mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 20:38:43 +00:00
add unit test for #2867
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
33b644adad
commit
a4f668eef0
|
@ -569,22 +569,26 @@ namespace algebraic_numbers {
|
|||
}
|
||||
};
|
||||
|
||||
void check_triangle_inequality(numeral_vector& r) {
|
||||
void check_transitivity(numeral_vector& r) {
|
||||
lt_proc lt(m_wrapper);
|
||||
for (unsigned i = 0; i < r.size(); ++i) {
|
||||
auto& a = r[i];
|
||||
for (unsigned j = i + 1; j < r.size(); ++j) {
|
||||
for (unsigned j = 0; j < r.size(); ++j) {
|
||||
auto& b = r[j];
|
||||
bool ltab = lt(a, b);
|
||||
for (unsigned k = j + 1; k < r.size(); ++k) {
|
||||
for (unsigned k = 0; k < r.size(); ++k) {
|
||||
auto& c = r[k];
|
||||
CTRACE("algebraic", (lt(b, a) && lt(a, c) && !lt(b, c)),
|
||||
display_root(tout << "b ", b) << "\n";
|
||||
display_root(tout << "a ", a) << "\n";
|
||||
display_root(tout << "c ", c) << "\n";);
|
||||
SASSERT(!lt(a, b) || !lt(b, c) || lt(a, c));
|
||||
SASSERT(!lt(a, b) || !lt(c, a) || lt(c, b));
|
||||
SASSERT(!lt(b, a) || !lt(a, c) || lt(b, c));
|
||||
bool b_lt_a = lt(b, a);
|
||||
bool c_lt_b = lt(c, b);
|
||||
bool c_lt_a = lt(c, a);
|
||||
// (a <= b & b <= c) => a <= c
|
||||
// b < a or c < b or !(c < a)
|
||||
CTRACE("algebraic_bug",
|
||||
(!b_lt_a && !c_lt_b && c_lt_a),
|
||||
display_root(tout << "a ", a) << "\n";
|
||||
display_root(tout << "b ", b) << "\n";
|
||||
display_root(tout << "c ", c) << "\n";);
|
||||
SASSERT(b_lt_a || c_lt_b || !c_lt_a);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -592,7 +596,7 @@ namespace algebraic_numbers {
|
|||
|
||||
void sort_roots(numeral_vector & r) {
|
||||
if (m_limit.inc()) {
|
||||
//DEBUG_CODE(check_triangle_inequality(r););
|
||||
// DEBUG_CODE(check_transitivity(r););
|
||||
std::sort(r.begin(), r.end(), lt_proc(m_wrapper));
|
||||
}
|
||||
}
|
||||
|
@ -2782,8 +2786,8 @@ namespace algebraic_numbers {
|
|||
// the precision on refine is base 2
|
||||
return upm().refine(c->m_p_sz, c->m_p, bqm(), l, u, precision * 4);
|
||||
}
|
||||
|
||||
void display_decimal(std::ostream & out, numeral const & a, unsigned precision) {
|
||||
|
||||
std::ostream& display_decimal(std::ostream & out, numeral const & a, unsigned precision) {
|
||||
if (a.is_basic()) {
|
||||
qm().display_decimal(out, basic_value(a), precision);
|
||||
}
|
||||
|
@ -2798,6 +2802,7 @@ namespace algebraic_numbers {
|
|||
bqm().display_decimal(out, l, precision);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void get_lower(numeral const & a, mpq & l, unsigned precision) {
|
||||
|
@ -3102,24 +3107,24 @@ namespace algebraic_numbers {
|
|||
return m_imp->eval_sign_at(p, x2v);
|
||||
}
|
||||
|
||||
void manager::display_interval(std::ostream & out, numeral const & a) const {
|
||||
m_imp->display_interval(out, a);
|
||||
std::ostream& manager::display_interval(std::ostream & out, numeral const & a) const {
|
||||
return m_imp->display_interval(out, a);
|
||||
}
|
||||
|
||||
void manager::display_decimal(std::ostream & out, numeral const & a, unsigned precision) const {
|
||||
m_imp->display_decimal(out, a, precision);
|
||||
std::ostream& manager::display_decimal(std::ostream & out, numeral const & a, unsigned precision) const {
|
||||
return m_imp->display_decimal(out, a, precision);
|
||||
}
|
||||
|
||||
void manager::display_root(std::ostream & out, numeral const & a) const {
|
||||
m_imp->display_root(out, a);
|
||||
std::ostream& manager::display_root(std::ostream & out, numeral const & a) const {
|
||||
return m_imp->display_root(out, a);
|
||||
}
|
||||
|
||||
void manager::display_mathematica(std::ostream & out, numeral const & a) const {
|
||||
m_imp->display_mathematica(out, a);
|
||||
std::ostream& manager::display_mathematica(std::ostream & out, numeral const & a) const {
|
||||
return m_imp->display_mathematica(out, a);
|
||||
}
|
||||
|
||||
void manager::display_root_smt2(std::ostream & out, numeral const & a) const {
|
||||
m_imp->display_root_smt2(out, a);
|
||||
std::ostream& manager::display_root_smt2(std::ostream & out, numeral const & a) const {
|
||||
return m_imp->display_root_smt2(out, a);
|
||||
}
|
||||
|
||||
void manager::reset_statistics() {
|
||||
|
|
|
@ -326,32 +326,32 @@ namespace algebraic_numbers {
|
|||
\brief Display algebraic number as a rational if is_rational(n)
|
||||
Otherwise, display it as an interval.
|
||||
*/
|
||||
void display_interval(std::ostream & out, numeral const & a) const;
|
||||
std::ostream& display_interval(std::ostream & out, numeral const & a) const;
|
||||
|
||||
/**
|
||||
\brief Display algebraic number in decimal notation.
|
||||
A question mark is added based on the precision requested.
|
||||
*/
|
||||
void display_decimal(std::ostream & out, numeral const & a, unsigned precision = 10) const;
|
||||
std::ostream& display_decimal(std::ostream & out, numeral const & a, unsigned precision = 10) const;
|
||||
|
||||
/**
|
||||
\brief Display algebraic number as a root object: (p, i)
|
||||
That is, 'a' is the i-th root of p.
|
||||
*/
|
||||
void display_root(std::ostream & out, numeral const & a) const;
|
||||
std::ostream& display_root(std::ostream & out, numeral const & a) const;
|
||||
|
||||
/**
|
||||
\brief Display algebraic number as a root object in SMT 2.0 style: (root-obj p i)
|
||||
That is, 'a' is the i-th root of p.
|
||||
*/
|
||||
void display_root_smt2(std::ostream & out, numeral const & a) const;
|
||||
std::ostream& display_root_smt2(std::ostream & out, numeral const & a) const;
|
||||
|
||||
/**
|
||||
\brief Display algebraic number in Mathematica format.
|
||||
*/
|
||||
void display_mathematica(std::ostream & out, numeral const & a) const;
|
||||
std::ostream& display_mathematica(std::ostream & out, numeral const & a) const;
|
||||
|
||||
void display(std::ostream & out, numeral const & a) { return display_decimal(out, a); }
|
||||
std::ostream& display(std::ostream & out, numeral const & a) { return display_decimal(out, a); }
|
||||
|
||||
void reset_statistics();
|
||||
|
||||
|
|
|
@ -161,7 +161,6 @@ namespace sat {
|
|||
|
||||
if (m_probing_binary) {
|
||||
watch_list & wlist = s.get_wlist(~l);
|
||||
unsigned sz0 = wlist.size();
|
||||
for (unsigned i = 0; i < wlist.size(); ++i) {
|
||||
watched & w = wlist[i];
|
||||
if (!w.is_binary_clause())
|
||||
|
|
|
@ -3474,7 +3474,6 @@ bool theory_seq::solve_ne(unsigned idx) {
|
|||
|
||||
bool theory_seq::solve_nc(unsigned idx) {
|
||||
nc const& n = m_ncs[idx];
|
||||
dependency* deps = n.deps();
|
||||
literal len_gt = n.len_gt();
|
||||
context& ctx = get_context();
|
||||
expr_ref c(m);
|
||||
|
@ -3509,6 +3508,7 @@ bool theory_seq::solve_nc(unsigned idx) {
|
|||
}
|
||||
|
||||
#else
|
||||
dependency* deps = n.deps();
|
||||
if (!canonize(n.contains(), deps, c)) {
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -562,7 +562,70 @@ static void tst_root() {
|
|||
|
||||
}
|
||||
|
||||
static void tst_sturm() {
|
||||
reslimit rl;
|
||||
unsynch_mpq_manager nm;
|
||||
polynomial::manager m(rl, nm);
|
||||
polynomial_ref x(m);
|
||||
x = m.mk_polynomial(m.mk_var());
|
||||
polynomial_ref p(m);
|
||||
polynomial_ref q(m);
|
||||
|
||||
#define N(s) (rational(#s).to_mpq())
|
||||
|
||||
p = N(507962865083498496)*(x^10) +
|
||||
N(102100535881783197696)*(x^9) -
|
||||
N(14783112447185507561472)*(x^8) -
|
||||
N(2001324733200883839555072)*(x^7) +
|
||||
N(195168383210843217999079936)*(x^6) +
|
||||
N(38119811955608999164032)*(x^5) +
|
||||
N(9215524544769908136049956)*(x^4) -
|
||||
N(733241058456905205563830332)*(x^3) -
|
||||
N(15888459782104331950227)*(x^2) -
|
||||
N(10235992917286431461226534)*x +
|
||||
N(688689757310708660505387921);
|
||||
|
||||
q = N(1286741608255488)*(x^6) +
|
||||
N(129317531629676544)*(x^5) -
|
||||
N(25384908626459170944)*(x^4) +
|
||||
N(16014650289587907456)*(x^3) +
|
||||
N(2042137943326838560)*(x^2) +
|
||||
N(44729821875714513846)*x -
|
||||
N(29154410578758924855);
|
||||
|
||||
algebraic_numbers::manager am(rl, nm);
|
||||
scoped_anum_vector rs1(am), rs2(am);
|
||||
std::cout << "p: " << p << "\n";
|
||||
am.isolate_roots(p, rs1);
|
||||
scoped_anum a(am), b(am), c(am);
|
||||
a = rs1[2];
|
||||
b = rs1[3];
|
||||
am.isolate_roots(q, rs2);
|
||||
c = rs2[3];
|
||||
am.display_decimal(std::cout << "a:", a) << "\n";
|
||||
am.display_interval(std::cout << "a:", a) << "\n";
|
||||
am.display_root(std::cout << "a:", a) << "\n";
|
||||
|
||||
am.display_decimal(std::cout << "b:", b) << "\n";
|
||||
am.display_interval(std::cout << "b:", b) << "\n";
|
||||
am.display_root(std::cout << "b:", b) << "\n";
|
||||
|
||||
am.display_decimal(std::cout << "c:", c) << "\n";
|
||||
am.display_interval(std::cout << "c:", c) << "\n";
|
||||
am.display_root(std::cout << "c:", c) << "\n";
|
||||
|
||||
std::cout << "b < a " << am.lt(b, a) << "\n";
|
||||
std::cout << "c < b " << am.lt(c, b) << "\n";
|
||||
std::cout << "c < a " << am.lt(c, a) << "\n";
|
||||
// it should not be the case that b < a == 0, c < b == 0 and c < a == 1.
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void tst_algebraic() {
|
||||
tst_sturm();
|
||||
|
||||
// enable_trace("resultant_bug");
|
||||
// enable_trace("poly_sign");
|
||||
disable_trace("algebraic");
|
||||
|
|
Loading…
Reference in a new issue