pow() >= static_cast<int>(h->get_child_pow(k))) {
|
||||
p_swallowed = true;
|
||||
}
|
||||
}
|
||||
|
@ -341,20 +343,21 @@ bool nla_grobner::divide_ignore_coeffs_check_only(nex_mul* t , const nex_mul* h)
|
|||
}
|
||||
|
||||
// perform the division t / h, but ignores the coefficients
|
||||
nex_mul * nla_grobner::divide_ignore_coeffs_perform(nex_mul* t, const nex_mul* h) {
|
||||
// h does not change
|
||||
nex_mul * nla_grobner::divide_ignore_coeffs_perform(nex_mul* t, const nex* h) {
|
||||
nex_mul * r = m_nex_creator.mk_mul();
|
||||
unsigned j = 0; // points to t
|
||||
for(auto & p : *h) {
|
||||
bool p_swallowed = false;
|
||||
lpvar h_var = to_var(p.e())->var();
|
||||
for (; j < t->size() && !p_swallowed; j++) {
|
||||
for(unsigned k = 0; k < h->number_of_child_powers(); k++) {
|
||||
lpvar h_var = to_var(h->get_child_exp(k))->var();
|
||||
for (; j < t->size(); j++) {
|
||||
auto &tp = (*t)[j];
|
||||
if (to_var(tp.e())->var() == h_var) {
|
||||
if (tp.pow() >= p.pow()) {
|
||||
p_swallowed = true;
|
||||
if (tp.pow() > p.pow())
|
||||
r->add_child_in_power(tp.e(), tp.pow() - p.pow());
|
||||
}
|
||||
int h_pow = h->get_child_pow(k);
|
||||
SASSERT(tp.pow() >= h_pow);
|
||||
j++;
|
||||
if (tp.pow() > h_pow)
|
||||
r->add_child_in_power(tp.e(), tp.pow() - h_pow);
|
||||
break;
|
||||
} else {
|
||||
r->add_child_in_power(tp);
|
||||
}
|
||||
|
@ -368,7 +371,7 @@ nex_mul * nla_grobner::divide_ignore_coeffs_perform(nex_mul* t, const nex_mul* h
|
|||
// and b*high_mon + e = 0, so high_mon = -e/b
|
||||
// then targ_sum->children()[j] = - (c/b) * e*p
|
||||
|
||||
void nla_grobner::simplify_target_monomials_sum_j(equation * source, equation *target, nex_sum* targ_sum, const nex_mul* high_mon, unsigned j) {
|
||||
void nla_grobner::simplify_target_monomials_sum_j(equation * source, equation *target, nex_sum* targ_sum, const nex* high_mon, unsigned j) {
|
||||
|
||||
nex * ej = (*targ_sum)[j];
|
||||
nex_mul * ej_over_high_mon = divide_ignore_coeffs(ej, high_mon);
|
||||
|
@ -479,22 +482,24 @@ void nla_grobner::simplify_to_process(equation* eq) {
|
|||
|
||||
}
|
||||
|
||||
// if e is the sum adds to r all children of e multiplied by beta, except the first one
|
||||
// which corresponds to the highest monomial
|
||||
// if e is the sum then add to r all children of e multiplied by beta, except the first one
|
||||
// which corresponds to the highest monomial,
|
||||
// otherwise do nothing
|
||||
void nla_grobner::add_mul_skip_first(nex_sum* r, const rational& beta, nex *e, nex_mul* c) {
|
||||
SASSERT(e->is_sum());
|
||||
if (e->is_sum()) {
|
||||
nex_sum *es = to_sum(e);
|
||||
for (unsigned j = 1; j < es->size(); j++) {
|
||||
r->add_child(m_nex_creator.mk_mul(beta, (*es)[j], c));
|
||||
}
|
||||
TRACE("grobner", tout << "r = " << *r << "\n";);
|
||||
} else {
|
||||
TRACE("grobner", tout << "e = " << *e << "\n";);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// let e1: alpha*ab+q=0, and e2: beta*ac+e=0, then beta*qc - alpha*eb = 0
|
||||
nex * nla_grobner::expr_superpose(nex* e1, nex* e2, nex_mul* ab, nex_mul* ac, nex_mul* b, nex_mul* c) {
|
||||
nex * nla_grobner::expr_superpose(nex* e1, nex* e2, const nex* ab, const nex* ac, nex_mul* b, nex_mul* c) {
|
||||
TRACE("grobner", tout << "e1 = " << *e1 << "\ne2 = " << *e2 <<"\n";);
|
||||
nex_sum * r = m_nex_creator.mk_sum();
|
||||
rational alpha = - ab->coeff();
|
||||
|
@ -513,8 +518,8 @@ nex * nla_grobner::expr_superpose(nex* e1, nex* e2, nex_mul* ab, nex_mul* ac, ne
|
|||
// let eq1: ab+q=0, and eq2: ac+e=0, then qc - eb = 0
|
||||
void nla_grobner::superpose(equation * eq1, equation * eq2) {
|
||||
TRACE("grobner", tout << "eq1="; display_equation(tout, *eq1) << "eq2="; display_equation(tout, *eq2););
|
||||
nex_mul * ab = get_highest_monomial(eq1->exp());
|
||||
nex_mul * ac = get_highest_monomial(eq2->exp());
|
||||
const nex * ab = get_highest_monomial(eq1->exp());
|
||||
const nex * ac = get_highest_monomial(eq2->exp());
|
||||
nex_mul *b, *c;
|
||||
TRACE("grobner", tout << "ab="; if(ab) { tout << *ab; } else { tout << "null"; };
|
||||
tout << " , " << " ac="; if(ac) { tout << *ac; } else { tout << "null"; }; tout << "\n";);
|
||||
|
@ -525,66 +530,74 @@ void nla_grobner::superpose(equation * eq1, equation * eq2) {
|
|||
init_equation(eq, expr_superpose( eq1->exp(), eq2->exp(), ab, ac, b, c), m_dep_manager.mk_join(eq1->dep(), eq2->dep()));
|
||||
insert_to_simplify(eq);
|
||||
}
|
||||
|
||||
bool nla_grobner::find_b_c(nex_mul*ab, nex_mul* ac, nex_mul*& b, nex_mul*& c) {
|
||||
// Let a be the greatest common divider of ab and bc,
|
||||
// then ab/a is stored in b, and ac/a is stored in c
|
||||
bool nla_grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
|
||||
if (!find_b_c_check_only(ab, ac))
|
||||
return false;
|
||||
b = m_nex_creator.mk_mul(); c = m_nex_creator.mk_mul();
|
||||
nex_pow* bp = ab->begin();
|
||||
nex_pow* cp = ac->begin();
|
||||
unsigned ab_size = ab->number_of_child_powers();
|
||||
unsigned ac_size = ac->number_of_child_powers();
|
||||
unsigned i = 0, j = 0;
|
||||
// nex_pow* bp = ab->begin();
|
||||
// nex_pow* cp = ac->begin();
|
||||
for (;;) {
|
||||
if (m_nex_creator.lt(bp->e(), cp->e())) {
|
||||
b->add_child_in_power(*bp);
|
||||
if (++bp == ab->end())
|
||||
const nex* m = ab->get_child_exp(i);
|
||||
const nex* n = ac->get_child_exp(j);
|
||||
if (m_nex_creator.lt(m, n)) {
|
||||
b->add_child_in_power(const_cast<nex*>(m), ab->get_child_pow(i));
|
||||
if (++i == ab_size)
|
||||
break;
|
||||
} else if (m_nex_creator.lt(cp->e(), bp->e())) {
|
||||
c->add_child_in_power(*cp);
|
||||
if (++cp == ac->end())
|
||||
} else if (m_nex_creator.lt(n, m)) {
|
||||
c->add_child_in_power(const_cast<nex*>(n), ac->get_child_pow(j));
|
||||
if (++j == ac_size)
|
||||
break;
|
||||
} else {
|
||||
unsigned b_pow = bp->pow();
|
||||
unsigned c_pow = cp->pow();
|
||||
unsigned b_pow = ab->get_child_pow(i);
|
||||
unsigned c_pow = ac->get_child_pow(j);
|
||||
if (b_pow > c_pow) {
|
||||
b->add_child_in_power(bp->e(), b_pow - c_pow);
|
||||
b->add_child_in_power(const_cast<nex*>(m), b_pow - c_pow);
|
||||
} else if (c_pow > b_pow) {
|
||||
c->add_child_in_power(cp->e(), c_pow - b_pow);
|
||||
c->add_child_in_power(const_cast<nex*>(n), c_pow - b_pow);
|
||||
} // otherwise the power are equal and no child added to either b or c
|
||||
bp++; cp++;
|
||||
i++; j++;
|
||||
|
||||
if (bp == ab->end() || cp == ac->end()) {
|
||||
if (i == ab_size || j == ac_size) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
while (cp != ac->end()) {
|
||||
c->add_child_in_power(*cp);
|
||||
cp++;
|
||||
while (i != ab_size) {
|
||||
c->add_child_in_power(const_cast<nex*>(ab->get_child_exp(i)), ab->get_child_pow(i));
|
||||
i++;
|
||||
}
|
||||
while (bp != ab->end()) {
|
||||
b->add_child_in_power(*bp);
|
||||
bp++;
|
||||
while (j != ac_size) {
|
||||
c->add_child_in_power(const_cast<nex*>(ac->get_child_exp(j)), ac->get_child_pow(j));
|
||||
j++;
|
||||
}
|
||||
TRACE("nla_grobner", tout << "b=" << *b << ", c=" <<*c << "\n";);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool nla_grobner::find_b_c_check_only(const nex_mul*ab, const nex_mul* ac) const {
|
||||
// Finds out if ab and bc have a non-trivial common divider
|
||||
bool nla_grobner::find_b_c_check_only(const nex* ab, const nex* ac) const {
|
||||
if (ab == nullptr || ac == nullptr)
|
||||
return false;
|
||||
SASSERT(m_nex_creator.is_simplified(ab) && m_nex_creator.is_simplified(ab));
|
||||
unsigned i = 0, j = 0; // i points to ab, j points to ac
|
||||
for (;;) {
|
||||
if (m_nex_creator.lt((*ab)[i].e(), (*ac)[j].e())) {
|
||||
const nex* m = ab->get_child_exp(i);
|
||||
const nex* n = ac->get_child_exp(j);
|
||||
if (m_nex_creator.lt(m , n)) {
|
||||
i++;
|
||||
if (i == ab->size())
|
||||
if (i == ab->number_of_child_powers())
|
||||
return false;
|
||||
} else if (m_nex_creator.lt((*ac)[j].e(), (*ab)[i].e())) {
|
||||
} else if (m_nex_creator.lt(n, m)) {
|
||||
j++;
|
||||
if (j == ac->size())
|
||||
if (j == ac->number_of_child_powers())
|
||||
return false;
|
||||
} else {
|
||||
TRACE("grobner", tout << "found common " << *(*ac)[j].e() << " in " << *ab << " and " << *ac << "\n";);
|
||||
TRACE("grobner", tout << "found common " << *m << "\n";);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -659,23 +672,16 @@ void nla_grobner::update_statistics(){
|
|||
bool nla_grobner::find_conflict(ptr_vector<equation>& eqs){
|
||||
eqs.reset();
|
||||
get_equations(eqs);
|
||||
TRACE("grobner_bug", tout << "after gb\n";);
|
||||
for (equation* eq : eqs) {
|
||||
TRACE("grobner_bug", display_equation(tout, *eq););
|
||||
if (is_inconsistent(eq) || is_inconsistent2(eq))
|
||||
if (is_inconsistent(eq))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool nla_grobner::is_inconsistent(equation*) {
|
||||
// NOT_IMPLEMENTED_YET(); todo implement
|
||||
return false;
|
||||
}
|
||||
|
||||
bool nla_grobner::is_inconsistent2(equation*) {
|
||||
// NOT_IMPLEMENTED_YET(); todo implement
|
||||
return false;
|
||||
bool nla_grobner::is_inconsistent(equation* e ) {
|
||||
return e->exp()->is_scalar() && (!to_scalar(e->exp())->value().is_zero());
|
||||
}
|
||||
|
||||
template <typename T, typename V>
|
||||
|
|
|
@ -107,7 +107,6 @@ private:
|
|||
void update_statistics();
|
||||
bool find_conflict(ptr_vector<equation>& eqs);
|
||||
bool is_inconsistent(equation*);
|
||||
bool is_inconsistent2(equation*);
|
||||
bool push_calculation_forward(ptr_vector<equation>& eqs, unsigned&);
|
||||
void compute_basis_init();
|
||||
bool compute_basis_loop();
|
||||
|
@ -123,8 +122,8 @@ bool simplify_processed_with_eq(equation*);
|
|||
bool canceled() { return false; } // todo, implement
|
||||
void superpose(equation * eq1, equation * eq2);
|
||||
void superpose(equation * eq);
|
||||
bool find_b_c(nex_mul*ab, nex_mul* ac, nex_mul*& b, nex_mul*& c);
|
||||
bool find_b_c_check_only(const nex_mul*ab, const nex_mul* ac) const;
|
||||
bool find_b_c(const nex *ab, const nex* ac, nex_mul*& b, nex_mul*& c);
|
||||
bool find_b_c_check_only(const nex* ab, const nex* ac) const;
|
||||
bool is_trivial(equation* ) const;
|
||||
bool is_better_choice(equation * eq1, equation * eq2);
|
||||
void del_equations(unsigned old_size);
|
||||
|
@ -151,15 +150,15 @@ bool simplify_processed_with_eq(equation*);
|
|||
m_to_superpose.insert(eq);
|
||||
}
|
||||
void simplify_equations_to_process();
|
||||
nex_mul * get_highest_monomial(nex * e) const;
|
||||
const nex * get_highest_monomial(const nex * e) const;
|
||||
ci_dependency* dep_from_vector( svector<lp::constraint_index> & fixed_vars_constraints);
|
||||
bool simplify_target_monomials_sum(equation *, equation *, nex_sum*, const nex_mul*);
|
||||
bool simplify_target_monomials_sum_check_only(nex_sum*, const nex_mul*);
|
||||
void simplify_target_monomials_sum_j(equation *, equation *, nex_sum*, const nex_mul*, unsigned);
|
||||
nex_mul * divide_ignore_coeffs(nex* ej, const nex_mul*);
|
||||
bool divide_ignore_coeffs_check_only(nex_mul* , const nex_mul*);
|
||||
nex_mul * divide_ignore_coeffs_perform(nex_mul* , const nex_mul*);
|
||||
nex * expr_superpose(nex* e1, nex* e2, nex_mul* ab, nex_mul* ac, nex_mul* b, nex_mul* c);
|
||||
bool simplify_target_monomials_sum(equation *, equation *, nex_sum*, const nex*);
|
||||
bool simplify_target_monomials_sum_check_only(nex_sum*, const nex*) const;
|
||||
void simplify_target_monomials_sum_j(equation *, equation *, nex_sum*, const nex*, unsigned);
|
||||
nex_mul * divide_ignore_coeffs(nex* ej, const nex*);
|
||||
bool divide_ignore_coeffs_check_only(nex_mul* , const nex*) const;
|
||||
nex_mul * divide_ignore_coeffs_perform(nex_mul* , const nex*);
|
||||
nex * expr_superpose(nex* e1, nex* e2, const nex* ab, const nex* ac, nex_mul* b, nex_mul* c);
|
||||
void add_mul_skip_first(nex_sum* r, const rational& beta, nex *e, nex_mul* c);
|
||||
}; // end of grobner
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue