3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

fix build

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2024-08-30 17:34:54 -07:00
parent 01a419546f
commit a1bcf136a6
2 changed files with 527 additions and 92 deletions

View file

@ -99,7 +99,6 @@ namespace smt {
m_model_generator->set_context(this);
}
::
/**
\brief retrieve flag for when cancelation is possible.
*/

View file

@ -45,120 +45,556 @@ Revision History:
template <typename T>
using std_vector = std::vector<T, std_allocator<T>>;
#if 0
#if 1
// portability guide to std::vector.
// memory allocator should be based on memory_allocator<T>
//
// template<typename T>
// struct memory_allocator {
// typedef T value_type;
// etc (interface seems to change between C++17, 20 versions)
// };
//
template<typename T, bool CallDestructors = true, typename SZ = unsigned>
class vector {
SZ m_capacity = 0;
SZ m_size = 0;
T* m_data = nullptr;
// Note:
// polynomial.h contains declaration
// typedef svector<numeral> numeral_vector;
// it is crucial that it uses svector and not vector. The destructors on elements of the numeral vector are handled outside.
// Numeral gets instantiated by mpz and mpz does not support copy constructors.
// porting svector to vector is therefore blocked on the semantics of svector being
// copy-constructor free.
//
void destroy_elements() {
std::destroy_n(m_data, size());
}
#include <vector>
void free_memory() {
memory::deallocate(m_data);
m_data = nullptr;
}
void expand_vector() {
// ensure that the data is sufficiently aligned
// better fail to compile than produce code that may crash
if (m_data == nullptr) {
m_capacity = 2;
m_size = 0;
m_data = reinterpret_cast<T*>(memory::allocate(sizeof(T) * m_capacity));
}
else {
static_assert(std::is_nothrow_move_constructible<T>::value);
SASSERT(capacity() > 0);
SZ old_capacity = m_capacity;
SZ new_capacity = (3 * old_capacity + 1) >> 1;
if (new_capacity <= old_capacity) {
throw default_exception("Overflow encountered when expanding vector");
}
if (std::is_trivially_copyable<T>::value) {
m_data = (T*)memory::reallocate(m_data, new_capacity);
}
else {
T* new_data = (T*)memory::allocate(new_capacity);
auto old_size = size();
std::uninitialized_move_n(m_data, old_size, new_data);
destroy();
m_data = new_data;
}
m_capacity = new_capacity;
}
}
void copy_core(vector const& source) {
SASSERT(!m_data);
SZ size = source.size();
SZ capacity = source.capacity();
m_data = reinterpret_cast<T*>(memory::allocate(sizeof(T) * capacity));
m_capacity = capacity;
m_size = size;
std::uninitialized_copy(source.begin(), source.end(), begin());
}
void destroy() {
if (m_data) {
if (CallDestructors)
destroy_elements();
free_memory();
}
}
template<typename T, bool CallDestructors=true, typename SZ = unsigned>
class vector : public std::vector<T> {
public:
typedef T data_t;
typedef typename std::vector<T>::iterator iterator;
typedef T* iterator;
typedef const T* const_iterator;
vector() = default;
vector() {}
vector(SZ s) {
// TODO resize(s, T());
}
vector(SZ s, T const& e) {
// TODO resize(s, e);
init(s);
}
vector(SZ s, T const* e) {
// TODO
}
void reset() { clear(); }
void finalize() { clear(); }
void reserve(SZ s, T const & d) {
if (s > size())
resize(s, d);
}
void reserve(SZ s) {
}
void setx(SZ idx, T const & elem, T const & d) {
if (idx >= size())
resize(idx+1, d);
(*this)[idx] = elem;
}
T const & get(SZ idx, T const & d) const {
if (idx >= size()) {
return d;
void init(SZ s) {
SASSERT(m_data == nullptr);
if (s == 0) {
return;
}
return (*this)[idx];
}
void insert(T const & elem) {
push_back(elem);
}
void erase(iterator pos) {
// TODO
}
void erase(T const& e) {
// TODO
}
void fill(T const & elem) {
for (auto& e : *this)
e = elem;
}
void fill(unsigned sz, T const & elem) {
resize(sz);
fill(elem);
}
void shrink(SZ s) {
resize(s);
}
void reverse() {
SZ sz = size();
for (SZ i = 0; i < sz/2; ++i) {
std::swap((*this)[i], (*this)[sz-i-1]);
m_data = reinterpret_cast<T*>(memory::allocate(sizeof(T) * s));
m_capacity = s;
m_size = s;
// initialize elements
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
new (it) T();
}
}
void append(vector<T, CallDestructors> const & other) {
for(SZ i = 0; i < other.size(); ++i) {
push_back(other[i]);
vector(SZ s, T const& elem) {
resize(s, elem);
}
vector(vector const& source) {
if (source.m_data) {
copy_core(source);
}
SASSERT(size() == source.size());
}
vector(vector&& other) noexcept {
std::swap(m_data, other.m_data);
}
vector(SZ s, T const* data) {
for (SZ i = 0; i < s; i++) {
push_back(data[i]);
}
}
void append(unsigned n, T const* elems) {
// TODO
~vector() {
destroy();
}
bool contains(T const & elem) const {
for (auto const& e : *this)
if (e == elem)
void finalize() {
destroy();
m_data = nullptr;
}
bool operator==(vector const& other) const {
if (this == &other) {
return true;
}
if (size() != other.size())
return false;
for (unsigned i = 0; i < size(); i++) {
if ((*this)[i] != other[i])
return false;
}
return true;
}
bool operator!=(vector const& other) const {
return !(*this == other);
}
vector& operator=(vector const& source) {
if (this == &source) {
return *this;
}
destroy();
if (source.m_data)
copy_core(source);
return *this;
}
vector& operator=(vector&& source) noexcept {
if (this == &source) {
return *this;
}
destroy();
std::swap(m_data, source.m_data);
return *this;
}
bool containsp(std::function<bool(T)>& predicate) const {
for (auto const& t : *this)
if (predicate(t))
return true;
return false;
}
};
/**
* retain elements that satisfy predicate. aka 'where'.
*/
vector filter_pure(std::function<bool(T)>& predicate) const {
vector result;
for (auto& t : *this)
if (predicate(t))
result.push_back(t);
return result;
}
vector& filter_update(std::function<bool(T)>& predicate) {
unsigned j = 0;
for (auto& t : *this)
if (predicate(t))
set(j++, t);
shrink(j);
return *this;
}
/**
* update elements using f, aka 'select'
*/
template <typename S>
vector<S> map_pure(std::function<S(T)>& f) const {
vector<S> result;
for (auto& t : *this)
result.push_back(f(t));
return result;
}
vector& map_update(std::function<T(T)>& f) {
unsigned j = 0;
for (auto& t : *this)
set(j++, f(t));
return *this;
}
void reset() {
if (m_data) {
if (CallDestructors) {
destroy_elements();
}
m_size = 0;
}
}
void clear() { reset(); }
bool empty() const {
return m_data == nullptr || m_size == 0;
}
SZ size() const {
if (m_data == nullptr) {
return 0;
}
return m_size;
}
SZ capacity() const {
if (m_data == nullptr) {
return 0;
}
return m_capacity;
}
iterator begin() {
return m_data;
}
iterator end() {
return m_data + size();
}
const_iterator begin() const {
return m_data;
}
const_iterator end() const {
return m_data + size();
}
class reverse_iterator {
T* v;
public:
reverse_iterator(T* v) :v(v) {}
T operator*() { return *v; }
reverse_iterator operator++(int) {
reverse_iterator tmp = *this;
--v;
return tmp;
}
reverse_iterator& operator++() {
--v;
return *this;
}
bool operator==(reverse_iterator const& other) const {
return other.v == v;
}
bool operator!=(reverse_iterator const& other) const {
return other.v != v;
}
};
reverse_iterator rbegin() { return reverse_iterator(end() - 1); }
reverse_iterator rend() { return reverse_iterator(begin() - 1); }
void set_end(iterator it) {
if (m_data) {
SZ new_sz = static_cast<SZ>(it - m_data);
if (CallDestructors) {
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
m_size = new_sz;
}
else {
SASSERT(it == 0);
}
}
T& operator[](SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const& operator[](SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
T& get(SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const& get(SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
void set(SZ idx, T const& val) {
SASSERT(idx < size());
m_data[idx] = val;
}
void set(SZ idx, T&& val) {
SASSERT(idx < size());
m_data[idx] = std::move(val);
}
T& back() {
SASSERT(!empty());
return operator[](size() - 1);
}
T const& back() const {
SASSERT(!empty());
return operator[](size() - 1);
}
void pop_back() {
SASSERT(!empty());
if (CallDestructors) {
back().~T();
}
m_size--;
}
vector& push_back(T const& elem) {
if (m_data == nullptr || m_size == m_capacity) {
expand_vector();
}
new (m_data + m_size) T(elem);
m_size++;
return *this;
}
template <typename ...Args>
vector& push_back(T const& elem, T elem2, Args ... elems) {
push_back(elem);
push_back(elem2, elems ...);
return *this;
}
vector& push_back(T&& elem) {
if (m_data == nullptr || m_size == m_capacity) {
expand_vector();
}
new (m_data + m_size) T(std::move(elem));
++m_size;
return *this;
}
void insert(T const& elem) {
push_back(elem);
}
void erase(iterator pos) {
SASSERT(pos >= begin() && pos < end());
iterator prev = pos;
++pos;
iterator e = end();
for (; pos != e; ++pos, ++prev) {
*prev = std::move(*pos);
}
pop_back();
}
void erase(T const& elem) {
iterator it = std::find(begin(), end(), elem);
if (it != end()) {
erase(it);
}
}
/** Erase all elements that satisfy the given predicate. Returns the number of erased elements. */
template <typename UnaryPredicate>
SZ erase_if(UnaryPredicate should_erase) {
iterator i = begin();
iterator const e = end();
for (iterator j = begin(); j != e; ++j)
if (!should_erase(std::as_const(*j)))
*(i++) = std::move(*j);
SZ const count = e - i;
SASSERT_EQ(i - begin(), size() - count);
shrink(size() - count);
return count;
}
void shrink(SZ s) {
if (m_data) {
SASSERT(s <= m_size);
if (CallDestructors) {
iterator it = m_data + s;
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
m_size = s;
}
else {
SASSERT(s == 0);
}
}
template<typename Args>
void resize(SZ s, Args args...) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
m_size = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T(std::forward<Args>(args));
}
}
void resize(SZ s) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
m_size = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T();
}
}
void append(vector<T, CallDestructors> const& other) {
for (SZ i = 0; i < other.size(); ++i) {
push_back(other[i]);
}
}
void append(SZ sz, T const* data) {
for (SZ i = 0; i < sz; ++i) {
push_back(data[i]);
}
}
void init(vector<T, CallDestructors> const& other) {
if (this == &other)
return;
reset();
append(other);
}
void init(SZ sz, T const* data) {
reset();
append(sz, data);
}
T* data() const {
return m_data;
}
void swap(vector& other) noexcept {
std::swap(m_data, other.m_data);
}
void reverse() {
SZ sz = size();
for (SZ i = 0; i < sz / 2; ++i) {
std::swap(m_data[i], m_data[sz - i - 1]);
}
}
void fill(T const& elem) {
iterator i = begin();
iterator e = end();
for (; i != e; ++i) {
*i = elem;
}
}
void fill(unsigned sz, T const& elem) {
resize(sz);
fill(elem);
}
bool contains(T const& elem) const {
const_iterator it = begin();
const_iterator e = end();
for (; it != e; ++it) {
if (*it == elem) {
return true;
}
}
return false;
}
// set pos idx with elem. If idx >= size, then expand using default.
void setx(SZ idx, T const& elem, T const& d) {
if (idx >= size()) {
resize(idx + 1, d);
}
m_data[idx] = elem;
}
// return element at position idx, if idx >= size, then return default
T const& get(SZ idx, T const& d) const {
if (idx >= size()) {
return d;
}
return m_data[idx];
}
void reserve(SZ s, T const& d) {
if (s > size())
resize(s, d);
}
void reserve(SZ s) {
if (s > size())
resize(s);
}
struct scoped_stack {
vector& s;
unsigned sz;
scoped_stack(vector& s) :s(s), sz(s.size()) {}
~scoped_stack() { s.shrink(sz); }
};
};
#else