mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
updated notes, fixes to dual solver
This commit is contained in:
parent
ef6542823b
commit
a216bee647
|
@ -19,36 +19,63 @@ Each node has a congruence closure root, cg.
|
|||
cg is set to the representative in the cc table
|
||||
(first insertion of congruent node).
|
||||
Each node n has a set of parents, denoted n.P.
|
||||
The table maintains the invariant
|
||||
- p.cg = find(p)
|
||||
|
||||
set r2 to the root of r1:
|
||||
Merge sets r2 to the root of r1
|
||||
(r2 and r1 are both considered roots before the merge).
|
||||
The operation Unmerge reverses the effect of Merge.
|
||||
|
||||
Merge: Erase:
|
||||
for each p r1.P such that p.cg == p:
|
||||
erase from table
|
||||
Update root:
|
||||
r1.root := r2
|
||||
Insert:
|
||||
for each p in r1.P:
|
||||
|
||||
Merge(r1, r2)
|
||||
-------------
|
||||
|
||||
Erase: for each p in r1.P such that p.cg == p:
|
||||
erase from table
|
||||
Update root: r1.root := r2
|
||||
Insert: for each p in r1.P:
|
||||
p.cg = insert p in table
|
||||
if p.cg == p:
|
||||
append p to r2.P
|
||||
else
|
||||
add p.cg, p to worklist
|
||||
add (p.cg == p) to 'to_merge'
|
||||
|
||||
Unmerge: Erase:
|
||||
for each p in added nodes:
|
||||
erase p from table
|
||||
Revert root:
|
||||
r1.root := r1
|
||||
Insert:
|
||||
for each p in r1.P:
|
||||
insert p if n was cc root before merge
|
||||
Unmerge(r1, r2)
|
||||
---------------
|
||||
|
||||
Erase: for each p in r2.P added from r1.P:
|
||||
erase p from table
|
||||
Revert root: r1.root := r1
|
||||
Insert: for each p in r1.P:
|
||||
insert p if n was cc root before merge
|
||||
|
||||
condition for being cc root before merge:
|
||||
p->cg == p
|
||||
congruent(p, p->cg)
|
||||
p.cg == p or !congruent(p, p.cg)
|
||||
|
||||
congruent(p,q) := roots of p.children = roots of q.children
|
||||
congruent(p,q) := roots of p.args = roots of q.args
|
||||
|
||||
The algorithm orients r1, r2 such that class_size(r1) <= class_size(r2).
|
||||
With N nodes, there can be at most N calls to Merge.
|
||||
Each of the calls traverse r1.P from the smaller class size.
|
||||
Label a merge tree with nodes from the larger class size.
|
||||
In other words, if Merge(r2,r1); Merge(r3,r1) is a sequence
|
||||
of calls where r1 is selected root, then the merge tree is
|
||||
|
||||
r1
|
||||
/ \
|
||||
r1 r3
|
||||
\
|
||||
r2
|
||||
|
||||
Note that parent lists are re-examined only for nodes that join
|
||||
from right subtrees (with lesser class sizes).
|
||||
Claim: a node participates in a path along right adjoining sub-trees at most O(log(N)) times.
|
||||
Justification (very roughly): the size of a right adjoining subtree can at most
|
||||
be equal to the left adjoining sub-tree. This entails a logarithmic number of
|
||||
re-examinations from the right adjoining tree.
|
||||
(TBD check how Hopcroft's main argument is phrased)
|
||||
|
||||
The parent lists are bounded by the maximal arity of functions.
|
||||
|
||||
Example:
|
||||
|
||||
|
@ -491,14 +518,9 @@ namespace euf {
|
|||
bool egraph::propagate() {
|
||||
SASSERT(m_new_lits_qhead <= m_new_lits.size());
|
||||
SASSERT(m_num_scopes == 0 || m_to_merge.empty());
|
||||
unsigned head = 0, tail = m_to_merge.size();
|
||||
while (head < tail && m.limit().inc() && !inconsistent()) {
|
||||
for (unsigned i = head; i < tail && !inconsistent(); ++i) {
|
||||
auto const& w = m_to_merge[i];
|
||||
merge(w.a, w.b, justification::congruence(w.commutativity));
|
||||
}
|
||||
head = tail;
|
||||
tail = m_to_merge.size();
|
||||
for (unsigned i = 0; i < m_to_merge.size() && m_limit().inc() && !inconsistent(); ++i) {
|
||||
auto const& w = m_to_merge[i];
|
||||
merge(w.a, w.b, justification::congruence(w.commutativity));
|
||||
}
|
||||
m_to_merge.reset();
|
||||
force_push();
|
||||
|
|
|
@ -13,7 +13,35 @@ Author:
|
|||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
Notes:
|
||||
|
||||
Basic:
|
||||
For each row a*x + b = 0, where fixed variables are replaced by b,
|
||||
check if gcd(a) divides b
|
||||
|
||||
Extended:
|
||||
For each row a*x + b*y + c = 0, where
|
||||
- the coefficients in a are all the same and smaller than the coefficients in b
|
||||
- the variables x are bounded
|
||||
Let l := a*lb(x), u := a*ub(x)
|
||||
- that is the lower and upper bounds for a*x based on the bounds for x.
|
||||
let ll := ceil (l / gcd(b,c))
|
||||
uu := floor (u / gcd(b,c))
|
||||
If uu > ll, there is no space to find solutions for x within the bounds
|
||||
|
||||
Accumulative:
|
||||
For each row a*x + b*y - c = 0, where |a| = 1 < |b|, and x is a single variable,
|
||||
(it could also be a group of variables) accumulate constraint x = c mod b
|
||||
|
||||
If there are row gcd constraints, such that
|
||||
- x = c1 mod b1, from rows R1
|
||||
- x = c2 mod b2, from rows R2
|
||||
|
||||
- If c1 mod gcd(b1,b2) != c2 mod gcd(b1,b2) report conflict for the rows involved.
|
||||
|
||||
- Otherwise accumulate x = (c1 * lcm(b1,b2) / b2) + (c2 * lcm(b1,b2) / b1) mod lcm(b,b2)
|
||||
and accumulate the rows from R1, R2
|
||||
|
||||
--*/
|
||||
|
||||
#include "math/lp/int_solver.h"
|
||||
|
@ -28,15 +56,7 @@ namespace lp {
|
|||
|
||||
if (!lia.settings().int_run_gcd_test())
|
||||
return false;
|
||||
#if 1
|
||||
return true;
|
||||
#else
|
||||
if (m_delay == 0) {
|
||||
return true;
|
||||
}
|
||||
--m_delay;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
lia_move int_gcd_test::operator()() {
|
||||
|
|
|
@ -24,22 +24,19 @@ namespace sat {
|
|||
|
||||
void dual_solver::push() {
|
||||
m_solver.user_push();
|
||||
m_roots_lim.push_back(m_roots.size());
|
||||
m_tracked_lim.push_back(m_tracked_stack.size());
|
||||
m_units_lim.push_back(m_units.size());
|
||||
m_roots.push_scope();
|
||||
m_tracked_vars.push_scope();
|
||||
m_units.push_scope();
|
||||
}
|
||||
|
||||
void dual_solver::pop(unsigned num_scopes) {
|
||||
m_solver.user_pop(num_scopes);
|
||||
unsigned old_sz = m_roots_lim.size() - num_scopes;
|
||||
for (unsigned v = m_tracked_stack.size(); v-- > m_tracked_lim[old_sz]; )
|
||||
m_is_tracked[v] = false;
|
||||
m_roots.shrink(m_roots_lim[old_sz]);
|
||||
m_tracked_stack.shrink(m_tracked_lim[old_sz]);
|
||||
m_units.shrink(m_units_lim[old_sz]);
|
||||
m_roots_lim.shrink(old_sz);
|
||||
m_tracked_lim.shrink(old_sz);
|
||||
m_units_lim.shrink(old_sz);
|
||||
unsigned old_sz = m_tracked_vars.old_size(num_scopes);
|
||||
for (unsigned i = m_tracked_vars.size(); i-- > old_sz; )
|
||||
m_is_tracked[m_tracked_vars[i]] = false;
|
||||
m_units.pop_scope(num_scopes);
|
||||
m_roots.pop_scope(num_scopes);
|
||||
m_tracked_vars.pop_scope(num_scopes);
|
||||
}
|
||||
|
||||
bool_var dual_solver::ext2var(bool_var v) {
|
||||
|
@ -56,7 +53,7 @@ namespace sat {
|
|||
v = ext2var(v);
|
||||
if (!m_is_tracked.get(v, false)) {
|
||||
m_is_tracked.setx(v, true, false);
|
||||
m_tracked_stack.push_back(v);
|
||||
m_tracked_vars.push_back(v);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -69,6 +66,10 @@ namespace sat {
|
|||
}
|
||||
|
||||
void dual_solver::add_root(unsigned sz, literal const* clause) {
|
||||
if (sz == 1) {
|
||||
m_units.push_back(clause[0]);
|
||||
return;
|
||||
}
|
||||
literal root(m_solver.mk_var(), false);
|
||||
for (unsigned i = 0; i < sz; ++i)
|
||||
m_solver.mk_clause(root, ~ext2lit(clause[i]), status::input());
|
||||
|
@ -86,7 +87,7 @@ namespace sat {
|
|||
m_solver.user_push();
|
||||
m_solver.add_clause(m_roots.size(), m_roots.c_ptr(), status::input());
|
||||
m_lits.reset();
|
||||
for (bool_var v : m_tracked_stack)
|
||||
for (bool_var v : m_tracked_vars)
|
||||
m_lits.push_back(literal(v, l_false == s.value(m_var2ext[v])));
|
||||
lbool is_sat = m_solver.check(m_lits.size(), m_lits.c_ptr());
|
||||
m_core.reset();
|
||||
|
|
|
@ -8,6 +8,8 @@ Module Name:
|
|||
Abstract:
|
||||
|
||||
Solver for obtaining implicant.
|
||||
Based on an idea by Armin Biere to use dual propagation
|
||||
for representation of negated goal.
|
||||
|
||||
Author:
|
||||
|
||||
|
@ -15,18 +17,19 @@ Author:
|
|||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lim_vector.h"
|
||||
#include "sat/sat_solver.h"
|
||||
|
||||
namespace sat {
|
||||
|
||||
class dual_solver {
|
||||
solver m_solver;
|
||||
literal_vector m_roots, m_lits, m_core, m_units;
|
||||
lim_svector<literal> m_units, m_roots;
|
||||
lim_svector<bool_var> m_tracked_vars;
|
||||
literal_vector m_lits, m_core;
|
||||
bool_var_vector m_is_tracked;
|
||||
unsigned_vector m_tracked_stack;
|
||||
unsigned_vector m_ext2var;
|
||||
unsigned_vector m_var2ext;
|
||||
unsigned_vector m_roots_lim, m_tracked_lim, m_units_lim;
|
||||
void add_literal(literal lit);
|
||||
|
||||
bool_var ext2var(bool_var v);
|
||||
|
|
42
src/util/lim_vector.h
Normal file
42
src/util/lim_vector.h
Normal file
|
@ -0,0 +1,42 @@
|
|||
/*++
|
||||
Copyright (c) 2020 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
lim_vector.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Vector that restores during backtracking.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2020-29-09
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "util/vector.h"
|
||||
|
||||
template<typename T>
|
||||
class lim_svector : public svector<T> {
|
||||
unsigned_vector m_lim;
|
||||
public:
|
||||
lim_svector() {}
|
||||
|
||||
void push_scope() {
|
||||
m_lim.push_back(size());
|
||||
}
|
||||
|
||||
void pop_scope(unsigned num_scopes) {
|
||||
SASSERT(num_scopes > 0);
|
||||
unsigned old_sz = m_lim.size() - num_scopes;
|
||||
shrink(m_lim[old_sz]);
|
||||
m_lim.shrink(old_sz);
|
||||
}
|
||||
|
||||
unsigned num_scopes() const { return m_lim.size(); }
|
||||
|
||||
unsigned old_size(unsigned n) const { return m_lim[m_lim.size() - n]; }
|
||||
};
|
||||
|
Loading…
Reference in a new issue