mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
rename monomial to monic
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
cc5a12c5c7
commit
a0bdb8135d
|
@ -26,29 +26,29 @@
|
|||
namespace nla {
|
||||
|
||||
|
||||
void emonomials::inc_visited() const {
|
||||
void emonics::inc_visited() const {
|
||||
++m_visited;
|
||||
if (m_visited == 0) {
|
||||
for (auto& svt : m_monomials) {
|
||||
for (auto& svt : m_monics) {
|
||||
svt.visited() = 0;
|
||||
}
|
||||
++m_visited;
|
||||
}
|
||||
}
|
||||
|
||||
void emonomials::push() {
|
||||
void emonics::push() {
|
||||
m_u_f_stack.push_scope();
|
||||
m_lim.push_back(m_monomials.size());
|
||||
m_lim.push_back(m_monics.size());
|
||||
m_region.push_scope();
|
||||
m_ve.push();
|
||||
SASSERT(monomials_are_canonized());
|
||||
SASSERT(monics_are_canonized());
|
||||
}
|
||||
|
||||
void emonomials::pop(unsigned n) {
|
||||
void emonics::pop(unsigned n) {
|
||||
m_ve.pop(n);
|
||||
unsigned old_sz = m_lim[m_lim.size() - n];
|
||||
for (unsigned i = m_monomials.size(); i-- > old_sz; ) {
|
||||
monomial & m = m_monomials[i];
|
||||
for (unsigned i = m_monics.size(); i-- > old_sz; ) {
|
||||
monic & m = m_monics[i];
|
||||
remove_cg_mon(m);
|
||||
m_var2index[m.var()] = UINT_MAX;
|
||||
lpvar last_var = UINT_MAX;
|
||||
|
@ -59,15 +59,15 @@ void emonomials::pop(unsigned n) {
|
|||
}
|
||||
}
|
||||
}
|
||||
m_monomials.shrink(old_sz);
|
||||
m_monomials.shrink(old_sz);
|
||||
m_monics.shrink(old_sz);
|
||||
m_monics.shrink(old_sz);
|
||||
m_region.pop_scope(n);
|
||||
m_lim.shrink(m_lim.size() - n);
|
||||
SASSERT(monomials_are_canonized());
|
||||
SASSERT(monics_are_canonized());
|
||||
m_u_f_stack.pop_scope(n);
|
||||
}
|
||||
|
||||
void emonomials::remove_cell(head_tail& v, unsigned mIndex) {
|
||||
void emonics::remove_cell(head_tail& v, unsigned mIndex) {
|
||||
cell*& cur_head = v.m_head;
|
||||
cell*& cur_tail = v.m_tail;
|
||||
cell* old_head = cur_head->m_next;
|
||||
|
@ -81,7 +81,7 @@ void emonomials::remove_cell(head_tail& v, unsigned mIndex) {
|
|||
}
|
||||
}
|
||||
|
||||
void emonomials::insert_cell(head_tail& v, unsigned mIndex) {
|
||||
void emonics::insert_cell(head_tail& v, unsigned mIndex) {
|
||||
cell*& cur_head = v.m_head;
|
||||
cell*& cur_tail = v.m_tail;
|
||||
cell* new_head = new (m_region) cell(mIndex, cur_head);
|
||||
|
@ -90,7 +90,7 @@ void emonomials::insert_cell(head_tail& v, unsigned mIndex) {
|
|||
cur_tail->m_next = new_head;
|
||||
}
|
||||
|
||||
void emonomials::merge_cells(head_tail& root, head_tail& other) {
|
||||
void emonics::merge_cells(head_tail& root, head_tail& other) {
|
||||
if (&root == &other) return;
|
||||
cell*& root_head = root.m_head;
|
||||
cell*& root_tail = root.m_tail;
|
||||
|
@ -111,7 +111,7 @@ void emonomials::merge_cells(head_tail& root, head_tail& other) {
|
|||
}
|
||||
}
|
||||
|
||||
void emonomials::unmerge_cells(head_tail& root, head_tail& other) {
|
||||
void emonics::unmerge_cells(head_tail& root, head_tail& other) {
|
||||
if (&root == &other) return;
|
||||
cell*& root_head = root.m_head;
|
||||
cell*& root_tail = root.m_tail;
|
||||
|
@ -131,26 +131,26 @@ void emonomials::unmerge_cells(head_tail& root, head_tail& other) {
|
|||
}
|
||||
}
|
||||
|
||||
emonomials::cell* emonomials::head(lpvar v) const {
|
||||
emonics::cell* emonics::head(lpvar v) const {
|
||||
v = m_ve.find(v).var();
|
||||
m_use_lists.reserve(v + 1);
|
||||
return m_use_lists[v].m_head;
|
||||
}
|
||||
|
||||
monomial const* emonomials::find_canonical(svector<lpvar> const& vars) const {
|
||||
monic const* emonics::find_canonical(svector<lpvar> const& vars) const {
|
||||
SASSERT(m_ve.is_root(vars));
|
||||
m_find_key = vars;
|
||||
std::sort(m_find_key.begin(), m_find_key.end());
|
||||
monomial const* result = nullptr;
|
||||
monic const* result = nullptr;
|
||||
lpvar w;
|
||||
if (m_cg_table.find(UINT_MAX, w)) {
|
||||
result = &m_monomials[m_var2index[w]];
|
||||
result = &m_monics[m_var2index[w]];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
void emonomials::remove_cg(lpvar v) {
|
||||
void emonics::remove_cg(lpvar v) {
|
||||
cell* c = m_use_lists[v].m_head;
|
||||
if (c == nullptr) {
|
||||
return;
|
||||
|
@ -160,7 +160,7 @@ void emonomials::remove_cg(lpvar v) {
|
|||
do {
|
||||
unsigned idx = c->m_index;
|
||||
c = c->m_next;
|
||||
monomial & m = m_monomials[idx];
|
||||
monic & m = m_monics[idx];
|
||||
if (!is_visited(m)) {
|
||||
set_visited(m);
|
||||
remove_cg_mon(m);
|
||||
|
@ -169,7 +169,7 @@ void emonomials::remove_cg(lpvar v) {
|
|||
while (c != first);
|
||||
}
|
||||
|
||||
void emonomials::remove_cg_mon(const monomial& m) {
|
||||
void emonics::remove_cg_mon(const monic& m) {
|
||||
lpvar u = m.var(), w;
|
||||
// equivalence class of u:
|
||||
if (m_cg_table.find(u, w)) {
|
||||
|
@ -179,13 +179,13 @@ void emonomials::remove_cg_mon(const monomial& m) {
|
|||
}
|
||||
|
||||
/**
|
||||
\brief insert canonized monomials using v into a congruence table.
|
||||
Prior to insertion, the monomials are canonized according to the current
|
||||
variable equivalences. The canonized monomials (monomial) are considered
|
||||
\brief insert canonized monics using v into a congruence table.
|
||||
Prior to insertion, the monics are canonized according to the current
|
||||
variable equivalences. The canonized monics (monic) are considered
|
||||
in the same equivalence class if they have the same set of representative
|
||||
variables. Their signs may differ.
|
||||
*/
|
||||
void emonomials::insert_cg(lpvar v) {
|
||||
void emonics::insert_cg(lpvar v) {
|
||||
cell* c = m_use_lists[v].m_head;
|
||||
|
||||
if (c == nullptr) {
|
||||
|
@ -197,7 +197,7 @@ void emonomials::insert_cg(lpvar v) {
|
|||
do {
|
||||
unsigned idx = c->m_index;
|
||||
c = c->m_next;
|
||||
monomial & m = m_monomials[idx];
|
||||
monic & m = m_monics[idx];
|
||||
if (!is_visited(m)) {
|
||||
set_visited(m);
|
||||
insert_cg_mon(m);
|
||||
|
@ -206,8 +206,8 @@ void emonomials::insert_cg(lpvar v) {
|
|||
while (c != first);
|
||||
}
|
||||
|
||||
bool emonomials::elists_are_consistent(std::unordered_map<unsigned_vector, std::unordered_set<lpvar>, hash_svector>& lists) const {
|
||||
for (auto const & m : m_monomials) {
|
||||
bool emonics::elists_are_consistent(std::unordered_map<unsigned_vector, std::unordered_set<lpvar>, hash_svector>& lists) const {
|
||||
for (auto const & m : m_monics) {
|
||||
auto it = lists.find(m.rvars());
|
||||
if (it == lists.end()) {
|
||||
std::unordered_set<lpvar> v;
|
||||
|
@ -217,12 +217,12 @@ bool emonomials::elists_are_consistent(std::unordered_map<unsigned_vector, std::
|
|||
it->second.insert(m.var());
|
||||
}
|
||||
}
|
||||
for (auto const & m : m_monomials) {
|
||||
for (auto const & m : m_monics) {
|
||||
SASSERT(is_canonized(m));
|
||||
if (!is_canonical_monomial(m.var()))
|
||||
if (!is_canonical_monic(m.var()))
|
||||
continue;
|
||||
std::unordered_set<lpvar> c;
|
||||
for (const monomial& e : enum_sign_equiv_monomials(m))
|
||||
for (const monic& e : enum_sign_equiv_monics(m))
|
||||
c.insert(e.var());
|
||||
auto it = lists.find(m.rvars());
|
||||
|
||||
|
@ -244,7 +244,7 @@ bool emonomials::elists_are_consistent(std::unordered_map<unsigned_vector, std::
|
|||
}
|
||||
|
||||
|
||||
void emonomials::insert_cg_mon(monomial & m) {
|
||||
void emonics::insert_cg_mon(monic & m) {
|
||||
do_canonize(m);
|
||||
lpvar v = m.var(), w;
|
||||
if (m_cg_table.find(v, w)) {
|
||||
|
@ -266,25 +266,25 @@ void emonomials::insert_cg_mon(monomial & m) {
|
|||
}
|
||||
}
|
||||
|
||||
void emonomials::set_visited(monomial& m) const {
|
||||
m_monomials[m_var2index[m.var()]].visited() = m_visited;
|
||||
void emonics::set_visited(monic& m) const {
|
||||
m_monics[m_var2index[m.var()]].visited() = m_visited;
|
||||
}
|
||||
|
||||
bool emonomials::is_visited(monomial const& m) const {
|
||||
return m_visited == m_monomials[m_var2index[m.var()]].visited();
|
||||
bool emonics::is_visited(monic const& m) const {
|
||||
return m_visited == m_monics[m_var2index[m.var()]].visited();
|
||||
}
|
||||
|
||||
/**
|
||||
\brief insert a new monomial.
|
||||
\brief insert a new monic.
|
||||
|
||||
Assume that the variables are canonical, that is, not equal in current
|
||||
context to another variable. The monomial is inserted into a congruence
|
||||
class of equal up-to var_eqs monomials.
|
||||
context to another variable. The monic is inserted into a congruence
|
||||
class of equal up-to var_eqs monics.
|
||||
*/
|
||||
void emonomials::add(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
void emonics::add(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
TRACE("nla_solver_mons", tout << "v = " << v << "\n";);
|
||||
unsigned idx = m_monomials.size();
|
||||
m_monomials.push_back(monomial(v, sz, vs, idx));
|
||||
unsigned idx = m_monics.size();
|
||||
m_monics.push_back(monic(v, sz, vs, idx));
|
||||
lpvar last_var = UINT_MAX;
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
lpvar w = vs[i];
|
||||
|
@ -297,10 +297,10 @@ void emonomials::add(lpvar v, unsigned sz, lpvar const* vs) {
|
|||
}
|
||||
SASSERT(m_ve.is_root(v));
|
||||
m_var2index.setx(v, idx, UINT_MAX);
|
||||
insert_cg_mon(m_monomials[idx]);
|
||||
insert_cg_mon(m_monics[idx]);
|
||||
}
|
||||
|
||||
void emonomials::do_canonize(monomial & m) const {
|
||||
void emonics::do_canonize(monic & m) const {
|
||||
m.reset_rfields();
|
||||
for (lpvar v : m.vars()) {
|
||||
m.push_rvar(m_ve.find(v));
|
||||
|
@ -308,14 +308,14 @@ void emonomials::do_canonize(monomial & m) const {
|
|||
m.sort_rvars();
|
||||
}
|
||||
|
||||
bool emonomials::is_canonized(const monomial & m) const {
|
||||
monomial mm(m);
|
||||
bool emonics::is_canonized(const monic & m) const {
|
||||
monic mm(m);
|
||||
do_canonize(mm);
|
||||
return mm.rvars() == m.rvars();
|
||||
}
|
||||
|
||||
bool emonomials:: monomials_are_canonized() const {
|
||||
for (auto & m: m_monomials) {
|
||||
bool emonics:: monics_are_canonized() const {
|
||||
for (auto & m: m_monics) {
|
||||
if (! is_canonized(m)) {
|
||||
return false;
|
||||
}
|
||||
|
@ -324,7 +324,7 @@ bool emonomials:: monomials_are_canonized() const {
|
|||
}
|
||||
|
||||
|
||||
bool emonomials::canonize_divides(monomial& m, monomial & n) const {
|
||||
bool emonics::canonize_divides(monic& m, monic & n) const {
|
||||
if (m.size() > n.size()) return false;
|
||||
unsigned ms = m.size(), ns = n.size();
|
||||
unsigned i = 0, j = 0;
|
||||
|
@ -347,18 +347,18 @@ bool emonomials::canonize_divides(monomial& m, monomial & n) const {
|
|||
}
|
||||
}
|
||||
|
||||
// yes, assume that monomials are non-empty.
|
||||
emonomials::pf_iterator::pf_iterator(emonomials const& m, monomial & mon, bool at_end):
|
||||
// yes, assume that monics are non-empty.
|
||||
emonics::pf_iterator::pf_iterator(emonics const& m, monic & mon, bool at_end):
|
||||
m_em(m), m_mon(&mon), m_it(iterator(m, m.head(mon.vars()[0]), at_end)), m_end(iterator(m, m.head(mon.vars()[0]), true)) {
|
||||
fast_forward();
|
||||
}
|
||||
|
||||
emonomials::pf_iterator::pf_iterator(emonomials const& m, lpvar v, bool at_end):
|
||||
emonics::pf_iterator::pf_iterator(emonics const& m, lpvar v, bool at_end):
|
||||
m_em(m), m_mon(nullptr), m_it(iterator(m, m.head(v), at_end)), m_end(iterator(m, m.head(v), true)) {
|
||||
fast_forward();
|
||||
}
|
||||
|
||||
void emonomials::pf_iterator::fast_forward() {
|
||||
void emonics::pf_iterator::fast_forward() {
|
||||
for (; m_it != m_end; ++m_it) {
|
||||
if (m_mon && m_mon->var() != (*m_it).var() && m_em.canonize_divides(*m_mon, *m_it) && !m_em.is_visited(*m_it)) {
|
||||
m_em.set_visited(*m_it);
|
||||
|
@ -371,11 +371,11 @@ void emonomials::pf_iterator::fast_forward() {
|
|||
}
|
||||
}
|
||||
|
||||
void emonomials::merge_eh(signed_var r2, signed_var r1, signed_var v2, signed_var v1) {
|
||||
void emonics::merge_eh(signed_var r2, signed_var r1, signed_var v2, signed_var v1) {
|
||||
// no-op
|
||||
}
|
||||
|
||||
void emonomials::after_merge_eh(signed_var r2, signed_var r1, signed_var v2, signed_var v1) {
|
||||
void emonics::after_merge_eh(signed_var r2, signed_var r1, signed_var v2, signed_var v1) {
|
||||
TRACE("nla_solver_mons", tout << r2 << " <- " << r1 << "\n";);
|
||||
if (m_ve.find(~r1) == m_ve.find(~r2)) { // the other sign has also been merged
|
||||
m_use_lists.reserve(std::max(r2.var(), r1.var()) + 1);
|
||||
|
@ -385,7 +385,7 @@ void emonomials::after_merge_eh(signed_var r2, signed_var r1, signed_var v2, sig
|
|||
}
|
||||
}
|
||||
|
||||
void emonomials::unmerge_eh(signed_var r2, signed_var r1) {
|
||||
void emonics::unmerge_eh(signed_var r2, signed_var r1) {
|
||||
TRACE("nla_solver_mons", tout << r2 << " -> " << r1 << "\n";);
|
||||
if (m_ve.find(~r1) != m_ve.find(~r2)) { // the other sign has also been unmerged
|
||||
unmerge_cells(m_use_lists[r2.var()], m_use_lists[r1.var()]);
|
||||
|
@ -393,25 +393,25 @@ void emonomials::unmerge_eh(signed_var r2, signed_var r1) {
|
|||
}
|
||||
}
|
||||
|
||||
std::ostream& emonomials::display(const core& cr, std::ostream& out) const {
|
||||
out << "monomials\n";
|
||||
std::ostream& emonics::display(const core& cr, std::ostream& out) const {
|
||||
out << "monics\n";
|
||||
unsigned idx = 0;
|
||||
for (auto const& m : m_monomials) {
|
||||
for (auto const& m : m_monics) {
|
||||
out << "m" << (idx++) << ": " << pp_mon_with_vars(cr, m) << "\n";
|
||||
}
|
||||
return display_use(out);
|
||||
}
|
||||
|
||||
std::ostream& emonomials::display(std::ostream& out) const {
|
||||
out << "monomials\n";
|
||||
std::ostream& emonics::display(std::ostream& out) const {
|
||||
out << "monics\n";
|
||||
unsigned idx = 0;
|
||||
for (auto const& m : m_monomials) {
|
||||
for (auto const& m : m_monics) {
|
||||
out << "m" << (idx++) << ": " << m << "\n";
|
||||
}
|
||||
return display_use(out);
|
||||
}
|
||||
|
||||
std::ostream& emonomials::display_use(std::ostream& out) const {
|
||||
std::ostream& emonics::display_use(std::ostream& out) const {
|
||||
out << "use lists\n";
|
||||
unsigned idx = 0;
|
||||
for (auto const& ht : m_use_lists) {
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
#pragma once
|
||||
#include "math/lp/lp_utils.h"
|
||||
#include "math/lp/var_eqs.h"
|
||||
#include "math/lp/monomial.h"
|
||||
#include "math/lp/monic.h"
|
||||
#include "util/region.h"
|
||||
|
||||
namespace nla {
|
||||
|
@ -35,9 +35,9 @@ struct hash_svector {
|
|||
|
||||
class core;
|
||||
|
||||
class emonomials {
|
||||
class emonics {
|
||||
/**
|
||||
\brief singly-lined cyclic list of monomial indices where variable occurs.
