diff --git a/src/math/lp/int_solver.cpp b/src/math/lp/int_solver.cpp index e03aa785e..0c83ea5bf 100644 --- a/src/math/lp/int_solver.cpp +++ b/src/math/lp/int_solver.cpp @@ -61,7 +61,6 @@ namespace lp { // + a1*(delta/t) is integral. Taking into account that t and a1 are // coprime we have delta = t*k, where k is an integer. rational t = a2 / x2; - // std::cout << "t = " << t << std::endl; // Now we have x1/x2 + (a1/x2)*k is integral, or (x1 + a1*k)/x2 is integral. // It is equivalent to x1 + a1*k = x2*m, where m is an integer // We know that a2 and a1 are coprime, and x2 divides a2, so x2 and a1 are @@ -69,10 +68,6 @@ namespace lp { rational u, v; gcd(a1, x2, u, v); lp_assert(gcd(a1, x2, u, v).is_one()); - // std::cout << "u = " << u << ", v = " << v << std::endl; - // std::cout << "x= " << (x1 / x2) << std::endl; - // std::cout << "x + (a1 / a2) * (-u * t) * x1 = " - // << x + (a1 / a2) * (-u * t) * x1 << std::endl; lp_assert((x + (a1 / a2) * (-u * t) * x1).is_int()); // 1 = (u- l*x2 ) * a1 + (v + l*a1)*x2, for every integer l. rational d = u * t * x1; @@ -103,13 +98,12 @@ namespace lp { if (!get_patching_deltas(r, a, delta_plus, delta_minus)) return false; - if (lia.random() % 2) { + if (lia.random() % 2) return try_patch_column(v, c.var(), delta_plus) || try_patch_column(v, c.var(), delta_minus); - } else { + else return try_patch_column(v, c.var(), delta_minus) || try_patch_column(v, c.var(), delta_plus); - } } bool int_solver::patcher::try_patch_column(unsigned v, unsigned j, mpq const& delta) { @@ -151,574 +145,542 @@ namespace lp { } -int_solver::int_solver(lar_solver& lar_slv) : - lra(lar_slv), - lrac(lra.m_mpq_lar_core_solver), - m_gcd(*this), - m_patcher(*this), - m_number_of_calls(0), - m_hnf_cutter(*this), - m_hnf_cut_period(settings().hnf_cut_period()) { - lra.set_int_solver(this); -} - -// this will allow to enable and disable tracking of the pivot rows -struct check_return_helper { - lar_solver& lra; - bool m_track_touched_rows; - check_return_helper(lar_solver& ls) : - lra(ls), - m_track_touched_rows(lra.touched_rows_are_tracked()) { - lra.track_touched_rows(false); + int_solver::int_solver(lar_solver& lar_slv) : + lra(lar_slv), + lrac(lra.m_mpq_lar_core_solver), + m_gcd(*this), + m_patcher(*this), + m_number_of_calls(0), + m_hnf_cutter(*this), + m_hnf_cut_period(settings().hnf_cut_period()) { + lra.set_int_solver(this); } - ~check_return_helper() { - lra.track_touched_rows(m_track_touched_rows); - } -}; -lia_move int_solver::check(lp::explanation * e) { - SASSERT(lra.ax_is_correct()); - if (!has_inf_int()) return lia_move::sat; - - m_t.clear(); - m_k.reset(); - m_ex = e; - m_ex->clear(); - m_upper = false; - lia_move r = lia_move::undef; - - if (m_gcd.should_apply()) r = m_gcd(); - - check_return_helper pc(lra); - - if (settings().get_cancel_flag()) - return lia_move::undef; - - ++m_number_of_calls; - if (r == lia_move::undef && m_patcher.should_apply()) r = m_patcher(); - if (r == lia_move::undef && should_find_cube()) r = int_cube(*this)(); - if (r == lia_move::undef && should_hnf_cut()) r = hnf_cut(); - if (r == lia_move::undef && should_gomory_cut()) r = gomory(*this)(); - if (r == lia_move::undef) r = int_branch(*this)(); - return r; -} - -std::ostream& int_solver::display_inf_rows(std::ostream& out) const { - unsigned num = lra.A_r().column_count(); - for (unsigned v = 0; v < num; v++) { - if (column_is_int(v) && !get_value(v).is_int()) { - display_column(out, v); + // this will allow to enable and disable tracking of the pivot rows + struct check_return_helper { + lar_solver& lra; + bool m_track_touched_rows; + check_return_helper(lar_solver& ls) : + lra(ls), + m_track_touched_rows(lra.touched_rows_are_tracked()) { + lra.track_touched_rows(false); } - } - - num = 0; - for (unsigned i = 0; i < lra.A_r().row_count(); i++) { - unsigned j = lrac.m_r_basis[i]; - if (column_is_int_inf(j)) { - num++; - lra.print_row(lra.A_r().m_rows[i], out); - out << "\n"; + ~check_return_helper() { + lra.track_touched_rows(m_track_touched_rows); } - } - out << "num of int infeasible: " << num << "\n"; - return out; -} - -bool int_solver::cut_indices_are_columns() const { - for (lar_term::ival p : m_t) { - if (p.column().index() >= lra.A_r().column_count()) - return false; - } - return true; -} - -bool int_solver::current_solution_is_inf_on_cut() const { - SASSERT(cut_indices_are_columns()); - const auto & x = lrac.m_r_x; - impq v = m_t.apply(x); - mpq sign = m_upper ? one_of_type() : -one_of_type(); - CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign, - tout << "m_upper = " << m_upper << std::endl; - tout << "v = " << v << ", k = " << m_k << std::endl; - ); - return v * sign > impq(m_k) * sign; -} - -bool int_solver::has_inf_int() const { - return lra.has_inf_int(); -} - -constraint_index int_solver::column_upper_bound_constraint(unsigned j) const { - return lra.get_column_upper_bound_witness(j); -} - -constraint_index int_solver::column_lower_bound_constraint(unsigned j) const { - return lra.get_column_lower_bound_witness(j); -} - -unsigned int_solver::row_of_basic_column(unsigned j) const { - return lra.row_of_basic_column(j); -} - -lp_settings& int_solver::settings() { - return lra.settings(); -} - -const lp_settings& int_solver::settings() const { - return lra.settings(); -} - -bool int_solver::column_is_int(column_index const& j) const { - return lra.column_is_int(j); -} - -bool int_solver::is_real(unsigned j) const { - return !column_is_int(j); -} - -bool int_solver::value_is_int(unsigned j) const { - return lra.column_value_is_int(j); -} - -unsigned int_solver::random() { - return settings().random_next(); -} - -const impq& int_solver::upper_bound(unsigned j) const { - return lra.column_upper_bound(j); -} - -const impq& int_solver::lower_bound(unsigned j) const { - return lra.column_lower_bound(j); -} - -bool int_solver::is_term(unsigned j) const { - return lra.column_corresponds_to_term(j); -} - -unsigned int_solver::column_count() const { - return lra.column_count(); -} - -bool int_solver::should_find_cube() { - return m_number_of_calls % settings().m_int_find_cube_period == 0; -} - - -bool int_solver::should_gomory_cut() { - return m_number_of_calls % settings().m_int_gomory_cut_period == 0; -} - -bool int_solver::should_hnf_cut() { - return settings().enable_hnf() && m_number_of_calls % m_hnf_cut_period == 0; -} - -lia_move int_solver::hnf_cut() { - lia_move r = m_hnf_cutter.make_hnf_cut(); - if (r == lia_move::undef) { - m_hnf_cut_period *= 2; - } - else { - m_hnf_cut_period = settings().hnf_cut_period(); - } - return r; -} - -bool int_solver::has_lower(unsigned j) const { - switch (lrac.m_column_types()[j]) { - case column_type::fixed: - case column_type::boxed: - case column_type::lower_bound: - return true; - default: - return false; - } -} - -bool int_solver::has_upper(unsigned j) const { - switch (lrac.m_column_types()[j]) { - case column_type::fixed: - case column_type::boxed: - case column_type::upper_bound: - return true; - default: - return false; - } -} - -static void set_lower(impq & l, bool & inf_l, impq const & v ) { - if (inf_l || v > l) { - l = v; - inf_l = false; - } -} - -static void set_upper(impq & u, bool & inf_u, impq const & v) { - if (inf_u || v < u) { - u = v; - inf_u = false; - } -} - -// this function assumes that all basic columns dependend on j are feasible -bool int_solver::get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) { - if (lrac.m_r_heading[j] >= 0 || is_fixed(j)) // basic or fixed var - return false; - - TRACE("random_update", display_column(tout, j) << ", is_int = " << column_is_int(j) << "\n";); - impq const & xj = get_value(j); - - inf_l = true; - inf_u = true; - l = u = zero_of_type(); - m = mpq(1); - - if (has_lower(j)) - set_lower(l, inf_l, lower_bound(j) - xj); - - if (has_upper(j)) - set_upper(u, inf_u, upper_bound(j) - xj); - - - const auto & A = lra.A_r(); - TRACE("random_update", tout << "m = " << m << "\n";); - - auto delta = [](mpq const& x, impq const& y, impq const& z) { - if (x.is_one()) - return y - z; - if (x.is_minus_one()) - return z - y; - return (y - z) / x; }; - for (auto c : A.column(j)) { - unsigned row_index = c.var(); - const mpq & a = c.coeff(); - unsigned i = lrac.m_r_basis[row_index]; - impq const & xi = get_value(i); - lp_assert(lrac.m_r_solver.column_is_feasible(i)); - if (column_is_int(i) && !a.is_int() && xi.is_int()) - m = lcm(m, denominator(a)); - - if (!inf_l && !inf_u) { - if (l == u) - continue; - } + lia_move int_solver::check(lp::explanation * e) { + SASSERT(lra.ax_is_correct()); + if (!has_inf_int()) return lia_move::sat; - if (a.is_neg()) { - if (has_lower(i)) - set_lower(l, inf_l, delta(a, xi, lra.get_lower_bound(i))); - if (has_upper(i)) - set_upper(u, inf_u, delta(a, xi, lra.get_upper_bound(i))); - } - else { - if (has_upper(i)) - set_lower(l, inf_l, delta(a, xi, lra.get_upper_bound(i))); - if (has_lower(i)) - set_upper(u, inf_u, delta(a, xi, lra.get_lower_bound(i))); - } + m_t.clear(); + m_k.reset(); + m_ex = e; + m_ex->clear(); + m_upper = false; + lia_move r = lia_move::undef; + + if (m_gcd.should_apply()) r = m_gcd(); + + check_return_helper pc(lra); + + if (settings().get_cancel_flag()) + return lia_move::undef; + + ++m_number_of_calls; + if (r == lia_move::undef && m_patcher.should_apply()) r = m_patcher(); + if (r == lia_move::undef && should_find_cube()) r = int_cube(*this)(); + if (r == lia_move::undef && should_hnf_cut()) r = hnf_cut(); + if (r == lia_move::undef && should_gomory_cut()) r = gomory(*this)(); + if (r == lia_move::undef) r = int_branch(*this)(); + return r; } - l += xj; - u += xj; - - TRACE("freedom_interval", - tout << "freedom variable for:\n"; - tout << lra.get_variable_name(j); - tout << "["; - if (inf_l) tout << "-oo"; else tout << l; - tout << "; "; - if (inf_u) tout << "oo"; else tout << u; - tout << "]\n"; - tout << "val = " << get_value(j) << "\n"; - tout << "return " << (inf_l || inf_u || l <= u); - ); - return (inf_l || inf_u || l <= u); -} - - -bool int_solver::is_feasible() const { - lp_assert( - lrac.m_r_solver.calc_current_x_is_feasible_include_non_basis() == - lrac.m_r_solver.current_x_is_feasible()); - return lrac.m_r_solver.current_x_is_feasible(); -} - -const impq & int_solver::get_value(unsigned j) const { - return lrac.m_r_x[j]; -} - -std::ostream& int_solver::display_column(std::ostream & out, unsigned j) const { - return lrac.m_r_solver.print_column_info(j, out); -} - -bool int_solver::column_is_int_inf(unsigned j) const { - return column_is_int(j) && (!value_is_int(j)); -} - -bool int_solver::is_base(unsigned j) const { - return lrac.m_r_heading[j] >= 0; -} - -bool int_solver::is_boxed(unsigned j) const { - return lrac.m_column_types[j] == column_type::boxed; -} - -bool int_solver::is_fixed(unsigned j) const { - return lrac.m_column_types[j] == column_type::fixed; -} - -bool int_solver::is_free(unsigned j) const { - return lrac.m_column_types[j] == column_type::free_column; -} - -bool int_solver::at_bound(unsigned j) const { - auto & mpq_solver = lrac.m_r_solver; - switch (mpq_solver.m_column_types[j] ) { - case column_type::fixed: - case column_type::boxed: - return - mpq_solver.m_lower_bounds[j] == get_value(j) || - mpq_solver.m_upper_bounds[j] == get_value(j); - case column_type::lower_bound: - return mpq_solver.m_lower_bounds[j] == get_value(j); - case column_type::upper_bound: - return mpq_solver.m_upper_bounds[j] == get_value(j); - default: - return false; - } -} - -bool int_solver::at_lower(unsigned j) const { - auto & mpq_solver = lrac.m_r_solver; - switch (mpq_solver.m_column_types[j] ) { - case column_type::fixed: - case column_type::boxed: - case column_type::lower_bound: - return mpq_solver.m_lower_bounds[j] == get_value(j); - default: - return false; - } -} - -bool int_solver::at_upper(unsigned j) const { - auto & mpq_solver = lrac.m_r_solver; - switch (mpq_solver.m_column_types[j] ) { - case column_type::fixed: - case column_type::boxed: - case column_type::upper_bound: - return mpq_solver.m_upper_bounds[j] == get_value(j); - default: - return false; - } -} - -std::ostream & int_solver::display_row(std::ostream & out, lp::row_strip const & row) const { - bool first = true; - auto & rslv = lrac.m_r_solver; - for (const auto &c : row) { - if (is_fixed(c.var())) { - if (!get_value(c.var()).is_zero()) { - impq val = get_value(c.var()) * c.coeff(); - if (!first && val.is_pos()) - out << "+"; - if (val.y.is_zero()) - out << val.x << " "; - else - out << val << " "; + std::ostream& int_solver::display_inf_rows(std::ostream& out) const { + unsigned num = lra.A_r().column_count(); + for (unsigned v = 0; v < num; v++) { + if (column_is_int(v) && !get_value(v).is_int()) { + display_column(out, v); } - first = false; - continue; } - if (c.coeff().is_one()) - { - if (!first) - out << "+"; - } - else if (c.coeff().is_minus_one()) - out << "-"; - else { - if (c.coeff().is_pos() && !first) - out << "+"; - if (c.coeff().is_big()) - out << " b*"; - else - out << c.coeff(); - } - out << rslv.column_name(c.var()) << " "; - first = false; - } - out << "\n"; - for (const auto &c : row) { - if (is_fixed(c.var())) - continue; - rslv.print_column_info(c.var(), out); - if (is_base(c.var())) - out << "j" << c.var() << " base\n"; - } - return out; -} - -std::ostream& int_solver::display_row_info(std::ostream & out, unsigned row_index) const { - auto & rslv = lrac.m_r_solver; - auto const& row = rslv.m_A.m_rows[row_index]; - return display_row(out, row); -} -bool int_solver::shift_var(unsigned j, unsigned range) { - if (is_fixed(j) || is_base(j)) - return false; - if (settings().get_cancel_flag()) - return false; - bool inf_l = false, inf_u = false; - impq l, u; - mpq m; - if (!get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m)) - return false; - if (settings().get_cancel_flag()) - return false; - const impq & x = get_value(j); - // x, the value of j column, might be shifted on a multiple of m - - if (inf_l && inf_u) { - impq new_val = m * impq(random() % (range + 1)) + x; - lra.set_value_for_nbasic_column(j, new_val); - return true; - } - if (column_is_int(j)) { - if (!inf_l) { - l = impq(ceil(l)); - } - if (!inf_u) { - u = impq(floor(u)); + num = 0; + for (unsigned i = 0; i < lra.A_r().row_count(); i++) { + unsigned j = lrac.m_r_basis[i]; + if (column_is_int_inf(j)) { + num++; + lra.print_row(lra.A_r().m_rows[i], out); + out << "\n"; + } } + out << "num of int infeasible: " << num << "\n"; + return out; } - if (!inf_l && !inf_u && l >= u) - return false; - - if (inf_u) { - SASSERT(!inf_l); - impq new_val = x + m * impq(random() % (range + 1)); - lra.set_value_for_nbasic_column(j, new_val); + bool int_solver::cut_indices_are_columns() const { + for (lar_term::ival p : m_t) { + if (p.column().index() >= lra.A_r().column_count()) + return false; + } return true; } - if (inf_l) { - SASSERT(!inf_u); - impq new_val = x - m * impq(random() % (range + 1)); - lra.set_value_for_nbasic_column(j, new_val); - return true; + bool int_solver::current_solution_is_inf_on_cut() const { + SASSERT(cut_indices_are_columns()); + const auto & x = lrac.m_r_x; + impq v = m_t.apply(x); + mpq sign = m_upper ? one_of_type() : -one_of_type(); + CTRACE("current_solution_is_inf_on_cut", v * sign <= impq(m_k) * sign, + tout << "m_upper = " << m_upper << std::endl; + tout << "v = " << v << ", k = " << m_k << std::endl; + ); + return v * sign > impq(m_k) * sign; } - SASSERT(!inf_l && !inf_u); - // The shift has to be a multiple of m: let us look for s, such that the shift is m*s. - // We have new_val = x+m*s <= u, so m*s <= u-x and, finally, s <= floor((u- x)/m) = a - // The symmetric reasoning gives us s >= ceil((l-x)/m) = b - // We randomly pick s in the segment [b, a] - mpq a = floor((u - x) / m); - mpq b = ceil((l - x) / m); - mpq r = a - b; - if (!r.is_pos()) - return false; - TRACE("int_solver", tout << "a = " << a << ", b = " << b << ", r = " << r<< ", m = " << m << "\n";); - if (r < mpq(range)) - range = static_cast(r.get_uint64()); + bool int_solver::has_inf_int() const { + return lra.has_inf_int(); + } - mpq s = b + mpq(random() % (range + 1)); - impq new_val = x + m * impq(s); - TRACE("int_solver", tout << "new_val = " << new_val << "\n";); - SASSERT(l <= new_val && new_val <= u); - lra.set_value_for_nbasic_column(j, new_val); - return true; -} + constraint_index int_solver::column_upper_bound_constraint(unsigned j) const { + return lra.get_column_upper_bound_witness(j); + } -// not used: -bool int_solver::non_basic_columns_are_at_bounds() const { - for (unsigned j : lrac.m_r_nbasis) { - auto & val = lrac.m_r_x[j]; + constraint_index int_solver::column_lower_bound_constraint(unsigned j) const { + return lra.get_column_lower_bound_witness(j); + } + + unsigned int_solver::row_of_basic_column(unsigned j) const { + return lra.row_of_basic_column(j); + } + + lp_settings& int_solver::settings() { + return lra.settings(); + } + + const lp_settings& int_solver::settings() const { + return lra.settings(); + } + + bool int_solver::column_is_int(column_index const& j) const { + return lra.column_is_int(j); + } + + bool int_solver::is_real(unsigned j) const { + return !column_is_int(j); + } + + bool int_solver::value_is_int(unsigned j) const { + return lra.column_value_is_int(j); + } + + unsigned int_solver::random() { + return settings().random_next(); + } + + const impq& int_solver::upper_bound(unsigned j) const { + return lra.column_upper_bound(j); + } + + const impq& int_solver::lower_bound(unsigned j) const { + return lra.column_lower_bound(j); + } + + bool int_solver::is_term(unsigned j) const { + return lra.column_corresponds_to_term(j); + } + + unsigned int_solver::column_count() const { + return lra.column_count(); + } + + bool int_solver::should_find_cube() { + return m_number_of_calls % settings().m_int_find_cube_period == 0; + } + + + bool int_solver::should_gomory_cut() { + return m_number_of_calls % settings().m_int_gomory_cut_period == 0; + } + + bool int_solver::should_hnf_cut() { + return settings().enable_hnf() && m_number_of_calls % m_hnf_cut_period == 0; + } + + lia_move int_solver::hnf_cut() { + lia_move r = m_hnf_cutter.make_hnf_cut(); + if (r == lia_move::undef) + m_hnf_cut_period *= 2; + else + m_hnf_cut_period = settings().hnf_cut_period(); + return r; + } + + bool int_solver::has_lower(unsigned j) const { switch (lrac.m_column_types()[j]) { + case column_type::fixed: case column_type::boxed: - if (val != lrac.m_r_lower_bounds()[j] && val != lrac.m_r_upper_bounds()[j]) - return false; - break; case column_type::lower_bound: - if (val != lrac.m_r_lower_bounds()[j]) - return false; - break; - case column_type::upper_bound: - if (val != lrac.m_r_upper_bounds()[j]) - return false; - break; + return true; default: - if (column_is_int(j) && !val.is_int()) { - return false; - } + return false; } } - return true; -} -int int_solver::select_int_infeasible_var() { - int result = -1; - mpq range; - mpq new_range; - mpq small_value(1024); - unsigned n = 0; - lar_core_solver & lcs = lra.m_mpq_lar_core_solver; - unsigned prev_usage = 0; // to quiet down the compile - - enum state { small_box, is_small_value, any_value, not_found }; - state st = not_found; - - for (unsigned j : lra.r_basis()) { - if (!column_is_int_inf(j)) - continue; - unsigned usage = lra.usage_in_terms(j); - if (is_boxed(j) && (new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_lower_bounds()[j].x - rational(2*usage)) <= small_value) { - SASSERT(!is_fixed(j)); - if (st != small_box) { - n = 0; - st = small_box; - } - if (n == 0 || new_range < range) { - result = j; - range = new_range; - n = 1; - } - else if (new_range == range && (random() % (++n) == 0)) { - result = j; - } - continue; + bool int_solver::has_upper(unsigned j) const { + switch (lrac.m_column_types()[j]) { + case column_type::fixed: + case column_type::boxed: + case column_type::upper_bound: + return true; + default: + return false; } - if (st == small_box) - continue; - impq const& value = get_value(j); - if (abs(value.x) < small_value || - (has_upper(j) && small_value > upper_bound(j).x - value.x) || - (has_lower(j) && small_value > value.x - lower_bound(j).x)) { - if (st != is_small_value) { - n = 0; - st = is_small_value; - } - if (random() % (++n) == 0) - result = j; + } + + static void set_lower(impq & l, bool & inf_l, impq const & v ) { + if (inf_l || v > l) { + l = v; + inf_l = false; } - if (st == is_small_value) - continue; - SASSERT(st == not_found || st == any_value); - st = any_value; - if (n == 0 || usage > prev_usage) { - result = j; - prev_usage = usage; - n = 1; - } - else if (usage > 0 && usage == prev_usage && (random() % (++n) == 0)) - result = j; + } + + static void set_upper(impq & u, bool & inf_u, impq const & v) { + if (inf_u || v < u) { + u = v; + inf_u = false; + } + } + + // this function assumes that all basic columns dependend on j are feasible + bool int_solver::get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) { + if (lrac.m_r_heading[j] >= 0 || is_fixed(j)) // basic or fixed var + return false; + + TRACE("random_update", display_column(tout, j) << ", is_int = " << column_is_int(j) << "\n";); + impq const & xj = get_value(j); + + inf_l = true; + inf_u = true; + l = u = zero_of_type(); + m = mpq(1); + + if (has_lower(j)) + set_lower(l, inf_l, lower_bound(j) - xj); + + if (has_upper(j)) + set_upper(u, inf_u, upper_bound(j) - xj); + + + const auto & A = lra.A_r(); + TRACE("random_update", tout << "m = " << m << "\n";); + + auto delta = [](mpq const& x, impq const& y, impq const& z) { + if (x.is_one()) + return y - z; + if (x.is_minus_one()) + return z - y; + return (y - z) / x; + }; + + for (auto c : A.column(j)) { + unsigned row_index = c.var(); + const mpq & a = c.coeff(); + unsigned i = lrac.m_r_basis[row_index]; + impq const & xi = get_value(i); + lp_assert(lrac.m_r_solver.column_is_feasible(i)); + if (column_is_int(i) && !a.is_int() && xi.is_int()) + m = lcm(m, denominator(a)); + + if (!inf_l && !inf_u && l == u) + continue; + + if (a.is_neg()) { + if (has_lower(i)) + set_lower(l, inf_l, delta(a, xi, lra.get_lower_bound(i))); + if (has_upper(i)) + set_upper(u, inf_u, delta(a, xi, lra.get_upper_bound(i))); + } + else { + if (has_upper(i)) + set_lower(l, inf_l, delta(a, xi, lra.get_upper_bound(i))); + if (has_lower(i)) + set_upper(u, inf_u, delta(a, xi, lra.get_lower_bound(i))); + } + } + + l += xj; + u += xj; + + TRACE("freedom_interval", + tout << "freedom variable for:\n"; + tout << lra.get_variable_name(j); + tout << "["; + if (inf_l) tout << "-oo"; else tout << l; + tout << "; "; + if (inf_u) tout << "oo"; else tout << u; + tout << "]\n"; + tout << "val = " << get_value(j) << "\n"; + tout << "return " << (inf_l || inf_u || l <= u); + ); + return (inf_l || inf_u || l <= u); + } + + + bool int_solver::is_feasible() const { + lp_assert( + lrac.m_r_solver.calc_current_x_is_feasible_include_non_basis() == + lrac.m_r_solver.current_x_is_feasible()); + return lrac.m_r_solver.current_x_is_feasible(); + } + + const impq & int_solver::get_value(unsigned j) const { + return lrac.m_r_x[j]; + } + + std::ostream& int_solver::display_column(std::ostream & out, unsigned j) const { + return lrac.m_r_solver.print_column_info(j, out); + } + + bool int_solver::column_is_int_inf(unsigned j) const { + return column_is_int(j) && (!value_is_int(j)); + } + + bool int_solver::is_base(unsigned j) const { + return lrac.m_r_heading[j] >= 0; + } + + bool int_solver::is_boxed(unsigned j) const { + return lrac.m_column_types[j] == column_type::boxed; + } + + bool int_solver::is_fixed(unsigned j) const { + return lrac.m_column_types[j] == column_type::fixed; + } + + bool int_solver::is_free(unsigned j) const { + return lrac.m_column_types[j] == column_type::free_column; + } + + bool int_solver::at_bound(unsigned j) const { + auto & mpq_solver = lrac.m_r_solver; + switch (mpq_solver.m_column_types[j] ) { + case column_type::fixed: + case column_type::boxed: + return + mpq_solver.m_lower_bounds[j] == get_value(j) || + mpq_solver.m_upper_bounds[j] == get_value(j); + case column_type::lower_bound: + return mpq_solver.m_lower_bounds[j] == get_value(j); + case column_type::upper_bound: + return mpq_solver.m_upper_bounds[j] == get_value(j); + default: + return false; + } + } + + bool int_solver::at_lower(unsigned j) const { + auto & mpq_solver = lrac.m_r_solver; + switch (mpq_solver.m_column_types[j] ) { + case column_type::fixed: + case column_type::boxed: + case column_type::lower_bound: + return mpq_solver.m_lower_bounds[j] == get_value(j); + default: + return false; + } + } + + bool int_solver::at_upper(unsigned j) const { + auto & mpq_solver = lrac.m_r_solver; + switch (mpq_solver.m_column_types[j] ) { + case column_type::fixed: + case column_type::boxed: + case column_type::upper_bound: + return mpq_solver.m_upper_bounds[j] == get_value(j); + default: + return false; + } + } + + std::ostream & int_solver::display_row(std::ostream & out, lp::row_strip const & row) const { + bool first = true; + auto & rslv = lrac.m_r_solver; + for (const auto &c : row) { + if (is_fixed(c.var())) { + if (!get_value(c.var()).is_zero()) { + impq val = get_value(c.var()) * c.coeff(); + if (!first && val.is_pos()) + out << "+"; + if (val.y.is_zero()) + out << val.x << " "; + else + out << val << " "; + } + first = false; + continue; + } + if (c.coeff().is_one()) { + if (!first) + out << "+"; + } + else if (c.coeff().is_minus_one()) + out << "-"; + else { + if (c.coeff().is_pos() && !first) + out << "+"; + if (c.coeff().is_big()) + out << " b*"; + else + out << c.coeff(); + } + out << rslv.column_name(c.var()) << " "; + first = false; + } + out << "\n"; + for (const auto &c : row) { + if (is_fixed(c.var())) + continue; + rslv.print_column_info(c.var(), out); + if (is_base(c.var())) + out << "j" << c.var() << " base\n"; + } + return out; } - return result; -} + std::ostream& int_solver::display_row_info(std::ostream & out, unsigned row_index) const { + auto & rslv = lrac.m_r_solver; + auto const& row = rslv.m_A.m_rows[row_index]; + return display_row(out, row); + } + + bool int_solver::shift_var(unsigned j, unsigned range) { + if (is_fixed(j) || is_base(j)) + return false; + if (settings().get_cancel_flag()) + return false; + bool inf_l = false, inf_u = false; + impq l, u; + mpq m; + if (!get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m)) + return false; + if (settings().get_cancel_flag()) + return false; + const impq & x = get_value(j); + // x, the value of j column, might be shifted on a multiple of m + + if (inf_l && inf_u) { + impq new_val = m * impq(random() % (range + 1)) + x; + lra.set_value_for_nbasic_column(j, new_val); + return true; + } + if (column_is_int(j)) { + if (!inf_l) + l = impq(ceil(l)); + if (!inf_u) + u = impq(floor(u)); + } + if (!inf_l && !inf_u && l >= u) + return false; + + + if (inf_u) { + SASSERT(!inf_l); + impq new_val = x + m * impq(random() % (range + 1)); + lra.set_value_for_nbasic_column(j, new_val); + return true; + } + + if (inf_l) { + SASSERT(!inf_u); + impq new_val = x - m * impq(random() % (range + 1)); + lra.set_value_for_nbasic_column(j, new_val); + return true; + } + + SASSERT(!inf_l && !inf_u); + // The shift has to be a multiple of m: let us look for s, such that the shift is m*s. + // We have new_val = x+m*s <= u, so m*s <= u-x and, finally, s <= floor((u- x)/m) = a + // The symmetric reasoning gives us s >= ceil((l-x)/m) = b + // We randomly pick s in the segment [b, a] + mpq a = floor((u - x) / m); + mpq b = ceil((l - x) / m); + mpq r = a - b; + if (!r.is_pos()) + return false; + TRACE("int_solver", tout << "a = " << a << ", b = " << b << ", r = " << r<< ", m = " << m << "\n";); + if (r < mpq(range)) + range = static_cast(r.get_uint64()); + + mpq s = b + mpq(random() % (range + 1)); + impq new_val = x + m * impq(s); + TRACE("int_solver", tout << "new_val = " << new_val << "\n";); + SASSERT(l <= new_val && new_val <= u); + lra.set_value_for_nbasic_column(j, new_val); + return true; + } + + + int int_solver::select_int_infeasible_var() { + int result = -1; + mpq range; + mpq new_range; + mpq small_value(1024); + unsigned n = 0; + lar_core_solver & lcs = lra.m_mpq_lar_core_solver; + unsigned prev_usage = 0; // to quiet down the compile + + enum state { small_box, is_small_value, any_value, not_found }; + state st = not_found; + + for (unsigned j : lra.r_basis()) { + if (!column_is_int_inf(j)) + continue; + unsigned usage = lra.usage_in_terms(j); + if (is_boxed(j) && (new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_lower_bounds()[j].x - rational(2*usage)) <= small_value) { + SASSERT(!is_fixed(j)); + if (st != small_box) { + n = 0; + st = small_box; + } + if (n == 0 || new_range < range) { + result = j; + range = new_range; + n = 1; + } + else if (new_range == range && (random() % (++n) == 0)) { + result = j; + } + continue; + } + if (st == small_box) + continue; + impq const& value = get_value(j); + if (abs(value.x) < small_value || + (has_upper(j) && small_value > upper_bound(j).x - value.x) || + (has_lower(j) && small_value > value.x - lower_bound(j).x)) { + if (st != is_small_value) { + n = 0; + st = is_small_value; + } + if (random() % (++n) == 0) + result = j; + } + if (st == is_small_value) + continue; + SASSERT(st == not_found || st == any_value); + st = any_value; + if (n == 0 || usage > prev_usage) { + result = j; + prev_usage = usage; + n = 1; + } + else if (usage > 0 && usage == prev_usage && (random() % (++n) == 0)) + result = j; + } + + return result; + } } diff --git a/src/math/lp/int_solver.h b/src/math/lp/int_solver.h index c6b1bb1d0..c14fd0067 100644 --- a/src/math/lp/int_solver.h +++ b/src/math/lp/int_solver.h @@ -109,7 +109,6 @@ private: bool has_lower(unsigned j) const; bool has_upper(unsigned j) const; unsigned row_of_basic_column(unsigned j) const; - bool non_basic_columns_are_at_bounds() const; bool cut_indices_are_columns() const; public: @@ -134,5 +133,5 @@ public: int select_int_infeasible_var(); - }; +}; }