3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 18:05:21 +00:00

improve equality solving in qe-lite

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-02-12 10:54:00 -08:00
parent 552b386a29
commit a594597906
4 changed files with 97 additions and 58 deletions

View file

@ -129,6 +129,8 @@ namespace simplex {
unsigned get_num_vars() const { return m_vars.size(); }
row_iterator row_begin(row const& r) { return M.row_begin(r); }
row_iterator row_end(row const& r) { return M.row_end(r); }
private:
@ -136,7 +138,6 @@ namespace simplex {
pivot_strategy_t pivot_strategy();
var_t select_smallest_var() { return m_to_patch.empty()?null_var:m_to_patch.erase_min(); }
var_t select_error_var(bool least);
// row get_infeasible_row() { }
void check_blands_rule(var_t v, unsigned& num_repeated);
bool make_var_feasible(var_t x_i);
void update_and_pivot(var_t x_i, var_t x_j, numeral const& a_ij, eps_numeral const& new_value);

View file

@ -238,67 +238,95 @@ namespace eq {
}
}
bool solve_arith_core(app * lhs, expr * rhs, expr * eq, ptr_vector<var>& vs, expr_ref_vector& ts) {
SASSERT(a.is_add(lhs));
bool is_int = a.is_int(lhs);
expr * a1, *v;
expr_ref def(m);
rational a_val;
unsigned num = lhs->get_num_args();
unsigned i;
for (i = 0; i < num; i++) {
expr * arg = lhs->get_arg(i);
if (is_variable(arg)) {
a_val = rational(1);
v = arg;
break;
}
else if (a.is_mul(arg, a1, v) &&
is_variable(v) &&
a.is_numeral(a1, a_val) &&
!a_val.is_zero() &&
(!is_int || a_val.is_minus_one())) {
break;
bool is_invertible_const(bool is_int, expr* x, rational& a_val) {
expr* y;
if (a.is_uminus(x, y) && is_invertible_const(is_int, y, a_val)) {
a_val.neg();
return true;
}
else if (a.is_numeral(x, a_val) && !a_val.is_zero()) {
if (!is_int || a_val.is_one() || a_val.is_minus_one()) {
return true;
}
}
if (i == num)
return false;
vs.push_back(to_var(v));
expr_ref inv_a(m);
if (!a_val.is_one()) {
inv_a = a.mk_numeral(rational(1)/a_val, is_int);
rhs = a.mk_mul(inv_a, rhs);
}
ptr_buffer<expr> other_args;
for (unsigned j = 0; j < num; j++) {
if (i != j) {
if (inv_a)
other_args.push_back(a.mk_mul(inv_a, lhs->get_arg(j)));
else
other_args.push_back(lhs->get_arg(j));
}
}
switch (other_args.size()) {
case 0:
def = rhs;
break;
case 1:
def = a.mk_sub(rhs, other_args[0]);
break;
default:
def = a.mk_sub(rhs, a.mk_add(other_args.size(), other_args.c_ptr()));
break;
}
ts.push_back(def);
return true;
return false;
}
bool is_invertible_mul(bool is_int, expr*& arg, rational& a_val) {
if (is_variable(arg)) {
a_val = rational(1);
return true;
}
expr* x, *y;
if (a.is_mul(arg, x, y)) {
if (is_variable(x) && is_invertible_const(is_int, y, a_val)) {
arg = x;
return true;
}
if (is_variable(y) && is_invertible_const(is_int, x, a_val)) {
arg = y;
return true;
}
}
return false;
}
typedef std::pair<bool,expr*> signed_expr;
expr_ref solve_arith(bool is_int, rational const& r, bool sign, svector<signed_expr> const& exprs) {
expr_ref_vector result(m);
for (unsigned i = 0; i < exprs.size(); ++i) {
bool sign2 = exprs[i].first;
expr* e = exprs[i].second;
rational r2(r);
if (sign == sign2) {
r2.neg();
}
if (!r2.is_one()) {
result.push_back(a.mk_mul(a.mk_numeral(r2, is_int), e));
}
else {
result.push_back(e);
}
}
return expr_ref(a.mk_add(result.size(), result.c_ptr()), m);
}
bool solve_arith(expr* lhs, expr* rhs, ptr_vector<var>& vs, expr_ref_vector& ts) {
if (!a.is_int(lhs) && !a.is_real(rhs)) {
return false;
}
rational a_val;
bool is_int = a.is_int(lhs);
svector<signed_expr> todo, done;
todo.push_back(std::make_pair(true, lhs));
todo.push_back(std::make_pair(false, rhs));
while (!todo.empty()) {
expr* e = todo.back().second;
bool sign = todo.back().first;
todo.pop_back();
if (a.is_add(e)) {
for (unsigned i = 0; i < to_app(e)->get_num_args(); ++i) {
todo.push_back(std::make_pair(sign, to_app(e)->get_arg(i)));
}
}
else if (is_invertible_mul(is_int, e, a_val)) {
done.append(todo);
vs.push_back(to_var(e));
a_val = rational(1)/a_val;
ts.push_back(solve_arith(is_int, a_val, sign, done));
TRACE("qe_lite", tout << mk_pp(lhs, m) << " " << mk_pp(rhs, m) << " " << mk_pp(e, m) << " := " << mk_pp(ts.back(), m) << "\n";);
return true;
}
else {
done.push_back(std::make_pair(sign, e));
}
}
return false;
}
bool arith_solve(expr * lhs, expr * rhs, expr * eq, ptr_vector<var>& vs, expr_ref_vector& ts) {
return
(a.is_add(lhs) && solve_arith_core(to_app(lhs), rhs, eq, vs, ts)) ||
(a.is_add(rhs) && solve_arith_core(to_app(rhs), lhs, eq, vs, ts));
return solve_arith(lhs, rhs, vs, ts);
}
bool trivial_solve(expr* lhs, expr* rhs, expr* eq, ptr_vector<var>& vs, expr_ref_vector& ts) {

View file

@ -594,6 +594,8 @@ namespace smt {
m_simplex.set_upper(v, zero);
}
ctx.push_trail(undo_bound(*this, v, is_true));
lbool is_sat = m_simplex.make_feasible();
std::cout << is_sat << "\n";
}
for (unsigned i = 0; i < ineqs->size(); ++i) {
@ -628,8 +630,15 @@ namespace smt {
}
ctx.push_trail(reset_bound(*this, slack, is_true));
// m_simplex.feasible();
//
lbool is_sat = m_simplex.make_feasible();
if (l_false == is_sat) {
row r = m_simplex.get_infeasible_row();
row_iterator it = m_simplex.row_begin(r), end = m_simplex.row_end(r);
for (; it != end; ++it) {
it->m_var;
it->m_coeff;
}
}
}
if (c->is_ge()) {
assign_ineq(*c, is_true);

View file

@ -43,6 +43,7 @@ namespace smt {
typedef vector<std::pair<literal, numeral> > arg_t;
typedef simplex::simplex<simplex::mpz_ext> simplex;
typedef simplex::row row;
typedef simplex::row_iterator row_iterator;
struct stats {
unsigned m_num_conflicts;