|
||||
\brief singly-lined cyclic list of monic indices where variable occurs.
|
||||
Each variable points to the head and tail of the cyclic list.
|
||||
Initially, head and tail are nullptr.
|
||||
New elements are inserted in the beginning of the list.
|
||||
|
@ -55,11 +55,11 @@ class emonomials {
|
|||
cell* m_tail;
|
||||
};
|
||||
struct hash_canonical {
|
||||
emonomials& em;
|
||||
hash_canonical(emonomials& em): em(em) {}
|
||||
emonics& em;
|
||||
hash_canonical(emonics& em): em(em) {}
|
||||
|
||||
unsigned operator()(lpvar v) const {
|
||||
auto const& vec = v != UINT_MAX? em.m_monomials[em.m_var2index[v]].rvars() : em.m_find_key;
|
||||
auto const& vec = v != UINT_MAX? em.m_monics[em.m_var2index[v]].rvars() : em.m_find_key;
|
||||
return string_hash(reinterpret_cast<char const*>(vec.c_ptr()), sizeof(lpvar)*vec.size(), 10);
|
||||
}
|
||||
};
|
||||
|
@ -67,29 +67,29 @@ class emonomials {
|
|||
|
||||
|
||||
/**
|
||||
\brief private fields used by emonomials for maintaining state of canonized monomials.
|
||||
\brief private fields used by emonics for maintaining state of canonized monics.
|
||||
*/
|
||||
|
||||
struct eq_canonical {
|
||||
emonomials& em;
|
||||
eq_canonical(emonomials& em): em(em) {}
|
||||
emonics& em;
|
||||
eq_canonical(emonics& em): em(em) {}
|
||||
bool operator()(lpvar u, lpvar v) const {
|
||||
auto const& uvec = u != UINT_MAX? em.m_monomials[em.m_var2index[u]].rvars(): em.m_find_key;
|
||||
auto const& vvec = v != UINT_MAX? em.m_monomials[em.m_var2index[v]].rvars(): em.m_find_key;
|
||||
auto const& uvec = u != UINT_MAX? em.m_monics[em.m_var2index[u]].rvars(): em.m_find_key;
|
||||
auto const& vvec = v != UINT_MAX? em.m_monics[em.m_var2index[v]].rvars(): em.m_find_key;
|
||||
return uvec == vvec;
|
||||
}
|
||||
};
|
||||
|
||||
union_find<emonomials> m_u_f;
|
||||
trail_stack<emonomials> m_u_f_stack;
|
||||
mutable svector<lpvar> m_find_key; // the key used when looking for a monomial with the specific variables
|
||||
var_eqs<emonomials>& m_ve;
|
||||
mutable vector<monomial> m_monomials; // set of monomials
|
||||
union_find<emonics> m_u_f;
|
||||
trail_stack<emonics> m_u_f_stack;
|
||||
mutable svector<lpvar> m_find_key; // the key used when looking for a monic with the specific variables
|
||||
var_eqs<emonics>& m_ve;
|
||||
mutable vector<monic> m_monics; // set of monics
|
||||
mutable unsigned_vector m_var2index; // var_mIndex -> mIndex
|
||||
unsigned_vector m_lim; // backtracking point
|
||||
mutable unsigned m_visited; // timestamp of visited monomials during pf_iterator
|
||||
mutable unsigned m_visited; // timestamp of visited monics during pf_iterator
|
||||
region m_region; // region for allocating linked lists
|
||||
mutable svector<head_tail> m_use_lists; // use list of monomials where variables occur.
|
||||
mutable svector<head_tail> m_use_lists; // use list of monics where variables occur.
|
||||
hash_canonical m_cg_hash;
|
||||
eq_canonical m_cg_eq;
|
||||
hashtable<lpvar, hash_canonical, eq_canonical> m_cg_table; // congruence (canonical) table.
|
||||
|
@ -104,23 +104,23 @@ class emonomials {
|
|||
|
||||
void remove_cg(lpvar v);
|
||||
void insert_cg(lpvar v);
|
||||
void insert_cg_mon(monomial & m);
|
||||
void remove_cg_mon(const monomial & m);
|
||||
void insert_cg_mon(monic & m);
|
||||
void remove_cg_mon(const monic & m);
|
||||
void rehash_cg(lpvar v) { remove_cg(v); insert_cg(v); }
|
||||
|
||||
void do_canonize(monomial& m) const;
|
||||
void do_canonize(monic& m) const;
|
||||
cell* head(lpvar v) const;
|
||||
void set_visited(monomial& m) const;
|
||||
bool is_visited(monomial const& m) const;
|
||||
void set_visited(monic& m) const;
|
||||
bool is_visited(monic const& m) const;
|
||||
std::ostream& display_use(std::ostream& out) const;
|
||||
public:
|
||||
unsigned number_of_monomials() const { return m_monomials.size(); }
|
||||
unsigned number_of_monics() const { return m_monics.size(); }
|
||||
/**
|
||||
\brief emonomials builds on top of var_eqs.
|
||||
push and pop on emonomials calls push/pop on var_eqs, so no
|
||||
\brief emonics builds on top of var_eqs.
|
||||
push and pop on emonics calls push/pop on var_eqs, so no
|
||||
other calls to push/pop to the var_eqs should take place.
|
||||
*/
|
||||
emonomials(var_eqs<emonomials>& ve):
|
||||
emonics(var_eqs<emonics>& ve):
|
||||
m_u_f(*this),
|
||||
m_u_f_stack(*this),
|
||||
m_ve(ve),
|
||||
|
@ -139,7 +139,7 @@ public:
|
|||
void after_merge_eh(unsigned r2, unsigned r1, unsigned v2, unsigned v1) {}
|
||||
|
||||
// this method is required by union_find
|
||||
trail_stack<emonomials> & get_trail_stack() { return m_u_f_stack; }
|
||||
trail_stack<emonics> & get_trail_stack() { return m_u_f_stack; }
|
||||
|
||||
/**
|
||||
\brief push/pop scopes.
|
||||
|
@ -150,7 +150,7 @@ public:
|
|||
void pop(unsigned n);
|
||||
|
||||
/**
|
||||
\brief create a monomial from an equality v := vs
|
||||
\brief create a monic from an equality v := vs
|
||||
*/
|
||||
void add(lpvar v, unsigned sz, lpvar const* vs);
|
||||
void add(lpvar v, svector<lpvar> const& vs) { add(v, vs.size(), vs.c_ptr()); }
|
||||
|
@ -158,44 +158,44 @@ public:
|
|||
void add(lpvar v, lpvar x, lpvar y, lpvar z) { lpvar vs[3] = { x, y, z }; add(v, 3, vs); }
|
||||
|
||||
/**
|
||||
\brief retrieve monomial corresponding to variable v from definition v := vs
|
||||
\brief retrieve monic corresponding to variable v from definition v := vs
|
||||
*/
|
||||
monomial const& operator[](lpvar v) const { return m_monomials[m_var2index[v]]; }
|
||||
monomial & operator[](lpvar v) { return m_monomials[m_var2index[v]]; }
|
||||
bool is_canonized(const monomial&) const;
|
||||
bool monomials_are_canonized() const;
|
||||
monic const& operator[](lpvar v) const { return m_monics[m_var2index[v]]; }
|
||||
monic & operator[](lpvar v) { return m_monics[m_var2index[v]]; }
|
||||
bool is_canonized(const monic&) const;
|
||||
bool monics_are_canonized() const;
|
||||
|
||||
/**
|
||||
\brief obtain the representative canonized monomial
|
||||
\brief obtain the representative canonized monic
|
||||
*/
|
||||
|
||||
monomial const& rep(monomial const& sv) const {
|
||||
monic const& rep(monic const& sv) const {
|
||||
unsigned j = -1;
|
||||
m_cg_table.find(sv.var(), j);
|
||||
return m_monomials[m_var2index[j]];
|
||||
return m_monics[m_var2index[j]];
|
||||
}
|
||||
|
||||
/**
|
||||
\brief determine if m1 divides m2 over the canonization obtained from merged variables.
|
||||
*/
|
||||
bool canonize_divides(monomial & m1, monomial& m2) const;
|
||||
bool canonize_divides(monic & m1, monic& m2) const;
|
||||
|
||||
/**
|
||||
\brief iterator over monomials that are declared.
|
||||
\brief iterator over monics that are declared.
|
||||
*/
|
||||
vector<monomial>::const_iterator begin() const { return m_monomials.begin(); }
|
||||
vector<monomial>::const_iterator end() const { return m_monomials.end(); }
|
||||
vector<monic>::const_iterator begin() const { return m_monics.begin(); }
|
||||
vector<monic>::const_iterator end() const { return m_monics.end(); }
|
||||
|
||||
/**
|
||||
\brief iterators over monomials where a variable is used
|
||||
\brief iterators over monics where a variable is used
|
||||
*/
|
||||
class iterator {
|
||||
emonomials const& m;
|
||||
emonics const& m;
|
||||
cell* m_cell;
|
||||
bool m_touched;
|
||||
public:
|
||||
iterator(emonomials const& m, cell* c, bool at_end): m(m), m_cell(c), m_touched(at_end || c == nullptr) {}
|
||||
monomial & operator*() { return m.m_monomials[m_cell->m_index]; }
|
||||
iterator(emonics const& m, cell* c, bool at_end): m(m), m_cell(c), m_touched(at_end || c == nullptr) {}
|
||||
monic & operator*() { return m.m_monics[m_cell->m_index]; }
|
||||
iterator& operator++() { m_touched = true; m_cell = m_cell->m_next; return *this; }
|
||||
iterator operator++(int) { iterator tmp = *this; ++*this; return tmp; }
|
||||
bool operator==(iterator const& other) const { return m_cell == other.m_cell && m_touched == other.m_touched; }
|
||||
|
@ -203,11 +203,11 @@ public:
|
|||
};
|
||||
|
||||
class use_list {
|
||||
emonomials const& m;
|
||||
emonics const& m;
|
||||
lpvar m_var;
|
||||
cell* head() { return m.head(m_var); }
|
||||
public:
|
||||
use_list(emonomials const& m, lpvar v): m(m), m_var(v) {}
|
||||
use_list(emonics const& m, lpvar v): m(m), m_var(v) {}
|
||||
iterator begin() { return iterator(m, head(), false); }
|
||||
iterator end() { return iterator(m, head(), true); }
|
||||
};
|
||||
|
@ -215,19 +215,19 @@ public:
|
|||
use_list get_use_list(lpvar v) const { return use_list(*this, v); }
|
||||
|
||||
/**
|
||||
\brief retrieve monomials m' where m is a proper factor of modulo current equalities.
|
||||
\brief retrieve monics m' where m is a proper factor of modulo current equalities.
|
||||
*/
|
||||
class pf_iterator {
|
||||
emonomials const& m_em;
|
||||
monomial * m_mon; // monomial
|
||||
emonics const& m_em;
|
||||
monic * m_mon;
|
||||
iterator m_it; // iterator over the first variable occurs list, ++ filters out elements that do not have m as a factor
|
||||
iterator m_end;
|
||||
|
||||
void fast_forward();
|
||||
public:
|
||||
pf_iterator(emonomials const& m, monomial& mon, bool at_end);
|
||||
pf_iterator(emonomials const& m, lpvar v, bool at_end);
|
||||
monomial & operator*() {
|
||||
pf_iterator(emonics const& m, monic& mon, bool at_end);
|
||||
pf_iterator(emonics const& m, lpvar v, bool at_end);
|
||||
monic & operator*() {
|
||||
return *m_it;
|
||||
}
|
||||
pf_iterator& operator++() { ++m_it; fast_forward(); return *this; }
|
||||
|
@ -237,77 +237,77 @@ public:
|
|||
};
|
||||
|
||||
class products_of {
|
||||
emonomials const& m;
|
||||
monomial * mon;
|
||||
emonics const& m;
|
||||
monic * mon;
|
||||
lpvar m_var;
|
||||
public:
|
||||
products_of(emonomials const& m, monomial & mon): m(m), mon(&mon), m_var(UINT_MAX) {}
|
||||
products_of(emonomials const& m, lpvar v): m(m), mon(nullptr), m_var(v) {}
|
||||
products_of(emonics const& m, monic & mon): m(m), mon(&mon), m_var(UINT_MAX) {}
|
||||
products_of(emonics const& m, lpvar v): m(m), mon(nullptr), m_var(v) {}
|
||||
pf_iterator begin() { if (mon) return pf_iterator(m, *mon, false); return pf_iterator(m, m_var, false); }
|
||||
pf_iterator end() { if (mon) return pf_iterator(m, *mon, true); return pf_iterator(m, m_var, true); }
|
||||
};
|
||||
|
||||
products_of get_products_of(monomial& m) const { inc_visited(); return products_of(*this, m); }
|
||||
products_of get_products_of(monic& m) const { inc_visited(); return products_of(*this, m); }
|
||||
products_of get_products_of(lpvar v) const { inc_visited(); return products_of(*this, v); }
|
||||
|
||||
monomial const* find_canonical(svector<lpvar> const& vars) const;
|
||||
bool is_canonical_monomial(lpvar j) const {
|
||||
SASSERT(is_monomial_var(j));
|
||||
monic const* find_canonical(svector<lpvar> const& vars) const;
|
||||
bool is_canonical_monic(lpvar j) const {
|
||||
SASSERT(is_monic_var(j));
|
||||
unsigned idx = m_var2index[j];
|
||||
if (idx >= m_u_f.get_num_vars())
|
||||
return true;
|
||||
return m_u_f.find(idx) == idx;
|
||||
}
|
||||
/**
|
||||
\brief iterator over sign equivalent monomials.
|
||||
These are monomials that are equivalent modulo m_var_eqs amd modulo signs.
|
||||
\brief iterator over sign equivalent monics.
|
||||
These are monics that are equivalent modulo m_var_eqs amd modulo signs.
|
||||
*/
|
||||
class sign_equiv_monomials_it {
|
||||
emonomials const& m;
|
||||
class sign_equiv_monics_it {
|
||||
emonics const& m;
|
||||
unsigned m_index;
|
||||
bool m_touched;
|
||||
public:
|
||||
sign_equiv_monomials_it(emonomials const& m, unsigned idx, bool at_end):
|
||||
sign_equiv_monics_it(emonics const& m, unsigned idx, bool at_end):
|
||||
m(m), m_index(idx), m_touched(at_end) {}
|
||||
|
||||
monomial const& operator*() { return m.m_monomials[m_index]; }
|
||||
monic const& operator*() { return m.m_monics[m_index]; }
|
||||
|
||||
sign_equiv_monomials_it& operator++() {
|
||||
sign_equiv_monics_it& operator++() {
|
||||
m_touched = true;
|
||||
if (m_index < m.m_u_f.get_num_vars())
|
||||
m_index = m.m_u_f.next(m_index);
|
||||
return *this;
|
||||
}
|
||||
|
||||
sign_equiv_monomials_it operator++(int) {
|
||||
sign_equiv_monomials_it tmp = *this;
|
||||
sign_equiv_monics_it operator++(int) {
|
||||
sign_equiv_monics_it tmp = *this;
|
||||
++*this;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
bool operator==(sign_equiv_monomials_it const& other) const {
|
||||
bool operator==(sign_equiv_monics_it const& other) const {
|
||||
return m_index == other.m_index && m_touched == other.m_touched;
|
||||
}
|
||||
|
||||
bool operator!=(sign_equiv_monomials_it const& other) const {
|
||||
bool operator!=(sign_equiv_monics_it const& other) const {
|
||||
return m_index != other.m_index || m_touched != other.m_touched;
|
||||
}
|
||||
};
|
||||
|
||||
class sign_equiv_monomials {
|
||||
const emonomials& em;
|
||||
monomial const& m;
|
||||
class sign_equiv_monics {
|
||||
const emonics& em;
|
||||
monic const& m;
|
||||
unsigned index() const { return em.m_var2index[m.var()]; }
|
||||
public:
|
||||
sign_equiv_monomials(const emonomials & em, monomial const& m): em(em), m(m) {}
|
||||
sign_equiv_monomials_it begin() { return sign_equiv_monomials_it(em, index(), false); }
|
||||
sign_equiv_monomials_it end() { return sign_equiv_monomials_it(em, index(), true); }
|
||||
sign_equiv_monics(const emonics & em, monic const& m): em(em), m(m) {}
|
||||
sign_equiv_monics_it begin() { return sign_equiv_monics_it(em, index(), false); }
|
||||
sign_equiv_monics_it end() { return sign_equiv_monics_it(em, index(), true); }
|
||||
};
|
||||
|
||||
sign_equiv_monomials enum_sign_equiv_monomials(monomial const& m) const { return sign_equiv_monomials(*this, m); }
|
||||
sign_equiv_monomials enum_sign_equiv_monomials(lpvar v) { return enum_sign_equiv_monomials((*this)[v]); }
|
||||
sign_equiv_monics enum_sign_equiv_monics(monic const& m) const { return sign_equiv_monics(*this, m); }
|
||||
sign_equiv_monics enum_sign_equiv_monics(lpvar v) { return enum_sign_equiv_monics((*this)[v]); }
|
||||
/**
|
||||
\brief display state of emonomials
|
||||
\brief display state of emonics
|
||||
*/
|
||||
std::ostream& display(const core&, std::ostream& out) const;
|
||||
std::ostream& display(std::ostream& out) const;
|
||||
|
@ -323,16 +323,16 @@ public:
|
|||
|
||||
void unmerge_eh(signed_var r2, signed_var r1);
|
||||
|
||||
bool is_monomial_var(lpvar v) const { return m_var2index.get(v, UINT_MAX) != UINT_MAX; }
|
||||
bool is_monic_var(lpvar v) const { return m_var2index.get(v, UINT_MAX) != UINT_MAX; }
|
||||
|
||||
bool elists_are_consistent(std::unordered_map<unsigned_vector, std::unordered_set<lpvar>, hash_svector> &lists) const;
|
||||
|
||||
}; // end of emonomials
|
||||
}; // end of emonics
|
||||
|
||||
struct pp_emons {
|
||||
const core& m_c;
|
||||
const emonomials& m_em;
|
||||
pp_emons(const core& c, const emonomials& e): m_c(c), m_em(e) {}
|
||||
const emonics& m_em;
|
||||
pp_emons(const core& c, const emonics& e): m_c(c), m_em(e) {}
|
||||
inline std::ostream& display(std::ostream& out) const {
|
||||
return m_em.display(m_c, out);
|
||||
}
|
||||
|
|
|
@ -27,7 +27,7 @@ bool const_iterator_mon::get_factors(factor& k, factor& j, rational& sign) const
|
|||
k.set(k_vars[0], factor_type::VAR);
|
||||
} else {
|
||||
unsigned i;
|
||||
if (!m_ff->find_canonical_monomial_of_vars(k_vars, i)) {
|
||||
if (!m_ff->find_canonical_monic_of_vars(k_vars, i)) {
|
||||
return false;
|
||||
}
|
||||
k.set(i, factor_type::MON);
|
||||
|
@ -37,7 +37,7 @@ bool const_iterator_mon::get_factors(factor& k, factor& j, rational& sign) const
|
|||
j.set(j_vars[0], factor_type::VAR);
|
||||
} else {
|
||||
unsigned i;
|
||||
if (!m_ff->find_canonical_monomial_of_vars(j_vars, i)) {
|
||||
if (!m_ff->find_canonical_monic_of_vars(j_vars, i)) {
|
||||
return false;
|
||||
}
|
||||
j.set(i, factor_type::MON);
|
||||
|
@ -47,7 +47,7 @@ bool const_iterator_mon::get_factors(factor& k, factor& j, rational& sign) const
|
|||
|
||||
factorization const_iterator_mon::operator*() const {
|
||||
if (m_full_factorization_returned == false) {
|
||||
return create_full_factorization(m_ff->m_monomial);
|
||||
return create_full_factorization(m_ff->m_monic);
|
||||
}
|
||||
factor j, k; rational sign;
|
||||
if (!get_factors(j, k, sign))
|
||||
|
@ -93,17 +93,17 @@ factorization const_iterator_mon::create_binary_factorization(factor j, factor k
|
|||
factorization f(nullptr);
|
||||
f.push_back(j);
|
||||
f.push_back(k);
|
||||
// Let m by *m_ff->m_monomial, the monomial we factorize
|
||||
// Let m by *m_ff->m_monic, the monic we factorize
|
||||
// We have canonize_sign(m)*m.vars() = m.rvars()
|
||||
// Let s = canonize_sign(f). Then we have f[0]*f[1] = s*m.rvars()
|
||||
// s*canonize_sign(m)*val(m).
|
||||
// Therefore val(m) = sign*val((f[0])*val(f[1]), where sign = canonize_sign(f)*canonize_sign(m).
|
||||
// We apply this sign to the first factor.
|
||||
f[0].sign() ^= (m_ff->canonize_sign(f)^m_ff->canonize_sign(*m_ff->m_monomial));
|
||||
f[0].sign() ^= (m_ff->canonize_sign(f)^m_ff->canonize_sign(*m_ff->m_monic));
|
||||
return f;
|
||||
}
|
||||
|
||||
factorization const_iterator_mon::create_full_factorization(const monomial* m) const {
|
||||
factorization const_iterator_mon::create_full_factorization(const monic* m) const {
|
||||
if (m != nullptr)
|
||||
return factorization(m);
|
||||
factorization f(nullptr);
|
||||
|
|
|
@ -20,7 +20,7 @@
|
|||
--*/
|
||||
#pragma once
|
||||
#include "util/rational.h"
|
||||
#include "math/lp/monomial.h"
|
||||
#include "math/lp/monic.h"
|
||||
#include "math/lp/nla_defs.h"
|
||||
|
||||
namespace nla {
|
||||
|
@ -55,9 +55,9 @@ public:
|
|||
|
||||
class factorization {
|
||||
svector<factor> m_factors;
|
||||
const monomial* m_mon;
|
||||
const monic* m_mon;
|
||||
public:
|
||||
factorization(const monomial* m): m_mon(m) {
|
||||
factorization(const monic* m): m_mon(m) {
|
||||
if (m != nullptr) {
|
||||
for (lpvar j : m->vars())
|
||||
m_factors.push_back(factor(j, factor_type::VAR));
|
||||
|
@ -75,8 +75,8 @@ public:
|
|||
void push_back(factor const& v) {
|
||||
m_factors.push_back(v);
|
||||
}
|
||||
const monomial& mon() const { return *m_mon; }
|
||||
void set_mon(const monomial* m) { m_mon = m; }
|
||||
const monic& mon() const { return *m_mon; }
|
||||
void set_mon(const monic* m) { m_mon = m; }
|
||||
|
||||
};
|
||||
|
||||
|
@ -109,19 +109,19 @@ struct const_iterator_mon {
|
|||
|
||||
factorization create_binary_factorization(factor j, factor k) const;
|
||||
|
||||
factorization create_full_factorization(const monomial*) const;
|
||||
factorization create_full_factorization(const monic*) const;
|
||||
};
|
||||
|
||||
struct factorization_factory {
|
||||
const svector<lpvar>& m_vars;
|
||||
const monomial* m_monomial;
|
||||
const monic* m_monic;
|
||||
// returns true if found
|
||||
virtual bool find_canonical_monomial_of_vars(const svector<lpvar>& vars, unsigned& i) const = 0;
|
||||
virtual bool canonize_sign(const monomial& m) const = 0;
|
||||
virtual bool find_canonical_monic_of_vars(const svector<lpvar>& vars, unsigned& i) const = 0;
|
||||
virtual bool canonize_sign(const monic& m) const = 0;
|
||||
virtual bool canonize_sign(const factorization& m) const = 0;
|
||||
|
||||
factorization_factory(const svector<lpvar>& vars, const monomial* m) :
|
||||
m_vars(vars), m_monomial(m) {
|
||||
factorization_factory(const svector<lpvar>& vars, const monic* m) :
|
||||
m_vars(vars), m_monic(m) {
|
||||
}
|
||||
|
||||
svector<bool> get_mask() const {
|
||||
|
|
|
@ -21,14 +21,14 @@
|
|||
#include "math/lp/nla_core.h"
|
||||
namespace nla {
|
||||
|
||||
factorization_factory_imp::factorization_factory_imp(const monomial& rm, const core& s) :
|
||||
factorization_factory_imp::factorization_factory_imp(const monic& rm, const core& s) :
|
||||
factorization_factory(rm.rvars(), &s.emons()[rm.var()]),
|
||||
m_core(s), m_mon(s.emons()[rm.var()]), m_rm(rm) { }
|
||||
|
||||
bool factorization_factory_imp::find_canonical_monomial_of_vars(const svector<lpvar>& vars, unsigned & i) const {
|
||||
return m_core.find_canonical_monomial_of_vars(vars, i);
|
||||
bool factorization_factory_imp::find_canonical_monic_of_vars(const svector<lpvar>& vars, unsigned & i) const {
|
||||
return m_core.find_canonical_monic_of_vars(vars, i);
|
||||
}
|
||||
bool factorization_factory_imp::canonize_sign(const monomial& m) const {
|
||||
bool factorization_factory_imp::canonize_sign(const monic& m) const {
|
||||
return m_core.canonize_sign(m);
|
||||
}
|
||||
bool factorization_factory_imp::canonize_sign(const factorization& f) const {
|
||||
|
|
|
@ -24,12 +24,12 @@ namespace nla {
|
|||
|
||||
struct factorization_factory_imp: factorization_factory {
|
||||
const core& m_core;
|
||||
const monomial & m_mon;
|
||||
const monomial& m_rm;
|
||||
const monic & m_mon;
|
||||
const monic& m_rm;
|
||||
|
||||
factorization_factory_imp(const monomial& rm, const core& s);
|
||||
bool find_canonical_monomial_of_vars(const svector<lpvar>& vars, unsigned & i) const;
|
||||
virtual bool canonize_sign(const monomial& m) const;
|
||||
factorization_factory_imp(const monic& rm, const core& s);
|
||||
bool find_canonical_monic_of_vars(const svector<lpvar>& vars, unsigned & i) const;
|
||||
virtual bool canonize_sign(const monic& m) const;
|
||||
virtual bool canonize_sign(const factorization& m) const;
|
||||
};
|
||||
}
|
||||
|
|
|
@ -48,7 +48,7 @@ bool horner::row_is_interesting(const T& row) const {
|
|||
c().clear_row_var_set();
|
||||
for (const auto& p : row) {
|
||||
lpvar j = p.var();
|
||||
if (!c().is_monomial_var(j))
|
||||
if (!c().is_monic_var(j))
|
||||
continue;
|
||||
auto & m = c().emons()[j];
|
||||
|
||||
|
@ -133,26 +133,26 @@ void horner::horner_lemmas() {
|
|||
|
||||
nex * horner::nexvar(lpvar j, cross_nested& cn) const {
|
||||
// todo: consider deepen the recursion
|
||||
if (!c().is_monomial_var(j))
|
||||
if (!c().is_monic_var(j))
|
||||
return cn.mk_var(j);
|
||||
const monomial& m = c().emons()[j];
|
||||
const monic& m = c().emons()[j];
|
||||
nex_mul * e = cn.mk_mul();
|
||||
for (lpvar k : m.vars()) {
|
||||
e->add_child(cn.mk_var(k));
|
||||
CTRACE("nla_horner", c().is_monomial_var(k), c().print_var(k, tout) << "\n";);
|
||||
CTRACE("nla_horner", c().is_monic_var(k), c().print_var(k, tout) << "\n";);
|
||||
}
|
||||
return e;
|
||||
}
|
||||
|
||||
nex * horner::nexvar(const rational & coeff, lpvar j, cross_nested& cn) const {
|
||||
// todo: consider deepen the recursion
|
||||
if (!c().is_monomial_var(j))
|
||||
if (!c().is_monic_var(j))
|
||||
return cn.mk_mul(cn.mk_scalar(coeff), cn.mk_var(j));
|
||||
const monomial& m = c().emons()[j];
|
||||
const monic& m = c().emons()[j];
|
||||
nex_mul * e = cn.mk_mul(cn.mk_scalar(coeff));
|
||||
for (lpvar k : m.vars()) {
|
||||
e->add_child(cn.mk_var(k));
|
||||
CTRACE("nla_horner", c().is_monomial_var(k), c().print_var(k, tout) << "\n";);
|
||||
CTRACE("nla_horner", c().is_monic_var(k), c().print_var(k, tout) << "\n";);
|
||||
}
|
||||
return e;
|
||||
}
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
#include "math/lp/lar_solver.h"
|
||||
#include "math/lp/lp_utils.h"
|
||||
#include <utility>
|
||||
#include "math/lp/monomial.h"
|
||||
#include "math/lp/monic.h"
|
||||
#include "math/lp/gomory.h"
|
||||
namespace lp {
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
Author: Nikolaj Bjorner
|
||||
*/
|
||||
#include "math/lp/lar_solver.h"
|
||||
#include "math/lp/monomial.h"
|
||||
#include "math/lp/monic.h"
|
||||
namespace nla {
|
||||
|
||||
template <typename T>
|
||||
|
|
|
@ -39,16 +39,16 @@ public:
|
|||
};
|
||||
|
||||
// support the congruence
|
||||
class monomial: public mon_eq {
|
||||
class monic: public mon_eq {
|
||||
// fields
|
||||
svector<lpvar> m_rvars;
|
||||
bool m_rsign;
|
||||
mutable unsigned m_visited;
|
||||
public:
|
||||
// constructors
|
||||
monomial(lpvar v, unsigned sz, lpvar const* vs, unsigned idx): monomial(v, svector<lpvar>(sz, vs), idx) {
|
||||
monic(lpvar v, unsigned sz, lpvar const* vs, unsigned idx): monic(v, svector<lpvar>(sz, vs), idx) {
|
||||
}
|
||||
monomial(lpvar v, const svector<lpvar> &vs, unsigned idx) : mon_eq(v, vs), m_rsign(false), m_visited(0) {
|
||||
monic(lpvar v, const svector<lpvar> &vs, unsigned idx) : mon_eq(v, vs), m_rsign(false), m_visited(0) {
|
||||
std::sort(vars().begin(), vars().end());
|
||||
}
|
||||
|
||||
|
@ -63,7 +63,7 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, monomial const& m) {
|
||||
inline std::ostream& operator<<(std::ostream& out, monic const& m) {
|
||||
return out << m.var() << " := " << m.vars() << " r ( " << sign_to_rat(m.rsign()) << " * " << m.rvars() << ")";
|
||||
}
|
||||
|
|
@ -26,7 +26,7 @@ basics::basics(core * c) : common(c) {}
|
|||
|
||||
// Monomials m and n vars have the same values, up to "sign"
|
||||
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
|
||||
bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n) {
|
||||
bool basics::basic_sign_lemma_on_two_monics(const monic& m, const monic& n) {
|
||||
const rational sign = sign_to_rat(m.rsign() ^ n.rsign());
|
||||
if (val(m) == val(n) * sign)
|
||||
return false;
|
||||
|
@ -35,7 +35,7 @@ bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial
|
|||
return true;
|
||||
}
|
||||
|
||||
void basics::generate_zero_lemmas(const monomial& m) {
|
||||
void basics::generate_zero_lemmas(const monic& m) {
|
||||
SASSERT(!val(m).is_zero() && c().product_value(m.vars()).is_zero());
|
||||
int sign = nla::rat_sign(val(m));
|
||||
unsigned_vector fixed_zeros;
|
||||
|
@ -86,7 +86,7 @@ void basics::get_non_strict_sign(lpvar j, int& sign) const {
|
|||
}
|
||||
|
||||
|
||||
void basics::basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign) {
|
||||
void basics::basic_sign_lemma_model_based_one_mon(const monic& m, int product_sign) {
|
||||
if (product_sign == 0) {
|
||||
TRACE("nla_solver_bl", tout << "zero product sign: " << pp_mon(_(), m)<< "\n"; );
|
||||
generate_zero_lemmas(m);
|
||||
|
@ -104,7 +104,7 @@ bool basics::basic_sign_lemma_model_based() {
|
|||
unsigned start = c().random();
|
||||
unsigned sz = c().m_to_refine.size();
|
||||
for (unsigned i = sz; i-- > 0; ) {
|
||||
monomial const& m = c().emons()[c().m_to_refine[(start + i) % sz]];
|
||||
monic const& m = c().emons()[c().m_to_refine[(start + i) % sz]];
|
||||
int mon_sign = nla::rat_sign(val(m));
|
||||
int product_sign = c().rat_sign(m);
|
||||
if (mon_sign != product_sign) {
|
||||
|
@ -121,7 +121,7 @@ bool basics::basic_sign_lemma_on_mon(lpvar v, std::unordered_set<unsigned> & exp
|
|||
if (!try_insert(v, explored)) {
|
||||
return false;
|
||||
}
|
||||
const monomial& m_v = c().emons()[v];
|
||||
const monic& m_v = c().emons()[v];
|
||||
TRACE("nla_solver", tout << "m_v = " << pp_mon_with_vars(c(), m_v););
|
||||
CTRACE("nla_solver", !c().emons().is_canonized(m_v),
|
||||
c().emons().display(c(), tout);
|
||||
|
@ -129,10 +129,10 @@ bool basics::basic_sign_lemma_on_mon(lpvar v, std::unordered_set<unsigned> & exp
|
|||
);
|
||||
SASSERT(c().emons().is_canonized(m_v));
|
||||
|
||||
for (auto const& m : c().emons().enum_sign_equiv_monomials(v)) {
|
||||
for (auto const& m : c().emons().enum_sign_equiv_monics(v)) {
|
||||
TRACE("nla_solver_details", tout << "m = " << pp_mon_with_vars(c(), m););
|
||||
SASSERT(m.rvars() == m_v.rvars());
|
||||
if (m_v.var() != m.var() && basic_sign_lemma_on_two_monomials(m_v, m) && done())
|
||||
if (m_v.var() != m.var() && basic_sign_lemma_on_two_monics(m_v, m) && done())
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -155,9 +155,9 @@ bool basics::basic_sign_lemma(bool derived) {
|
|||
}
|
||||
return false;
|
||||
}
|
||||
// the value of the i-th monomial has to be equal to the value of the k-th monomial modulo sign
|
||||
// the value of the i-th monic has to be equal to the value of the k-th monic modulo sign
|
||||
// but it is not the case in the model
|
||||
void basics::generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign) {
|
||||
void basics::generate_sign_lemma(const monic& m, const monic& n, const rational& sign) {
|
||||
add_empty_lemma();
|
||||
TRACE("nla_solver",
|
||||
tout << "m = " << pp_mon_with_vars(_(), m);
|
||||
|
@ -172,7 +172,7 @@ void basics::generate_sign_lemma(const monomial& m, const monomial& n, const rat
|
|||
}
|
||||
// try to find a variable j such that val(j) = 0
|
||||
// and the bounds on j contain 0 as an inner point
|
||||
lpvar basics::find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const {
|
||||
lpvar basics::find_best_zero(const monic& m, unsigned_vector & fixed_zeros) const {
|
||||
lpvar zero_j = -1;
|
||||
for (unsigned j : m.vars()){
|
||||
if (val(j).is_zero()){
|
||||
|
@ -185,13 +185,13 @@ lpvar basics::find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) c
|
|||
}
|
||||
return zero_j;
|
||||
}
|
||||
void basics::add_trival_zero_lemma(lpvar zero_j, const monomial& m) {
|
||||
void basics::add_trival_zero_lemma(lpvar zero_j, const monic& m) {
|
||||
add_empty_lemma();
|
||||
c().mk_ineq(zero_j, llc::NE);
|
||||
c().mk_ineq(m.var(), llc::EQ);
|
||||
TRACE("nla_solver", c().print_lemma(tout););
|
||||
}
|
||||
void basics::generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j, int sign_of_zj) {
|
||||
void basics::generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, int sign_of_zj) {
|
||||
TRACE("nla_solver_bl", tout << "sign_of_zj = " << sign_of_zj << "\n";);
|
||||
// we know all the signs
|
||||
add_empty_lemma();
|
||||
|
@ -204,7 +204,7 @@ void basics::generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j,
|
|||
negate_strict_sign(m.var());
|
||||
TRACE("nla_solver", c().print_lemma(tout););
|
||||
}
|
||||
void basics::add_fixed_zero_lemma(const monomial& m, lpvar j) {
|
||||
void basics::add_fixed_zero_lemma(const monic& m, lpvar j) {
|
||||
add_empty_lemma();
|
||||
c().explain_fixed_var(j);
|
||||
c().mk_ineq(m.var(), llc::EQ);
|
||||
|
@ -229,11 +229,11 @@ void basics::negate_strict_sign(lpvar j) {
|
|||
|
||||
// here we use the fact
|
||||
// xy = 0 -> x = 0 or y = 0
|
||||
bool basics::basic_lemma_for_mon_zero(const monomial& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_zero(const monic& rm, const factorization& f) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return true;
|
||||
#if 0
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||
add_empty_lemma();
|
||||
c().explain_fixed_var(var(rm));
|
||||
std::unordered_set<lpvar> processed;
|
||||
|
@ -258,23 +258,23 @@ bool basics::basic_lemma(bool derived) {
|
|||
unsigned sz = mon_inds_to_ref.size();
|
||||
for (unsigned j = 0; j < sz; ++j) {
|
||||
lpvar v = mon_inds_to_ref[(j + start) % mon_inds_to_ref.size()];
|
||||
const monomial& r = c().emons()[v];
|
||||
SASSERT (!c().check_monomial(c().emons()[v]));
|
||||
const monic& r = c().emons()[v];
|
||||
SASSERT (!c().check_monic(c().emons()[v]));
|
||||
basic_lemma_for_mon(r, derived);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
// Use basic multiplication properties to create a lemma
|
||||
// for the given monomial.
|
||||
// for the given monic.
|
||||
// "derived" means derived from constraints - the alternative is model based
|
||||
void basics::basic_lemma_for_mon(const monomial& rm, bool derived) {
|
||||
void basics::basic_lemma_for_mon(const monic& rm, bool derived) {
|
||||
if (derived)
|
||||
basic_lemma_for_mon_derived(rm);
|
||||
else
|
||||
basic_lemma_for_mon_model_based(rm);
|
||||
}
|
||||
bool basics::basic_lemma_for_mon_derived(const monomial& rm) {
|
||||
bool basics::basic_lemma_for_mon_derived(const monic& rm) {
|
||||
if (c().var_is_fixed_to_zero(var(rm))) {
|
||||
for (auto factorization : factorization_factory_imp(rm, c())) {
|
||||
if (factorization.is_empty())
|
||||
|
@ -300,8 +300,8 @@ bool basics::basic_lemma_for_mon_derived(const monomial& rm) {
|
|||
return false;
|
||||
}
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
bool basics::basic_lemma_for_mon_non_zero_derived(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
bool basics::basic_lemma_for_mon_non_zero_derived(const monic& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||
if (! c().var_is_separated_from_zero(var(rm)))
|
||||
return false;
|
||||
int zero_j = -1;
|
||||
|
@ -324,11 +324,11 @@ bool basics::basic_lemma_for_mon_non_zero_derived(const monomial& rm, const fact
|
|||
}
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
bool basics::basic_lemma_for_mon_neutral_monic_to_factor_derived(const monic& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||
|
||||
lpvar mon_var = c().emons()[rm.var()].var();
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
|
||||
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
|
||||
|
||||
const auto mv = val(mon_var);
|
||||
const auto abs_mv = abs(mv);
|
||||
|
@ -383,13 +383,13 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomi
|
|||
return true;
|
||||
}
|
||||
|
||||
bool basics::basic_lemma_for_mon_neutral_derived(const monomial& rm, const factorization& factorization) {
|
||||
bool basics::basic_lemma_for_mon_neutral_derived(const monic& rm, const factorization& factorization) {
|
||||
return
|
||||
basic_lemma_for_mon_neutral_monomial_to_factor_derived(rm, factorization);
|
||||
basic_lemma_for_mon_neutral_monic_to_factor_derived(rm, factorization);
|
||||
}
|
||||
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
void basics::proportion_lemma_model_based(const monomial& rm, const factorization& factorization) {
|
||||
void basics::proportion_lemma_model_based(const monic& rm, const factorization& factorization) {
|
||||
rational rmv = abs(val(rm));
|
||||
if (rmv.is_zero()) {
|
||||
SASSERT(c().has_zero_factor(factorization));
|
||||
|
@ -405,7 +405,7 @@ void basics::proportion_lemma_model_based(const monomial& rm, const factorizatio
|
|||
}
|
||||
}
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
bool basics::proportion_lemma_derived(const monomial& rm, const factorization& factorization) {
|
||||
bool basics::proportion_lemma_derived(const monic& rm, const factorization& factorization) {
|
||||
return false;
|
||||
rational rmv = abs(val(rm));
|
||||
if (rmv.is_zero()) {
|
||||
|
@ -423,7 +423,7 @@ bool basics::proportion_lemma_derived(const monomial& rm, const factorization& f
|
|||
return false;
|
||||
}
|
||||
// if there are no zero factors then |m| >= |m[factor_index]|
|
||||
void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
|
||||
void basics::generate_pl_on_mon(const monic& m, unsigned factor_index) {
|
||||
add_empty_lemma();
|
||||
unsigned mon_var = m.var();
|
||||
rational mv = val(mon_var);
|
||||
|
@ -446,11 +446,11 @@ void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
|
|||
|
||||
// none of the factors is zero and the product is not zero
|
||||
// -> |fc[factor_index]| <= |rm|
|
||||
void basics::generate_pl(const monomial& m, const factorization& fc, int factor_index) {
|
||||
void basics::generate_pl(const monic& m, const factorization& fc, int factor_index) {
|
||||
TRACE("nla_solver", tout << "factor_index = " << factor_index << ", m = "
|
||||
<< pp_mon(c(), m);
|
||||
tout << ", fc = "; c().print_factorization(fc, tout);
|
||||
tout << "orig mon = "; c().print_monomial(c().emons()[m.var()], tout););
|
||||
tout << "orig mon = "; c().print_monic(c().emons()[m.var()], tout););
|
||||
if (fc.is_mon()) {
|
||||
generate_pl_on_mon(m, factor_index);
|
||||
return;
|
||||
|
@ -492,8 +492,8 @@ bool basics::is_separated_from_zero(const factorization& f) const {
|
|||
|
||||
|
||||
// here we use the fact xy = 0 -> x = 0 or y = 0
|
||||
void basics::basic_lemma_for_mon_zero_model_based(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
void basics::basic_lemma_for_mon_zero_model_based(const monic& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||
SASSERT(val(rm).is_zero()&& ! c().rm_check(rm));
|
||||
add_empty_lemma();
|
||||
if (!is_separated_from_zero(f)) {
|
||||
|
@ -511,7 +511,7 @@ void basics::basic_lemma_for_mon_zero_model_based(const monomial& rm, const fact
|
|||
TRACE("nla_solver", c().print_lemma(tout););
|
||||
}
|
||||
|
||||
void basics::basic_lemma_for_mon_model_based(const monomial& rm) {
|
||||
void basics::basic_lemma_for_mon_model_based(const monic& rm) {
|
||||
TRACE("nla_solver_bl", tout << "rm = " << pp_mon(_(), rm) << "\n";);
|
||||
if (val(rm).is_zero()) {
|
||||
for (auto factorization : factorization_factory_imp(rm, c())) {
|
||||
|
@ -533,8 +533,8 @@ void basics::basic_lemma_for_mon_model_based(const monomial& rm) {
|
|||
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m) {
|
||||
TRACE("nla_solver_bl", c().print_monomial(m, tout););
|
||||
bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const monic& m) {
|
||||
TRACE("nla_solver_bl", c().print_monic(m, tout););
|
||||
|
||||
lpvar mon_var = m.var();
|
||||
const auto mv = val(mon_var);
|
||||
|
@ -586,10 +586,10 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const
|
|||
}
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m) {
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(const monic& m) {
|
||||
lpvar not_one = -1;
|
||||
rational sign(1);
|
||||
TRACE("nla_solver_bl", tout << "m = "; c().print_monomial(m, tout););
|
||||
TRACE("nla_solver_bl", tout << "m = "; c().print_monic(m, tout););
|
||||
for (auto j : m.vars()){
|
||||
auto v = val(j);
|
||||
if (v == rational(1)) {
|
||||
|
@ -631,11 +631,11 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
|
|||
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based(const monic& rm, const factorization& f) {
|
||||
TRACE("nla_solver_bl", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||
|
||||
lpvar mon_var = c().emons()[rm.var()].var();
|
||||
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
|
||||
TRACE("nla_solver_bl", c().trace_print_monic_and_factorization(rm, f, tout); tout << "\nmon_var = " << mon_var << "\n";);
|
||||
|
||||
const auto mv = val(mon_var);
|
||||
const auto abs_mv = abs(mv);
|
||||
|
@ -689,19 +689,19 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const mo
|
|||
return true;
|
||||
}
|
||||
|
||||
void basics::basic_lemma_for_mon_neutral_model_based(const monomial& rm, const factorization& f) {
|
||||
void basics::basic_lemma_for_mon_neutral_model_based(const monic& rm, const factorization& f) {
|
||||
if (f.is_mon()) {
|
||||
basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(f.mon());
|
||||
basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(f.mon());
|
||||
basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(f.mon());
|
||||
basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(f.mon());
|
||||
}
|
||||
else {
|
||||
basic_lemma_for_mon_neutral_monomial_to_factor_model_based(rm, f);
|
||||
basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(rm, f);
|
||||
basic_lemma_for_mon_neutral_monic_to_factor_model_based(rm, f);
|
||||
basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(rm, f);
|
||||
}
|
||||
}
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const monomial& m, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& m, const factorization& f) {
|
||||
rational sign = sign_to_rat(m.rsign());
|
||||
SASSERT(m.rsign() == canonize_sign(f));
|
||||
TRACE("nla_solver_bl", tout << pp_mon_with_vars(_(), m) <<"\nf = "; c().print_factorization(f, tout); tout << "sign = " << sign << '\n'; );
|
||||
|
@ -784,8 +784,8 @@ void basics::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f)
|
|||
}
|
||||
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
void basics::basic_lemma_for_mon_non_zero_model_based(const monomial& rm, const factorization& f) {
|
||||
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
void basics::basic_lemma_for_mon_non_zero_model_based(const monic& rm, const factorization& f) {
|
||||
TRACE("nla_solver_bl", c().trace_print_monic_and_factorization(rm, f, tout););
|
||||
if (f.is_mon())
|
||||
basic_lemma_for_mon_non_zero_model_based_mf(f);
|
||||
else
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "math/lp/monomial.h"
|
||||
#include "math/lp/monic.h"
|
||||
#include "math/lp/factorization.h"
|
||||
#include "math/lp/nla_common.h"
|
||||
|
||||
|
@ -27,9 +27,9 @@ namespace nla {
|
|||
class core;
|
||||
struct basics: common {
|
||||
basics(core *core);
|
||||
bool basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n);
|
||||
bool basic_sign_lemma_on_two_monics(const monic& m, const monic& n);
|
||||
|
||||
void basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign);
|
||||
void basic_sign_lemma_model_based_one_mon(const monic& m, int product_sign);
|
||||
|
||||
bool basic_sign_lemma_model_based();
|
||||
bool basic_sign_lemma_on_mon(unsigned i, std::unordered_set<unsigned> & explore);
|
||||
|
@ -39,69 +39,69 @@ struct basics: common {
|
|||
-ab = a(-b)
|
||||
*/
|
||||
bool basic_sign_lemma(bool derived);
|
||||
bool basic_lemma_for_mon_zero(const monomial& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_zero(const monic& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_zero_model_based(const monomial& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_zero_model_based(const monic& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_non_zero_model_based(const monomial& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_non_zero_model_based(const monic& rm, const factorization& f);
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
void basic_lemma_for_mon_non_zero_model_based_rm(const monomial& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_non_zero_model_based_rm(const monic& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f);
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
bool basic_lemma_for_mon_non_zero_derived(const monomial& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_non_zero_derived(const monic& rm, const factorization& f);
|
||||
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const monomial& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_monic_to_factor_model_based(const monic& rm, const factorization& f);
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m);
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const monomial& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const monic& m);
|
||||
bool basic_lemma_for_mon_neutral_monic_to_factor_derived(const monic& rm, const factorization& f);
|
||||
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const monomial& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const monic& rm, const factorization& f);
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m);
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(const monic& m);
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const monomial& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_neutral_model_based(const monomial& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monic_derived(const monic& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_neutral_model_based(const monic& rm, const factorization& f);
|
||||
|
||||
bool basic_lemma_for_mon_neutral_derived(const monomial& rm, const factorization& factorization);
|
||||
bool basic_lemma_for_mon_neutral_derived(const monic& rm, const factorization& factorization);
|
||||
|
||||
void basic_lemma_for_mon_model_based(const monomial& rm);
|
||||
void basic_lemma_for_mon_model_based(const monic& rm);
|
||||
|
||||
bool basic_lemma_for_mon_derived(const monomial& rm);
|
||||
bool basic_lemma_for_mon_derived(const monic& rm);
|
||||
|
||||
// Use basic multiplication properties to create a lemma
|
||||
// for the given monomial.
|
||||
// for the given monic.
|
||||
// "derived" means derived from constraints - the alternative is model based
|
||||
void basic_lemma_for_mon(const monomial& rm, bool derived);
|
||||
void basic_lemma_for_mon(const monic& rm, bool derived);
|
||||
// use basic multiplication properties to create a lemma
|
||||
bool basic_lemma(bool derived);
|
||||
void generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign);
|
||||
void generate_zero_lemmas(const monomial& m);
|
||||
lpvar find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const;
|
||||
void generate_sign_lemma(const monic& m, const monic& n, const rational& sign);
|
||||
void generate_zero_lemmas(const monic& m);
|
||||
lpvar find_best_zero(const monic& m, unsigned_vector & fixed_zeros) const;
|
||||
bool try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const;
|
||||
void get_non_strict_sign(lpvar j, int& sign) const;
|
||||
void add_trival_zero_lemma(lpvar zero_j, const monomial& m);
|
||||
void generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j, int sign_of_zj);
|
||||
void add_trival_zero_lemma(lpvar zero_j, const monic& m);
|
||||
void generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, int sign_of_zj);
|
||||
|
||||
void add_fixed_zero_lemma(const monomial& m, lpvar j);
|
||||
void add_fixed_zero_lemma(const monic& m, lpvar j);
|
||||
void negate_strict_sign(lpvar j);
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
void proportion_lemma_model_based(const monomial& rm, const factorization& factorization);
|
||||
void proportion_lemma_model_based(const monic& rm, const factorization& factorization);
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
bool proportion_lemma_derived(const monomial& rm, const factorization& factorization);
|
||||
bool proportion_lemma_derived(const monic& rm, const factorization& factorization);
|
||||
// if there are no zero factors then |m| >= |m[factor_index]|
|
||||
void generate_pl_on_mon(const monomial& m, unsigned factor_index);
|
||||
void generate_pl_on_mon(const monic& m, unsigned factor_index);
|
||||
|
||||
// none of the factors is zero and the product is not zero
|
||||
// -> |fc[factor_index]| <= |rm|
|
||||
void generate_pl(const monomial& rm, const factorization& fc, int factor_index);
|
||||
void generate_pl(const monic& rm, const factorization& fc, int factor_index);
|
||||
bool is_separated_from_zero(const factorization&) const;
|
||||
};
|
||||
}
|
||||
|
|
|
@ -26,25 +26,25 @@ bool common::done() const { return c().done(); }
|
|||
template <typename T> void common::explain(const T& t) {
|
||||
c().explain(t, c().current_expl());
|
||||
}
|
||||
template void common::explain<monomial>(const monomial& t);
|
||||
template void common::explain<monic>(const monic& t);
|
||||
template void common::explain<factor>(const factor& t);
|
||||
template void common::explain<factorization>(const factorization& t);
|
||||
|
||||
void common::explain(lpvar j) { c().explain(j, c().current_expl()); }
|
||||
|
||||
template <typename T> rational common::val(T const& t) const { return c().val(t); }
|
||||
template rational common::val<monomial>(monomial const& t) const;
|
||||
template rational common::val<monic>(monic const& t) const;
|
||||
template rational common::val<factor>(factor const& t) const;
|
||||
rational common::val(lpvar t) const { return c().val(t); }
|
||||
template <typename T> lpvar common::var(T const& t) const { return c().var(t); }
|
||||
template lpvar common::var<factor>(factor const& t) const;
|
||||
template lpvar common::var<monomial>(monomial const& t) const;
|
||||
template lpvar common::var<monic>(monic const& t) const;
|
||||
void common::add_empty_lemma() { c().add_empty_lemma(); }
|
||||
template <typename T> bool common::canonize_sign(const T& t) const {
|
||||
return c().canonize_sign(t);
|
||||
}
|
||||
|
||||
template bool common::canonize_sign<monomial>(const monomial&) const;
|
||||
template bool common::canonize_sign<monic>(const monic&) const;
|
||||
template bool common::canonize_sign<factor>(const factor&) const;
|
||||
template bool common::canonize_sign<lpvar>(const lpvar&) const;
|
||||
template bool common::canonize_sign<factorization>(const factorization&) const;
|
||||
|
@ -102,8 +102,8 @@ std::ostream& common::print_product(const T & m, std::ostream& out) const {
|
|||
template
|
||||
std::ostream& common::print_product<unsigned_vector>(const unsigned_vector & m, std::ostream& out) const;
|
||||
|
||||
std::ostream& common::print_monomial(const monomial & m, std::ostream& out) const {
|
||||
return c().print_monomial(m, out);
|
||||
std::ostream& common::print_monic(const monic & m, std::ostream& out) const {
|
||||
return c().print_monic(m, out);
|
||||
}
|
||||
|
||||
std::ostream& common::print_factor(const factor & f, std::ostream& out) const {
|
||||
|
@ -114,8 +114,8 @@ std::ostream& common::print_var(lpvar j, std::ostream& out) const {
|
|||
return c().print_var(j, out);
|
||||
}
|
||||
|
||||
bool common::check_monomial(const monomial& m) const {
|
||||
return c().check_monomial(m);
|
||||
bool common::check_monic(const monic& m) const {
|
||||
return c().check_monic(m);
|
||||
}
|
||||
|
||||
unsigned common::random() {
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
#include "util/rational.h"
|
||||
#include "math/lp/nla_defs.h"
|
||||
#include "math/lp/lar_term.h"
|
||||
#include "math/lp/monomial.h"
|
||||
#include "math/lp/monic.h"
|
||||
#include "math/lp/emonomials.h"
|
||||
#include "math/lp/factorization.h"
|
||||
namespace nla {
|
||||
|
@ -51,7 +51,7 @@ struct common {
|
|||
|
||||
template <typename T> rational val(T const& t) const;
|
||||
rational val(lpvar) const;
|
||||
rational rval(const monomial&) const;
|
||||
rational rval(const monic&) const;
|
||||
template <typename T> lpvar var(T const& t) const;
|
||||
bool done() const;
|
||||
template <typename T> void explain(const T&);
|
||||
|
@ -87,10 +87,10 @@ struct common {
|
|||
std::ostream& print_factor(const factor &, std::ostream& out) const;
|
||||
std::ostream& print_var(lpvar, std::ostream& out) const;
|
||||
|
||||
std::ostream& print_monomial(const monomial & m, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial(const monomial &, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial_with_vars(const monomial&, std::ostream& out) const;
|
||||
bool check_monomial(const monomial&) const;
|
||||
std::ostream& print_monic(const monic & m, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monic(const monic &, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monic_with_vars(const monic&, std::ostream& out) const;
|
||||
bool check_monic(const monic&) const;
|
||||
unsigned random();
|
||||
};
|
||||
}
|
||||
|
|
|
@ -104,7 +104,7 @@ bool core::canonize_sign(lpvar j) const {
|
|||
return m_evars.find(j).sign();
|
||||
}
|
||||
|
||||
bool core::canonize_sign_is_correct(const monomial& m) const {
|
||||
bool core::canonize_sign_is_correct(const monic& m) const {
|
||||
bool r = false;
|
||||
for (lpvar j : m.vars()) {
|
||||
r ^= canonize_sign(j);
|
||||
|
@ -112,7 +112,7 @@ bool core::canonize_sign_is_correct(const monomial& m) const {
|
|||
return r == m.rsign();
|
||||
}
|
||||
|
||||
bool core::canonize_sign(const monomial& m) const {
|
||||
bool core::canonize_sign(const monic& m) const {
|
||||
SASSERT(canonize_sign_is_correct(m));
|
||||
return m.rsign();
|
||||
}
|
||||
|
@ -125,7 +125,7 @@ bool core::canonize_sign(const factorization& f) const {
|
|||
return r;
|
||||
}
|
||||
|
||||
void core::add_monomial(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
void core::add_monic(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
m_add_buffer.resize(sz);
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
lpvar j = vs[i];
|
||||
|
@ -157,13 +157,13 @@ rational core::product_value(const unsigned_vector & m) const {
|
|||
return r;
|
||||
}
|
||||
|
||||
// return true iff the monomial value is equal to the product of the values of the factors
|
||||
bool core::check_monomial(const monomial& m) const {
|
||||
// return true iff the monic value is equal to the product of the values of the factors
|
||||
bool core::check_monic(const monic& m) const {
|
||||
SASSERT(m_lar_solver.get_column_value(m.var()).is_int());
|
||||
return product_value(m.vars()) == m_lar_solver.get_column_value_rational(m.var());
|
||||
}
|
||||
|
||||
void core::explain(const monomial& m, lp::explanation& exp) const {
|
||||
void core::explain(const monic& m, lp::explanation& exp) const {
|
||||
for (lpvar j : m.vars())
|
||||
explain(j, exp);
|
||||
}
|
||||
|
@ -231,7 +231,7 @@ std::ostream & core::print_factor_with_vars(const factor& f, std::ostream& out)
|
|||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monomial(const monomial& m, std::ostream& out) const {
|
||||
std::ostream& core::print_monic(const monic& m, std::ostream& out) const {
|
||||
if (lp_settings().m_print_external_var_name)
|
||||
out << "([" << m.var() << "] = " << m_lar_solver.get_variable_name(m.var()) << " = " << val(m.var()) << " = ";
|
||||
else
|
||||
|
@ -250,8 +250,8 @@ std::ostream& core::print_bfc(const factorization& m, std::ostream& out) const {
|
|||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monomial_with_vars(lpvar v, std::ostream& out) const {
|
||||
return print_monomial_with_vars(m_emons[v], out);
|
||||
std::ostream& core::print_monic_with_vars(lpvar v, std::ostream& out) const {
|
||||
return print_monic_with_vars(m_emons[v], out);
|
||||
}
|
||||
template <typename T>
|
||||
std::ostream& core::print_product_with_vars(const T& m, std::ostream& out) const {
|
||||
|
@ -262,7 +262,7 @@ std::ostream& core::print_product_with_vars(const T& m, std::ostream& out) const
|
|||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monomial_with_vars(const monomial& m, std::ostream& out) const {
|
||||
std::ostream& core::print_monic_with_vars(const monic& m, std::ostream& out) const {
|
||||
out << "["; print_var(m.var(), out) << "]\n";
|
||||
out << "vars:"; print_product_with_vars(m.vars(), out) << "\n";
|
||||
if (m.vars() == m.rvars())
|
||||
|
@ -505,8 +505,8 @@ void core:: mk_ineq(lpvar j, llc cmp) {
|
|||
mk_ineq(j, cmp, rational::zero());
|
||||
}
|
||||
|
||||
// the monomials should be equal by modulo sign but this is not so in the model
|
||||
void core:: fill_explanation_and_lemma_sign(const monomial& a, const monomial & b, rational const& sign) {
|
||||
// the monics should be equal by modulo sign but this is not so in the model
|
||||
void core:: fill_explanation_and_lemma_sign(const monic& a, const monic & b, rational const& sign) {
|
||||
SASSERT(sign == 1 || sign == -1);
|
||||
explain(a, current_expl());
|
||||
explain(b, current_expl());
|
||||
|
@ -523,7 +523,7 @@ void core:: fill_explanation_and_lemma_sign(const monomial& a, const monomial &
|
|||
// Replaces each variable index by the root in the tree and flips the sign if the var comes with a minus.
|
||||
// Also sorts the result.
|
||||
//
|
||||
svector<lpvar> core::reduce_monomial_to_rooted(const svector<lpvar> & vars, rational & sign) const {
|
||||
svector<lpvar> core::reduce_monic_to_rooted(const svector<lpvar> & vars, rational & sign) const {
|
||||
svector<lpvar> ret;
|
||||
bool s = false;
|
||||
for (lpvar v : vars) {
|
||||
|
@ -545,10 +545,10 @@ svector<lpvar> core::reduce_monomial_to_rooted(const svector<lpvar> & vars, rati
|
|||
// m_v = coeff * w1 * ... * wn, where w1, .., wn are canonical
|
||||
// representatives, which are the roots of the equivalence tree, under current equations.
|
||||
//
|
||||
monomial_coeff core::canonize_monomial(monomial const& m) const {
|
||||
monic_coeff core::canonize_monic(monic const& m) const {
|
||||
rational sign = rational(1);
|
||||
svector<lpvar> vars = reduce_monomial_to_rooted(m.vars(), sign);
|
||||
return monomial_coeff(vars, sign);
|
||||
svector<lpvar> vars = reduce_monic_to_rooted(m.vars(), sign);
|
||||
return monic_coeff(vars, sign);
|
||||
}
|
||||
|
||||
lemma& core::current_lemma() { return m_lemma_vec->back(); }
|
||||
|
@ -594,7 +594,7 @@ bool core::zero_is_an_inner_point_of_bounds(lpvar j) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
int core::rat_sign(const monomial& m) const {
|
||||
int core::rat_sign(const monic& m) const {
|
||||
int sign = 1;
|
||||
for (lpvar j : m.vars()) {
|
||||
auto v = val(j);
|
||||
|
@ -611,8 +611,8 @@ int core::rat_sign(const monomial& m) const {
|
|||
return sign;
|
||||
}
|
||||
|
||||
// Returns true if the monomial sign is incorrect
|
||||
bool core::sign_contradiction(const monomial& m) const {
|
||||
// Returns true if the monic sign is incorrect
|
||||
bool core::sign_contradiction(const monic& m) const {
|
||||
return nla::rat_sign(val(m)) != rat_sign(m);
|
||||
}
|
||||
|
||||
|
@ -654,8 +654,8 @@ std::ostream & core::print_ineq(const ineq & in, std::ostream & out) const {
|
|||
}
|
||||
|
||||
std::ostream & core::print_var(lpvar j, std::ostream & out) const {
|
||||
if (m_emons.is_monomial_var(j)) {
|
||||
print_monomial(m_emons[j], out);
|
||||
if (m_emons.is_monic_var(j)) {
|
||||
print_monic(m_emons[j], out);
|
||||
}
|
||||
|
||||
m_lar_solver.print_column_info(j, out);
|
||||
|
@ -664,9 +664,9 @@ std::ostream & core::print_var(lpvar j, std::ostream & out) const {
|
|||
return out;
|
||||
}
|
||||
|
||||
std::ostream & core::print_monomials(std::ostream & out) const {
|
||||
std::ostream & core::print_monics(std::ostream & out) const {
|
||||
for (auto &m : m_emons) {
|
||||
print_monomial_with_vars(m, out);
|
||||
print_monic_with_vars(m, out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
@ -707,13 +707,13 @@ std::ostream & core::print_factorization(const factorization& f, std::ostream& o
|
|||
return out;
|
||||
}
|
||||
|
||||
bool core::find_canonical_monomial_of_vars(const svector<lpvar>& vars, lpvar & i) const {
|
||||
monomial const* sv = m_emons.find_canonical(vars);
|
||||
bool core::find_canonical_monic_of_vars(const svector<lpvar>& vars, lpvar & i) const {
|
||||
monic const* sv = m_emons.find_canonical(vars);
|
||||
return sv && (i = sv->var(), true);
|
||||
}
|
||||
|
||||
bool core::is_canonical_monomial(lpvar j) const {
|
||||
return m_emons.is_canonical_monomial(j);
|
||||
bool core::is_canonical_monic(lpvar j) const {
|
||||
return m_emons.is_canonical_monic(j);
|
||||
}
|
||||
|
||||
|
||||
|
@ -735,7 +735,7 @@ void core::explain_separation_from_zero(lpvar j) {
|
|||
explain_existing_upper_bound(j);
|
||||
}
|
||||
|
||||
void core::trace_print_monomial_and_factorization(const monomial& rm, const factorization& f, std::ostream& out) const {
|
||||
void core::trace_print_monic_and_factorization(const monic& rm, const factorization& f, std::ostream& out) const {
|
||||
out << "rooted vars: ";
|
||||
print_product(rm.rvars(), out);
|
||||
out << "\n";
|
||||
|
@ -926,14 +926,14 @@ void core::trace_print_rms(const T& p, std::ostream& out) {
|
|||
out << "}";
|
||||
}
|
||||
|
||||
void core::print_monomial_stats(const monomial& m, std::ostream& out) {
|
||||
void core::print_monic_stats(const monic& m, std::ostream& out) {
|
||||
if (m.size() == 2) return;
|
||||
monomial_coeff mc = canonize_monomial(m);
|
||||
monic_coeff mc = canonize_monic(m);
|
||||
for(unsigned i = 0; i < mc.vars().size(); i++){
|
||||
if (abs(val(mc.vars()[i])) == rational(1)) {
|
||||
auto vv = mc.vars();
|
||||
vv.erase(vv.begin()+i);
|
||||
monomial const* sv = m_emons.find_canonical(vv);
|
||||
monic const* sv = m_emons.find_canonical(vv);
|
||||
if (!sv) {
|
||||
out << "nf length" << vv.size() << "\n"; ;
|
||||
}
|
||||
|
@ -959,10 +959,10 @@ void core::init_to_refine() {
|
|||
TRACE("nla_solver_details", tout << "emons:" << pp_emons(*this, m_emons););
|
||||
m_to_refine.clear();
|
||||
m_to_refine.resize(m_lar_solver.number_of_vars());
|
||||
unsigned r = random(), sz = m_emons.number_of_monomials();
|
||||
unsigned r = random(), sz = m_emons.number_of_monics();
|
||||
for (unsigned k = 0; k < sz; k++) {
|
||||
auto const & m = *(m_emons.begin() + (k + r)% sz);
|
||||
if (!check_monomial(m))
|
||||
if (!check_monic(m))
|
||||
m_to_refine.insert(m.var());
|
||||
}
|
||||
|
||||
|
@ -975,7 +975,7 @@ std::unordered_set<lpvar> core::collect_vars(const lemma& l) const {
|
|||
std::unordered_set<lpvar> vars;
|
||||
auto insert_j = [&](lpvar j) {
|
||||
vars.insert(j);
|
||||
if (m_emons.is_monomial_var(j)) {
|
||||
if (m_emons.is_monic_var(j)) {
|
||||
for (lpvar k : m_emons[j].vars())
|
||||
vars.insert(k);
|
||||
}
|
||||
|
@ -996,7 +996,7 @@ std::unordered_set<lpvar> core::collect_vars(const lemma& l) const {
|
|||
}
|
||||
|
||||
// divides bc by c, so bc = b*c
|
||||
bool core::divide(const monomial& bc, const factor& c, factor & b) const {
|
||||
bool core::divide(const monic& bc, const factor& c, factor & b) const {
|
||||
svector<lpvar> c_rvars = sorted_rvars(c);
|
||||
TRACE("nla_solver_div", tout << "c_rvars = "; print_product(c_rvars, tout); tout << "\nbc_rvars = "; print_product(bc.rvars(), tout););
|
||||
if (!lp::is_proper_factor(c_rvars, bc.rvars()))
|
||||
|
@ -1008,7 +1008,7 @@ bool core::divide(const monomial& bc, const factor& c, factor & b) const {
|
|||
if (b_rvars.size() == 1) {
|
||||
b = factor(b_rvars[0], factor_type::VAR);
|
||||
} else {
|
||||
monomial const* sv = m_emons.find_canonical(b_rvars);
|
||||
monic const* sv = m_emons.find_canonical(b_rvars);
|
||||
if (sv == nullptr) {
|
||||
TRACE("nla_solver_div", tout << "not in rooted";);
|
||||
return false;
|
||||
|
@ -1064,10 +1064,10 @@ void core::print_specific_lemma(const lemma& l, std::ostream& out) const {
|
|||
}
|
||||
|
||||
|
||||
void core::trace_print_ol(const monomial& ac,
|
||||
void core::trace_print_ol(const monic& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const monomial& bc,
|
||||
const monic& bc,
|
||||
const factor& b,
|
||||
std::ostream& out) {
|
||||
out << "ac = " << pp_mon(*this, ac) << "\n";
|
||||
|
@ -1086,7 +1086,7 @@ void core::maybe_add_a_factor(lpvar i,
|
|||
std::unordered_set<unsigned>& found_rm,
|
||||
vector<factor> & r) const {
|
||||
SASSERT(abs(val(i)) == abs(val(c)));
|
||||
if (!m_emons.is_monomial_var(i)) {
|
||||
if (!m_emons.is_monic_var(i)) {
|
||||
i = m_evars.find(i).var();
|
||||
if (try_insert(i, found_vars)) {
|
||||
r.push_back(factor(i, factor_type::VAR));
|
||||
|
@ -1100,7 +1100,7 @@ void core::maybe_add_a_factor(lpvar i,
|
|||
}
|
||||
|
||||
|
||||
// Returns rooted monomials by arity
|
||||
// Returns rooted monics by arity
|
||||
std::unordered_map<unsigned, unsigned_vector> core::get_rm_by_arity() {
|
||||
std::unordered_map<unsigned, unsigned_vector> m;
|
||||
for (auto const& mon : m_emons) {
|
||||
|
@ -1116,8 +1116,8 @@ std::unordered_map<unsigned, unsigned_vector> core::get_rm_by_arity() {
|
|||
|
||||
|
||||
|
||||
bool core::rm_check(const monomial& rm) const {
|
||||
return check_monomial(m_emons[rm.var()]);
|
||||
bool core::rm_check(const monic& rm) const {
|
||||
return check_monic(m_emons[rm.var()]);
|
||||
}
|
||||
|
||||
|
||||
|
@ -1174,7 +1174,7 @@ void core::add_abs_bound(lpvar v, llc cmp, rational const& bound) {
|
|||
*/
|
||||
|
||||
|
||||
bool core::find_bfc_to_refine_on_monomial(const monomial& m, factorization & bf) {
|
||||
bool core::find_bfc_to_refine_on_monic(const monic& m, factorization & bf) {
|
||||
for (auto f : factorization_factory_imp(m, *this)) {
|
||||
if (f.size() == 2) {
|
||||
auto a = f[0];
|
||||
|
@ -1192,14 +1192,14 @@ bool core::find_bfc_to_refine_on_monomial(const monomial& m, factorization & bf)
|
|||
return false;
|
||||
}
|
||||
|
||||
// finds a monomial to refine with its binary factorization
|
||||
bool core::find_bfc_to_refine(const monomial* & m, factorization & bf){
|
||||
// finds a monic to refine with its binary factorization
|
||||
bool core::find_bfc_to_refine(const monic* & m, factorization & bf){
|
||||
m = nullptr;
|
||||
unsigned r = random(), sz = m_to_refine.size();
|
||||
for (unsigned k = 0; k < sz; k++) {
|
||||
lpvar i = m_to_refine[(k + r) % sz];
|
||||
m = &m_emons[i];
|
||||
SASSERT (!check_monomial(*m));
|
||||
SASSERT (!check_monic(*m));
|
||||
if (m->size() == 2) {
|
||||
bf.set_mon(m);
|
||||
bf.push_back(factor(m->vars()[0], factor_type::VAR));
|
||||
|
@ -1207,7 +1207,7 @@ bool core::find_bfc_to_refine(const monomial* & m, factorization & bf){
|
|||
return true;
|
||||
}
|
||||
|
||||
if (find_bfc_to_refine_on_monomial(*m, bf)) {
|
||||
if (find_bfc_to_refine_on_monic(*m, bf)) {
|
||||
TRACE("nla_solver",
|
||||
tout << "bf = "; print_factorization(bf, tout);
|
||||
tout << "\nval(*m) = " << val(*m) << ", should be = (val(bf[0])=" << val(bf[0]) << ")*(val(bf[1]) = " << val(bf[1]) << ") = " << val(bf[0])*val(bf[1]) << "\n";);
|
||||
|
@ -1292,10 +1292,10 @@ bool core::elist_is_consistent(const std::unordered_set<lpvar> & list) const {
|
|||
bool p;
|
||||
for (lpvar j : list) {
|
||||
if (first) {
|
||||
p = check_monomial(m_emons[j]);
|
||||
p = check_monic(m_emons[j]);
|
||||
first = false;
|
||||
} else
|
||||
if (check_monomial(m_emons[j]) != p)
|
||||
if (check_monic(m_emons[j]) != p)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -1334,8 +1334,8 @@ lbool core::check(vector<lemma>& l_vec) {
|
|||
ret = inner_check(false);
|
||||
|
||||
TRACE("nla_solver", tout << "ret = " << ret << ", lemmas count = " << m_lemma_vec->size() << "\n";);
|
||||
IF_VERBOSE(2, if(ret == l_undef) {verbose_stream() << "Monomials\n"; print_monomials(verbose_stream());});
|
||||
CTRACE("nla_solver", ret == l_undef, tout << "Monomials\n"; print_monomials(tout););
|
||||
IF_VERBOSE(2, if(ret == l_undef) {verbose_stream() << "Monomials\n"; print_monics(verbose_stream());});
|
||||
CTRACE("nla_solver", ret == l_undef, tout << "Monomials\n"; print_monics(tout););
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -1383,7 +1383,7 @@ lbool core::test_check(
|
|||
// nla_expr<rational> r(expr_type::SUM);
|
||||
// for (const auto & p : coeffs) {
|
||||
// lpvar j = p.second;
|
||||
// if (is_monomial_var(j))
|
||||
// if (is_monic_var(j))
|
||||
// r.add_child(mk_expr(p.first, m_emons[j].vars()));
|
||||
// else
|
||||
// r.add_child(mk_expr(p.first, j));
|
||||
|
@ -1408,8 +1408,8 @@ std::ostream& core::print_terms(std::ostream& out) const {
|
|||
}
|
||||
|
||||
std::string core::var_str(lpvar j) const {
|
||||
return is_monomial_var(j)?
|
||||
(product_indices_str(m_emons[j].vars()) + (check_monomial(m_emons[j])? "": "_")) : (std::string("v") + lp::T_to_string(j));
|
||||
return is_monic_var(j)?
|
||||
(product_indices_str(m_emons[j].vars()) + (check_monic(m_emons[j])? "": "_")) : (std::string("v") + lp::T_to_string(j));
|
||||
}
|
||||
|
||||
std::ostream& core::print_term( const lp::lar_term& t, std::ostream& out) const {
|
||||
|
|
|
@ -79,7 +79,7 @@ public:
|
|||
|
||||
class core {
|
||||
public:
|
||||
var_eqs<emonomials> m_evars;
|
||||
var_eqs<emonics> m_evars;
|
||||
lp::lar_solver& m_lar_solver;
|
||||
vector<lemma> * m_lemma_vec;
|
||||
lp::int_set m_to_refine;
|
||||
|
@ -91,7 +91,7 @@ public:
|
|||
nla_settings m_nla_settings;
|
||||
nla_grobner m_grobner;
|
||||
private:
|
||||
emonomials m_emons;
|
||||
emonics m_emons;
|
||||
svector<lpvar> m_add_buffer;
|
||||
mutable lp::int_set m_row_var_set;
|
||||
public:
|
||||
|
@ -113,8 +113,8 @@ public:
|
|||
}
|
||||
|
||||
reslimit & reslim() { return m_reslim; }
|
||||
emonomials& emons() { return m_emons; }
|
||||
const emonomials& emons() const { return m_emons; }
|
||||
emonics& emons() { return m_emons; }
|
||||
const emonics& emons() const { return m_emons; }
|
||||
// constructor
|
||||
core(lp::lar_solver& s, reslimit &);
|
||||
|
||||
|
@ -125,16 +125,16 @@ public:
|
|||
lp::lar_term subs_terms_to_columns(const lp::lar_term& t) const;
|
||||
bool ineq_holds(const ineq& n) const;
|
||||
bool lemma_holds(const lemma& l) const;
|
||||
bool is_monomial_var(lpvar j) const { return m_emons.is_monomial_var(j); }
|
||||
bool is_monic_var(lpvar j) const { return m_emons.is_monic_var(j); }
|
||||
rational val(lpvar j) const { return m_lar_solver.get_column_value_rational(j); }
|
||||
|
||||
rational val(const monomial& m) const { return m_lar_solver.get_column_value_rational(m.var()); }
|
||||
rational val(const monic& m) const { return m_lar_solver.get_column_value_rational(m.var()); }
|
||||
|
||||
bool canonize_sign_is_correct(const monomial& m) const;
|
||||
bool canonize_sign_is_correct(const monic& m) const;
|
||||
|
||||
lpvar var(monomial const& sv) const { return sv.var(); }
|
||||
lpvar var(monic const& sv) const { return sv.var(); }
|
||||
|
||||
rational val_rooted(const monomial& m) const { return m.rsign()*val(m.var()); }
|
||||
rational val_rooted(const monic& m) const { return m.rsign()*val(m.var()); }
|
||||
|
||||
rational val(const factor& f) const { return f.rat_sign() * (f.is_var()? val(f.var()) : val(m_emons[f.var()])); }
|
||||
|
||||
|
@ -161,24 +161,24 @@ public:
|
|||
|
||||
// the value of the rooted monomias is equal to the value of the m.var() variable multiplied
|
||||
// by the canonize_sign
|
||||
bool canonize_sign(const monomial& m) const;
|
||||
bool canonize_sign(const monic& m) const;
|
||||
|
||||
|
||||
void deregister_monomial_from_monomialomials (const monomial & m, unsigned i);
|
||||
void deregister_monic_from_monicomials (const monic & m, unsigned i);
|
||||
|
||||
void deregister_monomial_from_tables(const monomial & m, unsigned i);
|
||||
void deregister_monic_from_tables(const monic & m, unsigned i);
|
||||
|
||||
void add_monomial(lpvar v, unsigned sz, lpvar const* vs);
|
||||
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
|
||||
void push();
|
||||
void pop(unsigned n);
|
||||
|
||||
rational mon_value_by_vars(unsigned i) const;
|
||||
rational product_value(const unsigned_vector & m) const;
|
||||
|
||||
// return true iff the monomial value is equal to the product of the values of the factors
|
||||
bool check_monomial(const monomial& m) const;
|
||||
// return true iff the monic value is equal to the product of the values of the factors
|
||||
bool check_monic(const monic& m) const;
|
||||
|
||||
void explain(const monomial& m, lp::explanation& exp) const;
|
||||
void explain(const monic& m, lp::explanation& exp) const;
|
||||
void explain(const factor& f, lp::explanation& exp) const;
|
||||
void explain(lpvar j, lp::explanation& exp) const;
|
||||
void explain_existing_lower_bound(lpvar j);
|
||||
|
@ -189,7 +189,7 @@ public:
|
|||
|
||||
std::ostream & print_ineq(const ineq & in, std::ostream & out) const;
|
||||
std::ostream & print_var(lpvar j, std::ostream & out) const;
|
||||
std::ostream & print_monomials(std::ostream & out) const;
|
||||
std::ostream & print_monics(std::ostream & out) const;
|
||||
std::ostream & print_ineqs(const lemma& l, std::ostream & out) const;
|
||||
std::ostream & print_factorization(const factorization& f, std::ostream& out) const;
|
||||
template <typename T>
|
||||
|
@ -200,27 +200,27 @@ public:
|
|||
|
||||
std::ostream & print_factor(const factor& f, std::ostream& out) const;
|
||||
std::ostream & print_factor_with_vars(const factor& f, std::ostream& out) const;
|
||||
std::ostream& print_monomial(const monomial& m, std::ostream& out) const;
|
||||
std::ostream& print_monic(const monic& m, std::ostream& out) const;
|
||||
std::ostream& print_bfc(const factorization& m, std::ostream& out) const;
|
||||
std::ostream& print_monomial_with_vars(unsigned i, std::ostream& out) const;
|
||||
std::ostream& print_monic_with_vars(unsigned i, std::ostream& out) const;
|
||||
template <typename T>
|
||||
std::ostream& print_product_with_vars(const T& m, std::ostream& out) const;
|
||||
std::ostream& print_monomial_with_vars(const monomial& m, std::ostream& out) const;
|
||||
std::ostream& print_monic_with_vars(const monic& m, std::ostream& out) const;
|
||||
std::ostream& print_explanation(const lp::explanation& exp, std::ostream& out) const;
|
||||
template <typename T>
|
||||
void trace_print_rms(const T& p, std::ostream& out);
|
||||
void trace_print_monomial_and_factorization(const monomial& rm, const factorization& f, std::ostream& out) const;
|
||||
void print_monomial_stats(const monomial& m, std::ostream& out);
|
||||
void trace_print_monic_and_factorization(const monic& rm, const factorization& f, std::ostream& out) const;
|
||||
void print_monic_stats(const monic& m, std::ostream& out);
|
||||
void print_stats(std::ostream& out);
|
||||
std::ostream& print_lemma(std::ostream& out) const;
|
||||
|
||||
void print_specific_lemma(const lemma& l, std::ostream& out) const;
|
||||
|
||||
|
||||
void trace_print_ol(const monomial& ac,
|
||||
void trace_print_ol(const monic& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const monomial& bc,
|
||||
const monic& bc,
|
||||
const factor& b,
|
||||
std::ostream& out);
|
||||
|
||||
|
@ -251,11 +251,11 @@ public:
|
|||
|
||||
llc apply_minus(llc cmp);
|
||||
|
||||
void fill_explanation_and_lemma_sign(const monomial& a, const monomial & b, rational const& sign);
|
||||
void fill_explanation_and_lemma_sign(const monic& a, const monic & b, rational const& sign);
|
||||
|
||||
svector<lpvar> reduce_monomial_to_rooted(const svector<lpvar> & vars, rational & sign) const;
|
||||
svector<lpvar> reduce_monic_to_rooted(const svector<lpvar> & vars, rational & sign) const;
|
||||
|
||||
monomial_coeff canonize_monomial(monomial const& m) const;
|
||||
monic_coeff canonize_monic(monic const& m) const;
|
||||
|
||||
lemma& current_lemma();
|
||||
const lemma& current_lemma() const;
|
||||
|
@ -274,18 +274,18 @@ public:
|
|||
|
||||
bool zero_is_an_inner_point_of_bounds(lpvar j) const;
|
||||
|
||||
int rat_sign(const monomial& m) const;
|
||||
int rat_sign(const monic& m) const;
|
||||
inline int rat_sign(lpvar j) const { return nla::rat_sign(val(j)); }
|
||||
|
||||
bool sign_contradiction(const monomial& m) const;
|
||||
bool sign_contradiction(const monic& m) const;
|
||||
|
||||
bool var_is_fixed_to_zero(lpvar j) const;
|
||||
bool var_is_fixed_to_val(lpvar j, const rational& v) const;
|
||||
|
||||
bool var_is_fixed(lpvar j) const;
|
||||
|
||||
bool find_canonical_monomial_of_vars(const svector<lpvar>& vars, lpvar & i) const;
|
||||
bool is_canonical_monomial(lpvar) const;
|
||||
bool find_canonical_monic_of_vars(const svector<lpvar>& vars, lpvar & i) const;
|
||||
bool is_canonical_monic(lpvar) const;
|
||||
bool elists_are_consistent(bool check_in_model) const;
|
||||
bool elist_is_consistent(const std::unordered_set<lpvar>&) const;
|
||||
bool var_has_positive_lower_bound(lpvar j) const;
|
||||
|
@ -337,9 +337,9 @@ public:
|
|||
template <typename T>
|
||||
bool vars_are_roots(const T& v) const;
|
||||
|
||||
void register_monomial_in_tables(unsigned i_mon);
|
||||
void register_monic_in_tables(unsigned i_mon);
|
||||
|
||||
void register_monomials_in_tables();
|
||||
void register_monics_in_tables();
|
||||
|
||||
void clear();
|
||||
|
||||
|
@ -347,7 +347,7 @@ public:
|
|||
|
||||
void init_to_refine();
|
||||
|
||||
bool divide(const monomial& bc, const factor& c, factor & b) const;
|
||||
bool divide(const monic& bc, const factor& c, factor & b) const;
|
||||
|
||||
void negate_factor_equality(const factor& c, const factor& d);
|
||||
|
||||
|
@ -355,15 +355,15 @@ public:
|
|||
|
||||
std::unordered_set<lpvar> collect_vars(const lemma& l) const;
|
||||
|
||||
bool rm_check(const monomial&) const;
|
||||
bool rm_check(const monic&) const;
|
||||
std::unordered_map<unsigned, unsigned_vector> get_rm_by_arity();
|
||||
|
||||
void add_abs_bound(lpvar v, llc cmp);
|
||||
void add_abs_bound(lpvar v, llc cmp, rational const& bound);
|
||||
|
||||
bool find_bfc_to_refine_on_monomial(const monomial&, factorization & bf);
|
||||
bool find_bfc_to_refine_on_monic(const monic&, factorization & bf);
|
||||
|
||||
bool find_bfc_to_refine(const monomial* & m, factorization& bf);
|
||||
bool find_bfc_to_refine(const monic* & m, factorization& bf);
|
||||
|
||||
void negate_relation(unsigned j, const rational& a);
|
||||
bool conflict_found() const;
|
||||
|
@ -381,18 +381,18 @@ public:
|
|||
|
||||
struct pp_mon {
|
||||
core const& c;
|
||||
monomial const& m;
|
||||
pp_mon(core const& c, monomial const& m): c(c), m(m) {}
|
||||
monic const& m;
|
||||
pp_mon(core const& c, monic const& m): c(c), m(m) {}
|
||||
pp_mon(core const& c, lpvar v): c(c), m(c.emons()[v]) {}
|
||||
};
|
||||
struct pp_mon_with_vars {
|
||||
core const& c;
|
||||
monomial const& m;
|
||||
pp_mon_with_vars(core const& c, monomial const& m): c(c), m(m) {}
|
||||
monic const& m;
|
||||
pp_mon_with_vars(core const& c, monic const& m): c(c), m(m) {}
|
||||
pp_mon_with_vars(core const& c, lpvar v): c(c), m(c.emons()[v]) {}
|
||||
};
|
||||
inline std::ostream& operator<<(std::ostream& out, pp_mon const& p) { return p.c.print_monomial(p.m, out); }
|
||||
inline std::ostream& operator<<(std::ostream& out, pp_mon_with_vars const& p) { return p.c.print_monomial_with_vars(p.m, out); }
|
||||
inline std::ostream& operator<<(std::ostream& out, pp_mon const& p) { return p.c.print_monic(p.m, out); }
|
||||
inline std::ostream& operator<<(std::ostream& out, pp_mon_with_vars const& p) { return p.c.print_monic_with_vars(p.m, out); }
|
||||
|
||||
struct pp_fac {
|
||||
core const& c;
|
||||
|
|
|
@ -63,11 +63,11 @@ inline std::ostream& operator<<(std::ostream& out, signed_var const& sv) { retur
|
|||
* represents definition m_v = coeff* v1*v2*...*vn,
|
||||
* where m_vs = [v1, v2, .., vn]
|
||||
*/
|
||||
class monomial_coeff {
|
||||
class monic_coeff {
|
||||
svector<lp::var_index> m_vs;
|
||||
rational m_coeff;
|
||||
public:
|
||||
monomial_coeff(const svector<lp::var_index>& vs, rational const& coeff): m_vs(vs), m_coeff(coeff) {}
|
||||
monic_coeff(const svector<lp::var_index>& vs, rational const& coeff): m_vs(vs), m_coeff(coeff) {}
|
||||
rational const& coeff() const { return m_coeff; }
|
||||
const svector<lp::var_index> & vars() const { return m_vs; }
|
||||
};
|
||||
|
|
|
@ -38,10 +38,10 @@ void nla_grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, std
|
|||
}
|
||||
}
|
||||
|
||||
if (!c().is_monomial_var(j))
|
||||
if (!c().is_monic_var(j))
|
||||
return;
|
||||
|
||||
const monomial& m = c().emons()[j];
|
||||
const monic& m = c().emons()[j];
|
||||
for (auto fcn : factorization_factory_imp(m, c())) {
|
||||
for (const factor& fc: fcn) {
|
||||
lpvar j = var(fc);
|
||||
|
@ -71,7 +71,7 @@ var_weight nla_grobner::get_var_weight(lpvar j) const {
|
|||
UNREACHABLE();
|
||||
break;
|
||||
}
|
||||
if (c().is_monomial_var(j)) {
|
||||
if (c().is_monic_var(j)) {
|
||||
return (var_weight)((int)k + 1);
|
||||
}
|
||||
return k;
|
||||
|
@ -88,7 +88,7 @@ void nla_grobner::find_nl_cluster() {
|
|||
prepare_rows_and_active_vars();
|
||||
std::queue<lpvar> q;
|
||||
for (lpvar j : c().m_to_refine) {
|
||||
TRACE("nla_grobner", c().print_monomial(c().emons()[j], tout) << "\n";);
|
||||
TRACE("nla_grobner", c().print_monic(c().emons()[j], tout) << "\n";);
|
||||
q.push(j);
|
||||
}
|
||||
|
||||
|
|
|
@ -35,6 +35,8 @@ struct grobner_stats {
|
|||
grobner_stats() { reset(); }
|
||||
};
|
||||
|
||||
struct monomial {
|
||||
};
|
||||
|
||||
class equation {
|
||||
unsigned m_scope_lvl; //!< scope level when this equation was created.
|
||||
|
|
|
@ -50,8 +50,8 @@ void monotone::negate_abs_a_le_abs_b(lpvar a, lpvar b, bool strict) {
|
|||
}
|
||||
|
||||
void monotone::assert_abs_val_a_le_abs_var_b(
|
||||
const monomial& a,
|
||||
const monomial& b,
|
||||
const monic& a,
|
||||
const monic& b,
|
||||
bool strict) {
|
||||
lpvar aj = var(a);
|
||||
lpvar bj = var(b);
|
||||
|
@ -77,8 +77,8 @@ void monotone::negate_abs_a_lt_abs_b(lpvar a, lpvar b) {
|
|||
mk_ineq(as, a, -bs, b, llc::GE); // negate |aj| < |bj|
|
||||
}
|
||||
|
||||
void monotone::monotonicity_lemma(monomial const& m) {
|
||||
SASSERT(!check_monomial(m));
|
||||
void monotone::monotonicity_lemma(monic const& m) {
|
||||
SASSERT(!check_monic(m));
|
||||
if (c().mon_has_zero(m.vars()))
|
||||
return;
|
||||
const rational prod_val = abs(c().product_value(m.vars()));
|
||||
|
@ -89,7 +89,7 @@ void monotone::monotonicity_lemma(monomial const& m) {
|
|||
monotonicity_lemma_gt(m, prod_val);
|
||||
}
|
||||
|
||||
void monotone::monotonicity_lemma_gt(const monomial& m, const rational& prod_val) {
|
||||
void monotone::monotonicity_lemma_gt(const monic& m, const rational& prod_val) {
|
||||
TRACE("nla_solver", tout << "prod_val = " << prod_val << "\n";);
|
||||
add_empty_lemma();
|
||||
for (lpvar j : m.vars()) {
|
||||
|
@ -106,7 +106,7 @@ void monotone::monotonicity_lemma_gt(const monomial& m, const rational& prod_val
|
|||
<=>
|
||||
\/_i |m[i]| < |val(m[i])} or |m| >= |product_i val(m[i])|
|
||||
*/
|
||||
void monotone::monotonicity_lemma_lt(const monomial& m, const rational& prod_val) {
|
||||
void monotone::monotonicity_lemma_lt(const monic& m, const rational& prod_val) {
|
||||
add_empty_lemma();
|
||||
for (lpvar j : m.vars()) {
|
||||
c().add_abs_bound(j, llc::LT);
|
||||
|
|
|
@ -25,13 +25,13 @@ public:
|
|||
monotone(core *core);
|
||||
void monotonicity_lemma();
|
||||
private:
|
||||
void monotonicity_lemma(monomial const& m);
|
||||
void monotonicity_lemma_gt(const monomial& m, const rational& prod_val);
|
||||
void monotonicity_lemma_lt(const monomial& m, const rational& prod_val);
|
||||
std::vector<rational> get_sorted_key(const monomial& rm) const;
|
||||
vector<std::pair<rational, lpvar>> get_sorted_key_with_rvars(const monomial& a) const;
|
||||
void monotonicity_lemma(monic const& m);
|
||||
void monotonicity_lemma_gt(const monic& m, const rational& prod_val);
|
||||
void monotonicity_lemma_lt(const monic& m, const rational& prod_val);
|
||||
std::vector<rational> get_sorted_key(const monic& rm) const;
|
||||
vector<std::pair<rational, lpvar>> get_sorted_key_with_rvars(const monic& a) const;
|
||||
void negate_abs_a_le_abs_b(lpvar a, lpvar b, bool strict);
|
||||
void negate_abs_a_lt_abs_b(lpvar a, lpvar b);
|
||||
void assert_abs_val_a_le_abs_var_b(const monomial& a, const monomial& b, bool strict);
|
||||
void assert_abs_val_a_le_abs_var_b(const monic& a, const monic& b, bool strict);
|
||||
};
|
||||
}
|
||||
|
|
|
@ -38,7 +38,7 @@ void order::order_lemma() {
|
|||
unsigned sz = to_ref.size();
|
||||
for (unsigned i = 0; i < sz && !done(); ++i) {
|
||||
lpvar j = to_ref[(i + r) % sz];
|
||||
order_lemma_on_monomial(c().emons()[j]);
|
||||
order_lemma_on_monic(c().emons()[j]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -46,7 +46,7 @@ void order::order_lemma() {
|
|||
// a > b && c > 0 => ac > bc
|
||||
// Consider here some binary factorizations of m=ac and
|
||||
// try create order lemmas with either factor playing the role of c.
|
||||
void order::order_lemma_on_monomial(const monomial& m) {
|
||||
void order::order_lemma_on_monic(const monic& m) {
|
||||
TRACE("nla_solver_details",
|
||||
tout << "m = " << pp_mon(c(), m););
|
||||
|
||||
|
@ -61,13 +61,13 @@ void order::order_lemma_on_monomial(const monomial& m) {
|
|||
break;
|
||||
}
|
||||
}
|
||||
// Here ac is a monomial of size 2
|
||||
// Here ac is a monic of size 2
|
||||
// Trying to get an order lemma is
|
||||
// a > b && c > 0 => ac > bc,
|
||||
// with either variable of ac playing the role of c
|
||||
void order::order_lemma_on_binomial(const monomial& ac) {
|
||||
void order::order_lemma_on_binomial(const monic& ac) {
|
||||
TRACE("nla_solver", tout << pp_mon_with_vars(c(), ac););
|
||||
SASSERT(!check_monomial(ac) && ac.size() == 2);
|
||||
SASSERT(!check_monic(ac) && ac.size() == 2);
|
||||
const rational mult_val = val(ac.vars()[0]) * val(ac.vars()[1]);
|
||||
const rational acv = val(ac);
|
||||
bool gt = acv > mult_val;
|
||||
|
@ -89,7 +89,7 @@ void order::order_lemma_on_binomial(const monomial& ac) {
|
|||
y >= 0 or x > a or xy >= ay
|
||||
|
||||
*/
|
||||
void order::order_lemma_on_binomial_sign(const monomial& xy, lpvar x, lpvar y, int sign) {
|
||||
void order::order_lemma_on_binomial_sign(const monic& xy, lpvar x, lpvar y, int sign) {
|
||||
SASSERT(!_().mon_has_zero(xy.vars()));
|
||||
int sy = rat_sign(val(y));
|
||||
add_empty_lemma();
|
||||
|
@ -99,13 +99,13 @@ void order::order_lemma_on_binomial_sign(const monomial& xy, lpvar x, lpvar y, i
|
|||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
// We look for monomials e = m.rvars()[k]*d and see if we can create an order lemma for m and e
|
||||
void order::order_lemma_on_factor_binomial_explore(const monomial& ac, bool k) {
|
||||
// We look for monics e = m.rvars()[k]*d and see if we can create an order lemma for m and e
|
||||
void order::order_lemma_on_factor_binomial_explore(const monic& ac, bool k) {
|
||||
TRACE("nla_solver", tout << "ac = " << pp_mon_with_vars(c(), ac););
|
||||
SASSERT(ac.size() == 2);
|
||||
lpvar c = ac.vars()[k];
|
||||
|
||||
for (monomial const& bd : _().emons().get_products_of(c)) {
|
||||
for (monic const& bd : _().emons().get_products_of(c)) {
|
||||
if (bd.var() == ac.var()) continue;
|
||||
TRACE("nla_solver", tout << "bd = " << pp_mon_with_vars(_(), bd););
|
||||
order_lemma_on_factor_binomial_rm(ac, k, bd);
|
||||
|
@ -116,8 +116,8 @@ void order::order_lemma_on_factor_binomial_explore(const monomial& ac, bool k) {
|
|||
}
|
||||
|
||||
// ac is a binomial
|
||||
// create order lemma on monomials bd where d is equivalent to ac[k]
|
||||
void order::order_lemma_on_factor_binomial_rm(const monomial& ac, bool k, const monomial& bd) {
|
||||
// create order lemma on monics bd where d is equivalent to ac[k]
|
||||
void order::order_lemma_on_factor_binomial_rm(const monic& ac, bool k, const monic& bd) {
|
||||
TRACE("nla_solver",
|
||||
tout << "ac=" << pp_mon_with_vars(_(), ac) << "\n";
|
||||
tout << "k=" << k << "\n";
|
||||
|
@ -131,7 +131,7 @@ void order::order_lemma_on_factor_binomial_rm(const monomial& ac, bool k, const
|
|||
}
|
||||
|
||||
// ac >= bd && |c| = |d| => ac/|c| >= bd/|d|
|
||||
void order::order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const monomial& bd, const factor& b, lpvar d) {
|
||||
void order::order_lemma_on_binomial_ac_bd(const monic& ac, bool k, const monic& bd, const factor& b, lpvar d) {
|
||||
lpvar a = ac.vars()[!k];
|
||||
lpvar c = ac.vars()[k];
|
||||
TRACE("nla_solver",
|
||||
|
@ -162,11 +162,11 @@ void order::order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const mono
|
|||
// c and d are equivalent |c| == |d|
|
||||
// ac > bd => ac/|c| > bd/|d| => a*c_sign > b*d_sign
|
||||
// but the last inequality does not hold
|
||||
void order::generate_mon_ol(const monomial& ac,
|
||||
void order::generate_mon_ol(const monic& ac,
|
||||
lpvar a,
|
||||
const rational& c_sign,
|
||||
lpvar c,
|
||||
const monomial& bd,
|
||||
const monic& bd,
|
||||
const factor& b,
|
||||
const rational& d_sign,
|
||||
lpvar d,
|
||||
|
@ -199,10 +199,10 @@ void order::generate_mon_ol(const monomial& ac,
|
|||
// a >< b && c < 0 => ac <> bc
|
||||
// ac[k] plays the role of c
|
||||
|
||||
bool order::order_lemma_on_ac_and_bc(const monomial& rm_ac,
|
||||
bool order::order_lemma_on_ac_and_bc(const monic& rm_ac,
|
||||
const factorization& ac_f,
|
||||
bool k,
|
||||
const monomial& rm_bd) {
|
||||
const monic& rm_bd) {
|
||||
TRACE("nla_solver",
|
||||
tout << "rm_ac = " << pp_mon_with_vars(_(), rm_ac) << "\n";
|
||||
tout << "rm_bd = " << pp_mon_with_vars(_(), rm_bd) << "\n";
|
||||
|
@ -216,9 +216,9 @@ bool order::order_lemma_on_ac_and_bc(const monomial& rm_ac,
|
|||
|
||||
|
||||
// Here ab is a binary factorization of m.
|
||||
// We try to find a monomial n = cd, such that |b| = |d|
|
||||
// We try to find a monic n = cd, such that |b| = |d|
|
||||
// and get a lemma m R n & |b| = |d| => ab/|b| R cd /|d|, where R is a relation
|
||||
void order::order_lemma_on_factorization(const monomial& m, const factorization& ab) {
|
||||
void order::order_lemma_on_factorization(const monic& m, const factorization& ab) {
|
||||
bool sign = m.rsign();
|
||||
for (factor f: ab)
|
||||
sign ^= _().canonize_sign(f);
|
||||
|
@ -230,7 +230,7 @@ void order::order_lemma_on_factorization(const monomial& m, const factorization&
|
|||
if (mv == fv)
|
||||
return;
|
||||
bool gt = mv > fv;
|
||||
TRACE("nla_solver", tout << "m="; _().print_monomial_with_vars(m, tout); tout << "\nfactorization="; _().print_factorization(ab, tout););
|
||||
TRACE("nla_solver", tout << "m="; _().print_monic_with_vars(m, tout); tout << "\nfactorization="; _().print_factorization(ab, tout););
|
||||
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
|
||||
order_lemma_on_ab(m, sign_to_rat(sign), var(ab[k]), var(ab[j]), gt);
|
||||
explain(ab); explain(m);
|
||||
|
@ -239,19 +239,19 @@ void order::order_lemma_on_factorization(const monomial& m, const factorization&
|
|||
}
|
||||
}
|
||||
|
||||
bool order::order_lemma_on_ac_explore(const monomial& rm, const factorization& ac, bool k) {
|
||||
bool order::order_lemma_on_ac_explore(const monic& rm, const factorization& ac, bool k) {
|
||||
const factor c = ac[k];
|
||||
TRACE("nla_solver", tout << "c = "; _().print_factor_with_vars(c, tout); );
|
||||
if (c.is_var()) {
|
||||
TRACE("nla_solver", tout << "var(c) = " << var(c););
|
||||
for (monomial const& bc : _().emons().get_use_list(c.var())) {
|
||||
for (monic const& bc : _().emons().get_use_list(c.var())) {
|
||||
if (order_lemma_on_ac_and_bc(rm ,ac, k, bc)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (monomial const& bc : _().emons().get_products_of(c.var())) {
|
||||
for (monic const& bc : _().emons().get_products_of(c.var())) {
|
||||
if (order_lemma_on_ac_and_bc(rm , ac, k, bc)) {
|
||||
return true;
|
||||
}
|
||||
|
@ -262,11 +262,11 @@ bool order::order_lemma_on_ac_explore(const monomial& rm, const factorization& a
|
|||
|
||||
// |c_sign| = 1, and c*c_sign > 0
|
||||
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
|
||||
void order::generate_ol(const monomial& ac,
|
||||
void order::generate_ol(const monic& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const monomial& bc,
|
||||
const monic& bc,
|
||||
const factor& b,
|
||||
llc ab_cmp) {
|
||||
add_empty_lemma();
|
||||
|
@ -282,10 +282,10 @@ void order::generate_ol(const monomial& ac,
|
|||
TRACE("nla_solver", _().print_lemma(tout););
|
||||
}
|
||||
|
||||
bool order::order_lemma_on_ac_and_bc_and_factors(const monomial& ac,
|
||||
bool order::order_lemma_on_ac_and_bc_and_factors(const monic& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const monomial& bc,
|
||||
const monic& bc,
|
||||
const factor& b) {
|
||||
auto cv = val(c);
|
||||
int c_sign = nla::rat_sign(cv);
|
||||
|
@ -311,7 +311,7 @@ bool order::order_lemma_on_ac_and_bc_and_factors(const monomial& ac,
|
|||
a > 0 & b <= value(b) => sign*ab <= value(b)*a if value(a) > 0
|
||||
a < 0 & b >= value(b) => sign*ab <= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order::order_lemma_on_ab_gt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
|
||||
void order::order_lemma_on_ab_gt(const monic& m, const rational& sign, lpvar a, lpvar b) {
|
||||
SASSERT(sign * val(m) > val(a) * val(b));
|
||||
add_empty_lemma();
|
||||
if (val(a).is_pos()) {
|
||||
|
@ -339,7 +339,7 @@ void order::order_lemma_on_ab_gt(const monomial& m, const rational& sign, lpvar
|
|||
a > 0 & b >= value(b) => sign*ab >= value(b)*a if value(a) > 0
|
||||
a < 0 & b <= value(b) => sign*ab >= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order::order_lemma_on_ab_lt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
|
||||
void order::order_lemma_on_ab_lt(const monic& m, const rational& sign, lpvar a, lpvar b) {
|
||||
SASSERT(sign * val(m) < val(a) * val(b));
|
||||
add_empty_lemma();
|
||||
if (val(a).is_pos()) {
|
||||
|
@ -360,7 +360,7 @@ void order::order_lemma_on_ab_lt(const monomial& m, const rational& sign, lpvar
|
|||
}
|
||||
}
|
||||
|
||||
void order::order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt) {
|
||||
void order::order_lemma_on_ab(const monic& m, const rational& sign, lpvar a, lpvar b, bool gt) {
|
||||
if (gt)
|
||||
order_lemma_on_ab_gt(m, sign, a, b);
|
||||
else
|
||||
|
|
|
@ -30,59 +30,59 @@ public:
|
|||
|
||||
private:
|
||||
|
||||
bool order_lemma_on_ac_and_bc_and_factors(const monomial& ac,
|
||||
bool order_lemma_on_ac_and_bc_and_factors(const monic& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const monomial& bc,
|
||||
const monic& bc,
|
||||
const factor& b);
|
||||
|
||||
// a >< b && c > 0 => ac >< bc
|
||||
// a >< b && c < 0 => ac <> bc
|
||||
// ac[k] plays the role of c
|
||||
bool order_lemma_on_ac_and_bc(const monomial& rm_ac,
|
||||
bool order_lemma_on_ac_and_bc(const monic& rm_ac,
|
||||
const factorization& ac_f,
|
||||
bool k,
|
||||
const monomial& rm_bd);
|
||||
const monic& rm_bd);
|
||||
|
||||
bool order_lemma_on_ac_explore(const monomial& rm, const factorization& ac, bool k);
|
||||
bool order_lemma_on_ac_explore(const monic& rm, const factorization& ac, bool k);
|
||||
|
||||
void order_lemma_on_factorization(const monomial& rm, const factorization& ab);
|
||||
void order_lemma_on_factorization(const monic& rm, const factorization& ab);
|
||||
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b <= value(b) => sign*ab <= value(b)*a if value(a) > 0
|
||||
a < 0 & b >= value(b) => sign*ab <= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order_lemma_on_ab_gt(const monomial& m, const rational& sign, lpvar a, lpvar b);
|
||||
void order_lemma_on_ab_gt(const monic& m, const rational& sign, lpvar a, lpvar b);
|
||||
// we need to deduce ab >= val(b)*a
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b >= value(b) => sign*ab >= value(b)*a if value(a) > 0
|
||||
a < 0 & b <= value(b) => sign*ab >= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order_lemma_on_ab_lt(const monomial& m, const rational& sign, lpvar a, lpvar b);
|
||||
void order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt);
|
||||
void order_lemma_on_factor_binomial_explore(const monomial& m, bool k);
|
||||
void order_lemma_on_factor_binomial_rm(const monomial& ac, bool k, const monomial& bd);
|
||||
void order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const monomial& bd, const factor& b, lpvar d);
|
||||
void order_lemma_on_binomial_sign(const monomial& ac, lpvar x, lpvar y, int sign);
|
||||
void order_lemma_on_binomial(const monomial& ac);
|
||||
void order_lemma_on_monomial(const monomial& rm);
|
||||
void order_lemma_on_ab_lt(const monic& m, const rational& sign, lpvar a, lpvar b);
|
||||
void order_lemma_on_ab(const monic& m, const rational& sign, lpvar a, lpvar b, bool gt);
|
||||
void order_lemma_on_factor_binomial_explore(const monic& m, bool k);
|
||||
void order_lemma_on_factor_binomial_rm(const monic& ac, bool k, const monic& bd);
|
||||
void order_lemma_on_binomial_ac_bd(const monic& ac, bool k, const monic& bd, const factor& b, lpvar d);
|
||||
void order_lemma_on_binomial_sign(const monic& ac, lpvar x, lpvar y, int sign);
|
||||
void order_lemma_on_binomial(const monic& ac);
|
||||
void order_lemma_on_monic(const monic& rm);
|
||||
// |c_sign| = 1, and c*c_sign > 0
|
||||
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
|
||||
void generate_ol(const monomial& ac,
|
||||
void generate_ol(const monic& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const monomial& bc,
|
||||
const monic& bc,
|
||||
const factor& b,
|
||||
llc ab_cmp);
|
||||
|
||||
void generate_mon_ol(const monomial& ac,
|
||||
void generate_mon_ol(const monic& ac,
|
||||
lpvar a,
|
||||
const rational& c_sign,
|
||||
lpvar c,
|
||||
const monomial& bd,
|
||||
const monic& bd,
|
||||
const factor& b,
|
||||
const rational& d_sign,
|
||||
lpvar d,
|
||||
|
|
|
@ -19,19 +19,19 @@
|
|||
--*/
|
||||
#include "math/lp/nla_solver.h"
|
||||
#include <map>
|
||||
#include "math/lp/monomial.h"
|
||||
#include "math/lp/monic.h"
|
||||
#include "math/lp/lp_utils.h"
|
||||
#include "math/lp/var_eqs.h"
|
||||
#include "math/lp/factorization.h"
|
||||
#include "math/lp/nla_solver.h"
|
||||
namespace nla {
|
||||
|
||||
void solver::add_monomial(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
m_core->add_monomial(v, sz, vs);
|
||||
void solver::add_monic(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
m_core->add_monic(v, sz, vs);
|
||||
}
|
||||
|
||||
bool solver::is_monomial_var(lpvar v) const {
|
||||
return m_core->is_monomial_var(v);
|
||||
bool solver::is_monic_var(lpvar v) const {
|
||||
return m_core->is_monic_var(v);
|
||||
}
|
||||
|
||||
bool solver::need_check() { return true; }
|
||||
|
|
|
@ -24,7 +24,7 @@ Revision History:
|
|||
#include "util/params.h"
|
||||
#include "nlsat/nlsat_solver.h"
|
||||
#include "math/lp/lar_solver.h"
|
||||
#include "math/lp/monomial.h"
|
||||
#include "math/lp/monic.h"
|
||||
#include "math/lp/nla_core.h"
|
||||
|
||||
namespace nla {
|
||||
|
@ -34,7 +34,7 @@ class solver {
|
|||
reslimit m_res_limit;
|
||||
core* m_core;
|
||||
public:
|
||||
void add_monomial(lpvar v, unsigned sz, lpvar const* vs);
|
||||
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
|
||||
|
||||
solver(lp::lar_solver& s);
|
||||
~solver();
|
||||
|
@ -43,6 +43,6 @@ public:
|
|||
void pop(unsigned scopes);
|
||||
bool need_check();
|
||||
lbool check(vector<lemma>&);
|
||||
bool is_monomial_var(lpvar) const;
|
||||
bool is_monic_var(lpvar) const;
|
||||
};
|
||||
}
|
||||
|
|
|
@ -35,13 +35,13 @@ void tangents::tangent_lemma() {
|
|||
return;
|
||||
}
|
||||
factorization bf(nullptr);
|
||||
const monomial* m;
|
||||
const monic* m;
|
||||
if (c().find_bfc_to_refine(m, bf)) {
|
||||
tangent_lemma_bf(*m, bf);
|
||||
}
|
||||
}
|
||||
|
||||
void tangents::generate_explanations_of_tang_lemma(const monomial& rm, const factorization& bf, lp::explanation& exp) {
|
||||
void tangents::generate_explanations_of_tang_lemma(const monic& rm, const factorization& bf, lp::explanation& exp) {
|
||||
// here we repeat the same explanation for each lemma
|
||||
c().explain(rm, exp);
|
||||
c().explain(bf[0], exp);
|
||||
|
@ -69,7 +69,7 @@ void tangents::generate_tang_plane(const rational & a, const rational& b, const
|
|||
c().mk_ineq(t, below? llc::GT : llc::LT, - a*b);
|
||||
}
|
||||
|
||||
void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
|
||||
void tangents::tangent_lemma_bf(const monic& m, const factorization& bf){
|
||||
point a, b;
|
||||
point xy (val(bf[0]), val(bf[1]));
|
||||
rational correct_mult_val = xy.x * xy.y;
|
||||
|
|
|
@ -53,9 +53,9 @@ public:
|
|||
void tangent_lemma();
|
||||
private:
|
||||
lpvar find_binomial_to_refine();
|
||||
void generate_explanations_of_tang_lemma(const monomial& m, const factorization& bf, lp::explanation& exp);
|
||||
void generate_simple_tangent_lemma(const monomial& m, const factorization&);
|
||||
void tangent_lemma_bf(const monomial& m,const factorization& bf);
|
||||
void generate_explanations_of_tang_lemma(const monic& m, const factorization& bf, lp::explanation& exp);
|
||||
void generate_simple_tangent_lemma(const monic& m, const factorization&);
|
||||
void tangent_lemma_bf(const monic& m,const factorization& bf);
|
||||
void generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j);
|
||||
|
||||
void generate_two_tang_lines(const factorization & bf, const point& xy, lpvar j);
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
#include "math/polynomial/polynomial.h"
|
||||
#include "math/polynomial/algebraic_numbers.h"
|
||||
#include "util/map.h"
|
||||
#include "math/lp/monomial.h"
|
||||
#include "math/lp/monic.h"
|
||||
|
||||
namespace nra {
|
||||
|
||||
|
@ -23,8 +23,8 @@ typedef nla::variable_map_type variable_map_type;
|
|||
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
|
||||
scoped_ptr<nlsat::solver> m_nlsat;
|
||||
scoped_ptr<scoped_anum> m_zero;
|
||||
vector<mon_eq> m_monomials;
|
||||
unsigned_vector m_monomials_lim;
|
||||
vector<mon_eq> m_monics;
|
||||
unsigned_vector m_monics_lim;
|
||||
mutable variable_map_type m_variable_values; // current model
|
||||
|
||||
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p):
|
||||
|
@ -34,21 +34,21 @@ typedef nla::variable_map_type variable_map_type;
|
|||
}
|
||||
|
||||
bool need_check() {
|
||||
return !m_monomials.empty() && !check_assignments(m_monomials, s, m_variable_values);
|
||||
return !m_monics.empty() && !check_assignments(m_monics, s, m_variable_values);
|
||||
}
|
||||
|
||||
void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
|
||||
m_monomials.push_back(mon_eq(v, sz, vs));
|
||||
m_monics.push_back(mon_eq(v, sz, vs));
|
||||
}
|
||||
|
||||
void push() {
|
||||
m_monomials_lim.push_back(m_monomials.size());
|
||||
m_monics_lim.push_back(m_monics.size());
|
||||
}
|
||||
|
||||
void pop(unsigned n) {
|
||||
if (n == 0) return;
|
||||
m_monomials.shrink(m_monomials_lim[m_monomials_lim.size() - n]);
|
||||
m_monomials_lim.shrink(m_monomials_lim.size() - n);
|
||||
m_monics.shrink(m_monics_lim[m_monics_lim.size() - n]);
|
||||
m_monics_lim.shrink(m_monics_lim.size() - n);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -67,7 +67,7 @@ typedef nla::variable_map_type variable_map_type;
|
|||
|
||||
bool check_assignments() const {
|
||||
s.get_model(m_variable_values);
|
||||
for (auto const& m : m_monomials) {
|
||||
for (auto const& m : m_monics) {
|
||||
if (!check_assignment(m)) return false;
|
||||
}
|
||||
return true;
|
||||
|
@ -97,8 +97,8 @@ typedef nla::variable_map_type variable_map_type;
|
|||
}
|
||||
|
||||
// add polynomial definitions.
|
||||
for (auto const& m : m_monomials) {
|
||||
add_monomial_eq(m);
|
||||
for (auto const& m : m_monics) {
|
||||
add_monic_eq(m);
|
||||
}
|
||||
// TBD: add variable bounds?
|
||||
|
||||
|
@ -134,7 +134,7 @@ typedef nla::variable_map_type variable_map_type;
|
|||
return r;
|
||||
}
|
||||
|
||||
void add_monomial_eq(mon_eq const& m) {
|
||||
void add_monic_eq(mon_eq const& m) {
|
||||
polynomial::manager& pm = m_nlsat->pm();
|
||||
svector<polynomial::var> vars;
|
||||
for (auto v : m.vars()) {
|
||||
|
@ -142,7 +142,7 @@ typedef nla::variable_map_type variable_map_type;
|
|||
}
|
||||
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
|
||||
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
|
||||
polynomial::monomial* mls[2] = { m1, m2 };
|
||||
polynomial::monomial * mls[2] = { m1, m2 };
|
||||
polynomial::scoped_numeral_vector coeffs(pm.m());
|
||||
coeffs.push_back(mpz(1));
|
||||
coeffs.push_back(mpz(-1));
|
||||
|
@ -226,7 +226,7 @@ typedef nla::variable_map_type variable_map_type;
|
|||
}
|
||||
|
||||
std::ostream& display(std::ostream& out) const {
|
||||
for (auto m : m_monomials) {
|
||||
for (auto m : m_monics) {
|
||||
out << "v" << m.var() << " = ";
|
||||
for (auto v : m.vars()) {
|
||||
out << "v" << v << " ";
|
||||
|
@ -245,7 +245,7 @@ typedef nla::variable_map_type variable_map_type;
|
|||
dealloc(m_imp);
|
||||
}
|
||||
|
||||
void solver::add_monomial(lp::var_index v, unsigned sz, lp::var_index const* vs) {
|
||||
void solver::add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs) {
|
||||
m_imp->add(v, sz, vs);
|
||||
}
|
||||
|
||||
|
|
|
@ -33,7 +33,7 @@ namespace nra {
|
|||
\brief Add a definition v = vs[0]*vs[1]*...*vs[sz-1]
|
||||
The variable v is equal to the product of variables vs.
|
||||
*/
|
||||
void add_monomial(lp::var_index v, unsigned sz, lp::var_index const* vs);
|
||||
void add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs);
|
||||
|
||||
/*
|
||||
\brief Check feasiblity of linear constraints augmented by polynomial definitions
|
||||
|
|
|
@ -308,14 +308,14 @@ class theory_lra::imp {
|
|||
}
|
||||
|
||||
|
||||
void add_monomial(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
void add_monic(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
if (m_use_nla) {
|
||||
m_th_imp.ensure_nla();
|
||||
(*m_nla)->add_monomial(v, sz, vs);
|
||||
(*m_nla)->add_monic(v, sz, vs);
|
||||
}
|
||||
else {
|
||||
m_th_imp.ensure_nra();
|
||||
(*m_nra)->add_monomial(v, sz, vs);
|
||||
(*m_nra)->add_monic(v, sz, vs);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -658,7 +658,7 @@ class theory_lra::imp {
|
|||
m_solver->m_need_register_terms = true;
|
||||
m_solver->register_existing_terms();
|
||||
}
|
||||
m_switcher.add_monomial(register_theory_var_in_lar_solver(v), vars.size(), vars.c_ptr());
|
||||
m_switcher.add_monic(register_theory_var_in_lar_solver(v), vars.size(), vars.c_ptr());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue