3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00

updated notes, fixes to dual solver

This commit is contained in:
Nikolaj Bjorner 2020-09-29 03:29:33 -07:00
parent ef6542823b
commit a216bee647
5 changed files with 142 additions and 54 deletions

View file

@ -19,36 +19,63 @@ Each node has a congruence closure root, cg.
cg is set to the representative in the cc table
(first insertion of congruent node).
Each node n has a set of parents, denoted n.P.
The table maintains the invariant
- p.cg = find(p)
set r2 to the root of r1:
Merge sets r2 to the root of r1
(r2 and r1 are both considered roots before the merge).
The operation Unmerge reverses the effect of Merge.
Merge: Erase:
for each p r1.P such that p.cg == p:
erase from table
Update root:
r1.root := r2
Insert:
for each p in r1.P:
Merge(r1, r2)
-------------
Erase: for each p in r1.P such that p.cg == p:
erase from table
Update root: r1.root := r2
Insert: for each p in r1.P:
p.cg = insert p in table
if p.cg == p:
append p to r2.P
else
add p.cg, p to worklist
add (p.cg == p) to 'to_merge'
Unmerge: Erase:
for each p in added nodes:
erase p from table
Revert root:
r1.root := r1
Insert:
for each p in r1.P:
insert p if n was cc root before merge
Unmerge(r1, r2)
---------------
Erase: for each p in r2.P added from r1.P:
erase p from table
Revert root: r1.root := r1
Insert: for each p in r1.P:
insert p if n was cc root before merge
condition for being cc root before merge:
p->cg == p
congruent(p, p->cg)
p.cg == p or !congruent(p, p.cg)
congruent(p,q) := roots of p.children = roots of q.children
congruent(p,q) := roots of p.args = roots of q.args
The algorithm orients r1, r2 such that class_size(r1) <= class_size(r2).
With N nodes, there can be at most N calls to Merge.
Each of the calls traverse r1.P from the smaller class size.
Label a merge tree with nodes from the larger class size.
In other words, if Merge(r2,r1); Merge(r3,r1) is a sequence
of calls where r1 is selected root, then the merge tree is
r1
/ \
r1 r3
\
r2
Note that parent lists are re-examined only for nodes that join
from right subtrees (with lesser class sizes).
Claim: a node participates in a path along right adjoining sub-trees at most O(log(N)) times.
Justification (very roughly): the size of a right adjoining subtree can at most
be equal to the left adjoining sub-tree. This entails a logarithmic number of
re-examinations from the right adjoining tree.
(TBD check how Hopcroft's main argument is phrased)
The parent lists are bounded by the maximal arity of functions.
Example:
@ -491,14 +518,9 @@ namespace euf {
bool egraph::propagate() {
SASSERT(m_new_lits_qhead <= m_new_lits.size());
SASSERT(m_num_scopes == 0 || m_to_merge.empty());
unsigned head = 0, tail = m_to_merge.size();
while (head < tail && m.limit().inc() && !inconsistent()) {
for (unsigned i = head; i < tail && !inconsistent(); ++i) {
auto const& w = m_to_merge[i];
merge(w.a, w.b, justification::congruence(w.commutativity));
}
head = tail;
tail = m_to_merge.size();
for (unsigned i = 0; i < m_to_merge.size() && m_limit().inc() && !inconsistent(); ++i) {
auto const& w = m_to_merge[i];
merge(w.a, w.b, justification::congruence(w.commutativity));
}
m_to_merge.reset();
force_push();

View file

@ -13,7 +13,35 @@ Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
Notes:
Basic:
For each row a*x + b = 0, where fixed variables are replaced by b,
check if gcd(a) divides b
Extended:
For each row a*x + b*y + c = 0, where
- the coefficients in a are all the same and smaller than the coefficients in b
- the variables x are bounded
Let l := a*lb(x), u := a*ub(x)
- that is the lower and upper bounds for a*x based on the bounds for x.
let ll := ceil (l / gcd(b,c))
uu := floor (u / gcd(b,c))
If uu > ll, there is no space to find solutions for x within the bounds
Accumulative:
For each row a*x + b*y - c = 0, where |a| = 1 < |b|, and x is a single variable,
(it could also be a group of variables) accumulate constraint x = c mod b
If there are row gcd constraints, such that
- x = c1 mod b1, from rows R1
- x = c2 mod b2, from rows R2
- If c1 mod gcd(b1,b2) != c2 mod gcd(b1,b2) report conflict for the rows involved.
- Otherwise accumulate x = (c1 * lcm(b1,b2) / b2) + (c2 * lcm(b1,b2) / b1) mod lcm(b,b2)
and accumulate the rows from R1, R2
--*/
#include "math/lp/int_solver.h"
@ -28,15 +56,7 @@ namespace lp {
if (!lia.settings().int_run_gcd_test())
return false;
#if 1
return true;
#else
if (m_delay == 0) {
return true;
}
--m_delay;
return false;
#endif
}
lia_move int_gcd_test::operator()() {

View file

@ -24,22 +24,19 @@ namespace sat {
void dual_solver::push() {
m_solver.user_push();
m_roots_lim.push_back(m_roots.size());
m_tracked_lim.push_back(m_tracked_stack.size());
m_units_lim.push_back(m_units.size());
m_roots.push_scope();
m_tracked_vars.push_scope();
m_units.push_scope();
}
void dual_solver::pop(unsigned num_scopes) {
m_solver.user_pop(num_scopes);
unsigned old_sz = m_roots_lim.size() - num_scopes;
for (unsigned v = m_tracked_stack.size(); v-- > m_tracked_lim[old_sz]; )
m_is_tracked[v] = false;
m_roots.shrink(m_roots_lim[old_sz]);
m_tracked_stack.shrink(m_tracked_lim[old_sz]);
m_units.shrink(m_units_lim[old_sz]);
m_roots_lim.shrink(old_sz);
m_tracked_lim.shrink(old_sz);
m_units_lim.shrink(old_sz);
unsigned old_sz = m_tracked_vars.old_size(num_scopes);
for (unsigned i = m_tracked_vars.size(); i-- > old_sz; )
m_is_tracked[m_tracked_vars[i]] = false;
m_units.pop_scope(num_scopes);
m_roots.pop_scope(num_scopes);
m_tracked_vars.pop_scope(num_scopes);
}
bool_var dual_solver::ext2var(bool_var v) {
@ -56,7 +53,7 @@ namespace sat {
v = ext2var(v);
if (!m_is_tracked.get(v, false)) {
m_is_tracked.setx(v, true, false);
m_tracked_stack.push_back(v);
m_tracked_vars.push_back(v);
}
}
@ -69,6 +66,10 @@ namespace sat {
}
void dual_solver::add_root(unsigned sz, literal const* clause) {
if (sz == 1) {
m_units.push_back(clause[0]);
return;
}
literal root(m_solver.mk_var(), false);
for (unsigned i = 0; i < sz; ++i)
m_solver.mk_clause(root, ~ext2lit(clause[i]), status::input());
@ -86,7 +87,7 @@ namespace sat {
m_solver.user_push();
m_solver.add_clause(m_roots.size(), m_roots.c_ptr(), status::input());
m_lits.reset();
for (bool_var v : m_tracked_stack)
for (bool_var v : m_tracked_vars)
m_lits.push_back(literal(v, l_false == s.value(m_var2ext[v])));
lbool is_sat = m_solver.check(m_lits.size(), m_lits.c_ptr());
m_core.reset();

View file

@ -8,6 +8,8 @@ Module Name:
Abstract:
Solver for obtaining implicant.
Based on an idea by Armin Biere to use dual propagation
for representation of negated goal.
Author:
@ -15,18 +17,19 @@ Author:
--*/
#pragma once
#include "util/lim_vector.h"
#include "sat/sat_solver.h"
namespace sat {
class dual_solver {
solver m_solver;
literal_vector m_roots, m_lits, m_core, m_units;
lim_svector<literal> m_units, m_roots;
lim_svector<bool_var> m_tracked_vars;
literal_vector m_lits, m_core;
bool_var_vector m_is_tracked;
unsigned_vector m_tracked_stack;
unsigned_vector m_ext2var;
unsigned_vector m_var2ext;
unsigned_vector m_roots_lim, m_tracked_lim, m_units_lim;
void add_literal(literal lit);
bool_var ext2var(bool_var v);

42
src/util/lim_vector.h Normal file
View file

@ -0,0 +1,42 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
lim_vector.h
Abstract:
Vector that restores during backtracking.
Author:
Nikolaj Bjorner (nbjorner) 2020-29-09
--*/
#pragma once
#include "util/vector.h"
template<typename T>
class lim_svector : public svector<T> {
unsigned_vector m_lim;
public:
lim_svector() {}
void push_scope() {
m_lim.push_back(size());
}
void pop_scope(unsigned num_scopes) {
SASSERT(num_scopes > 0);
unsigned old_sz = m_lim.size() - num_scopes;
shrink(m_lim[old_sz]);
m_lim.shrink(old_sz);
}
unsigned num_scopes() const { return m_lim.size(); }
unsigned old_size(unsigned n) const { return m_lim[m_lim.size() - n]; }
};