mirror of
https://github.com/Z3Prover/z3
synced 2025-08-08 20:21:23 +00:00
adding local optimization to qsat
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
271b56aa1b
commit
a1aa166ef5
6 changed files with 414 additions and 58 deletions
|
@ -20,6 +20,7 @@ Revision History:
|
|||
--*/
|
||||
|
||||
#include "qe_arith.h"
|
||||
#include "qe_mbp.h"
|
||||
#include "ast_util.h"
|
||||
#include "arith_decl_plugin.h"
|
||||
#include "ast_pp.h"
|
||||
|
@ -49,14 +50,185 @@ namespace qe {
|
|||
}
|
||||
return is_divides(a, e1, e2, k, t) || is_divides(a, e2, e1, k, t);
|
||||
}
|
||||
|
||||
enum ineq_type {
|
||||
t_eq,
|
||||
t_lt,
|
||||
t_le
|
||||
};
|
||||
|
||||
struct tableau {
|
||||
struct var {
|
||||
unsigned m_id;
|
||||
rational m_coeff;
|
||||
var(unsigned id, rational const& c): m_id(id), m_coeff(c) {}
|
||||
};
|
||||
struct row {
|
||||
vector<var> m_vars; // variables with coefficients
|
||||
rational m_coeff; // constant in inequality
|
||||
ineq_type m_type; // inequality type
|
||||
rational m_value; // value of m_vars + m_coeff under interpretation of m_var2value.
|
||||
bool m_alive; // rows can be marked dead if they have been processed.
|
||||
};
|
||||
vector<row> m_rows;
|
||||
vector<unsigned_vector> m_var2rows;
|
||||
vector<rational> m_var2value;
|
||||
row m_objective;
|
||||
|
||||
void invariant() {
|
||||
// variables in each row are sorted.
|
||||
}
|
||||
|
||||
mbp::bound_type maximize(rational& value) {
|
||||
// tbd
|
||||
return mbp::unbounded;
|
||||
}
|
||||
|
||||
rational get_coefficient(unsigned row_id, unsigned var_id) {
|
||||
row const& r = m_rows[row_id];
|
||||
unsigned lo = 0, hi = r.m_vars.size();
|
||||
while (lo < hi) {
|
||||
unsigned mid = lo + (hi - lo)/2;
|
||||
SASSERT(mid < hi);
|
||||
unsigned id = r.m_vars[mid].m_id;
|
||||
if (id == var_id) {
|
||||
lo = mid;
|
||||
break;
|
||||
}
|
||||
if (id < var_id) {
|
||||
lo = mid + 1;
|
||||
}
|
||||
else {
|
||||
hi = mid - 1;
|
||||
}
|
||||
}
|
||||
unsigned id = r.m_vars[lo].m_id;
|
||||
if (id == var_id) {
|
||||
return r.m_vars[lo].m_coeff;
|
||||
}
|
||||
else {
|
||||
return rational::zero();
|
||||
}
|
||||
}
|
||||
|
||||
void resolve(unsigned row_id1, unsigned row_id2, unsigned x) {
|
||||
// row1 is of the form a1*x + t1 <~ 0
|
||||
// row2 is of the form a2*x + t2 <~ 0
|
||||
// assume that a1, a2 have the same sign.
|
||||
// if a1 is positive, then val(t1*a2/a1) <= val(t2*a1/a2)
|
||||
// replace row2 with the new inequality of the form:
|
||||
// t1 - a1*t2/a2 <~~ 0
|
||||
// where <~~ is strict if either <~1 or <~2 is strict.
|
||||
// if a1 is negative, then ....
|
||||
//
|
||||
}
|
||||
|
||||
void multiply(rational const& c, unsigned row_id) {
|
||||
if (c.is_one()) {
|
||||
return;
|
||||
}
|
||||
row& r = m_rows[row_id];
|
||||
SASSERT(r.m_alive);
|
||||
for (unsigned i = 0; i < r.m_vars.size(); ++i) {
|
||||
r.m_vars[i].m_coeff *= c;
|
||||
}
|
||||
r.m_coeff *= c;
|
||||
r.m_value *= c;
|
||||
}
|
||||
|
||||
// subtract row2 from row1, store result in row2
|
||||
|
||||
vector<var> m_new_vars;
|
||||
|
||||
void subtract(unsigned row_id1, unsigned row_id2) {
|
||||
m_new_vars.reset();
|
||||
row const& r1 = m_rows[row_id1];
|
||||
row& r2 = m_rows[row_id2];
|
||||
unsigned i = 0, j = 0;
|
||||
for(; i < r1.m_vars.size() || j < r2.m_vars.size(); ) {
|
||||
if (j == r2.m_vars.size()) {
|
||||
for (; i < r1.m_vars.size(); ++i) {
|
||||
m_new_vars.push_back(r1.m_vars[i]);
|
||||
m_var2rows[r1.m_vars[i].m_id].push_back(row_id2);
|
||||
}
|
||||
}
|
||||
else if (i == r1.m_vars.size()) {
|
||||
for (; j < r2.m_vars.size(); ++j) {
|
||||
m_new_vars.push_back(r2.m_vars[j]);
|
||||
m_new_vars.back().m_coeff.neg();
|
||||
}
|
||||
}
|
||||
else {
|
||||
unsigned v1 = r1.m_vars[i].m_id;
|
||||
unsigned v2 = r2.m_vars[j].m_id;
|
||||
if (v1 == v2) {
|
||||
m_new_vars.push_back(r1.m_vars[i]);
|
||||
m_new_vars.back().m_coeff -= r2.m_vars[j].m_coeff;
|
||||
++i;
|
||||
++j;
|
||||
if (m_new_vars.back().m_coeff.is_zero()) {
|
||||
m_new_vars.pop_back();
|
||||
}
|
||||
}
|
||||
else if (v1 < v2) {
|
||||
m_new_vars.push_back(r1.m_vars[i]);
|
||||
m_var2rows[r1.m_vars[i].m_id].push_back(row_id2);
|
||||
++i;
|
||||
}
|
||||
else {
|
||||
m_new_vars.push_back(r2.m_vars[j]);
|
||||
m_new_vars.back().m_coeff.neg();
|
||||
++j;
|
||||
}
|
||||
}
|
||||
}
|
||||
r2.m_coeff.neg();
|
||||
r2.m_coeff += r1.m_coeff;
|
||||
r2.m_vars.swap(m_new_vars);
|
||||
r2.m_value.neg();
|
||||
r2.m_value += r1.m_value;
|
||||
if (r1.m_type == t_lt) {
|
||||
r2.m_type = t_lt;
|
||||
}
|
||||
}
|
||||
|
||||
void display(std::ostream& out) const {
|
||||
for (unsigned i = 0; i < m_rows.size(); ++i) {
|
||||
display(out, m_rows[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void display(std::ostream& out, row const& r) const {
|
||||
vector<var> const& vars = r.m_vars;
|
||||
for (unsigned i = 0; i < vars.size(); ++i) {
|
||||
if (i > 0 && vars[i].m_coeff.is_pos()) {
|
||||
out << "+ ";
|
||||
}
|
||||
out << vars[i].m_coeff << "* v" << vars[i].m_id << " ";
|
||||
}
|
||||
out << r.m_coeff;
|
||||
switch (r.m_type) {
|
||||
case t_eq:
|
||||
out << " = 0\n";
|
||||
break;
|
||||
case t_lt:
|
||||
out << " < 0\n";
|
||||
break;
|
||||
case t_le:
|
||||
out << " <= 0\n";
|
||||
break;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#if 0
|
||||
obj_map<expr, unsigned> m_expr2var;
|
||||
ptr_vector<expr> m_var2expr;
|
||||
|
||||
#endif
|
||||
|
||||
struct arith_project_plugin::imp {
|
||||
|
||||
enum ineq_type {
|
||||
t_eq,
|
||||
t_lt,
|
||||
t_le
|
||||
};
|
||||
ast_manager& m;
|
||||
arith_util a;
|
||||
th_rewriter m_rw;
|
||||
|
@ -84,6 +256,62 @@ namespace qe {
|
|||
}
|
||||
}
|
||||
|
||||
void insert_mul(expr* x, rational const& v, obj_map<expr, rational>& ts)
|
||||
{
|
||||
rational w;
|
||||
if (ts.find(x, w)) {
|
||||
ts.insert(x, w + v);
|
||||
}
|
||||
else {
|
||||
ts.insert(x, v);
|
||||
}
|
||||
}
|
||||
|
||||
void linearize(model& model, rational const& mul, expr* t, rational& c, obj_map<expr, rational>& ts) {
|
||||
expr* t1, *t2, *t3;
|
||||
rational mul1;
|
||||
expr_ref val(m);
|
||||
if (a.is_mul(t, t1, t2) && is_numeral(model, t1, mul1)) {
|
||||
linearize(model, mul* mul1, t2, c, ts);
|
||||
}
|
||||
else if (a.is_mul(t, t1, t2) && is_numeral(model, t2, mul1)) {
|
||||
linearize(model, mul* mul1, t1, c, ts);
|
||||
}
|
||||
else if (a.is_add(t)) {
|
||||
app* ap = to_app(t);
|
||||
for (unsigned i = 0; i < ap->get_num_args(); ++i) {
|
||||
linearize(model, mul, ap->get_arg(i), c, ts);
|
||||
}
|
||||
}
|
||||
else if (a.is_sub(t, t1, t2)) {
|
||||
linearize(model, mul, t1, c, ts);
|
||||
linearize(model, -mul, t2, c, ts);
|
||||
}
|
||||
else if (a.is_uminus(t, t1)) {
|
||||
linearize(model, -mul, t1, c, ts);
|
||||
}
|
||||
else if (a.is_numeral(t, mul1)) {
|
||||
c += mul*mul1;
|
||||
}
|
||||
else if (extract_mod(model, t, val)) {
|
||||
insert_mul(val, mul, ts);
|
||||
}
|
||||
else if (m.is_ite(t, t1, t2, t3)) {
|
||||
VERIFY(model.eval(t1, val));
|
||||
SASSERT(m.is_true(val) || m.is_false(val));
|
||||
TRACE("qe", tout << mk_pp(t1, m) << " := " << val << "\n";);
|
||||
if (m.is_true(val)) {
|
||||
linearize(model, mul, t2, c, ts);
|
||||
}
|
||||
else {
|
||||
linearize(model, mul, t3, c, ts);
|
||||
}
|
||||
}
|
||||
else {
|
||||
insert_mul(t, mul, ts);
|
||||
}
|
||||
}
|
||||
|
||||
void is_linear(model& model, rational const& mul, expr* t, rational& c, expr_ref_vector& ts) {
|
||||
expr* t1, *t2, *t3;
|
||||
rational mul1;
|
||||
|
@ -853,6 +1081,19 @@ namespace qe {
|
|||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
mbp::bound_type maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
|
||||
obj_map<expr, rational> ts;
|
||||
rational c(0), mul(1);
|
||||
linearize(mdl, mul, t, c, ts);
|
||||
|
||||
|
||||
// pick variables one by one from ts.
|
||||
// m_var = alloc(contains_app, m, v);
|
||||
// perform upper or lower projection depending on sign of v.
|
||||
//
|
||||
return mbp::unbounded;
|
||||
}
|
||||
};
|
||||
|
||||
arith_project_plugin::arith_project_plugin(ast_manager& m) {
|
||||
|
@ -875,6 +1116,10 @@ namespace qe {
|
|||
return m_imp->a.get_family_id();
|
||||
}
|
||||
|
||||
mbp::bound_type arith_project_plugin::maximize(expr_ref_vector const& fmls, model& mdl, app* t, expr_ref& value, expr_ref& bound) {
|
||||
return m_imp->maximize(fmls, mdl, t, value, bound);
|
||||
}
|
||||
|
||||
bool arith_project(model& model, app* var, expr_ref_vector& lits) {
|
||||
ast_manager& m = lits.get_manager();
|
||||
arith_project_plugin ap(m);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue