3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 09:35:32 +00:00

move mus to solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2016-06-10 16:24:14 -07:00
parent 19f98547f7
commit 9f5a117443
10 changed files with 273 additions and 110 deletions

View file

@ -54,6 +54,7 @@ public:
virtual void set_reason_unknown(char const* msg) = 0;
virtual void get_labels(svector<symbol> & r) = 0;
virtual ast_manager& get_manager() = 0;
};
/**

351
src/solver/mus.cpp Normal file
View file

@ -0,0 +1,351 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
mus.cpp
Abstract:
MUS extraction.
Author:
Nikolaj Bjorner (nbjorner) 2014-20-7
Notes:
--*/
#include "solver.h"
#include "mus.h"
#include "ast_pp.h"
#include "ast_util.h"
#include "uint_set.h"
struct mus::imp {
solver& m_s;
ast_manager& m;
expr_ref_vector m_cls2expr;
obj_map<expr, unsigned> m_expr2cls;
model_ref m_model;
expr_ref_vector m_soft;
vector<rational> m_weights;
rational m_weight;
imp(solver& s):
m_s(s), m(s.get_manager()), m_cls2expr(m), m_soft(m)
{}
void reset() {
m_cls2expr.reset();
m_expr2cls.reset();
}
unsigned add_soft(expr* cls) {
SASSERT(is_uninterp_const(cls) ||
(m.is_not(cls) && is_uninterp_const(to_app(cls)->get_arg(0))));
unsigned idx = m_cls2expr.size();
m_expr2cls.insert(cls, idx);
m_cls2expr.push_back(cls);
TRACE("opt", tout << idx << ": " << mk_pp(cls, m) << "\n";
display_vec(tout, m_cls2expr););
return idx;
}
lbool get_mus(unsigned_vector& mus) {
// SASSERT: mus does not have duplicates.
m_model.reset();
unsigned_vector core;
for (unsigned i = 0; i < m_cls2expr.size(); ++i) {
core.push_back(i);
}
if (core.size() == 1) {
mus.push_back(core.back());
return l_true;
}
mus.reset();
if (core.size() > 64) {
return qx(mus);
}
expr_ref_vector assumptions(m);
ptr_vector<expr> core_exprs;
while (!core.empty()) {
IF_VERBOSE(12, verbose_stream() << "(opt.mus reducing core: " << core.size() << " new core: " << mus.size() << ")\n";);
unsigned cls_id = core.back();
TRACE("opt",
display_vec(tout << "core: ", core);
display_vec(tout << "mus: ", mus);
);
core.pop_back();
expr* cls = m_cls2expr[cls_id].get();
expr_ref not_cls(m);
not_cls = mk_not(m, cls);
lbool is_sat = l_undef;
{
scoped_append _sa(*this, assumptions, core);
assumptions.push_back(not_cls);
is_sat = m_s.check_sat(assumptions);
}
switch (is_sat) {
case l_undef:
return is_sat;
case l_true:
assumptions.push_back(cls);
mus.push_back(cls_id);
update_model();
break;
default:
core_exprs.reset();
m_s.get_unsat_core(core_exprs);
if (!core_exprs.contains(not_cls)) {
// core := core_exprs \ mus
core.reset();
for (unsigned i = 0; i < core_exprs.size(); ++i) {
cls = core_exprs[i];
cls_id = m_expr2cls.find(cls);
if (!mus.contains(cls_id)) {
core.push_back(cls_id);
}
}
TRACE("opt", display_vec(tout << "core exprs:", core_exprs);
display_vec(tout << "core:", core);
display_vec(tout << "mus:", mus);
);
}
break;
}
}
#if 0
DEBUG_CODE(
assumptions.reset();
for (unsigned i = 0; i < mus.size(); ++i) {
assumptions.push_back(m_cls2expr[mus[i]].get());
}
lbool is_sat = m_s.check_sat(assumptions.size(), assumptions.c_ptr());
SASSERT(is_sat == l_false);
);
#endif
return l_true;
}
class scoped_append {
expr_ref_vector& m_fmls;
unsigned m_size;
public:
scoped_append(imp& imp, expr_ref_vector& fmls1, unsigned_vector const& fmls2):
m_fmls(fmls1),
m_size(fmls1.size()) {
for (unsigned i = 0; i < fmls2.size(); ++i) {
fmls1.push_back(imp.m_cls2expr[fmls2[i]].get());
}
}
scoped_append(imp& imp, expr_ref_vector& fmls1, uint_set const& fmls2):
m_fmls(fmls1),
m_size(fmls1.size()) {
uint_set::iterator it = fmls2.begin(), end = fmls2.end();
for (; it != end; ++it) {
fmls1.push_back(imp.m_cls2expr[*it].get());
}
}
~scoped_append() {
m_fmls.shrink(m_size);
}
};
void add_core(unsigned_vector const& core, expr_ref_vector& assumptions) {
for (unsigned i = 0; i < core.size(); ++i) {
assumptions.push_back(m_cls2expr[core[i]].get());
}
}
template<class T>
void display_vec(std::ostream& out, T const& v) const {
for (unsigned i = 0; i < v.size(); ++i) {
out << v[i] << " ";
}
out << "\n";
}
void display_vec(std::ostream& out, expr_ref_vector const& v) const {
for (unsigned i = 0; i < v.size(); ++i)
out << mk_pp(v[i], m) << " ";
out << "\n";
}
void display_vec(std::ostream& out, ptr_vector<expr> const& v) const {
for (unsigned i = 0; i < v.size(); ++i)
out << mk_pp(v[i], m) << " ";
out << "\n";
}
void set_soft(unsigned sz, expr* const* soft, rational const* weights) {
m_model.reset();
m_weight.reset();
m_soft.append(sz, soft);
m_weights.append(sz, weights);
for (unsigned i = 0; i < sz; ++i) {
m_weight += weights[i];
}
}
void update_model() {
if (m_soft.empty()) return;
model_ref mdl;
expr_ref tmp(m);
m_s.get_model(mdl);
rational w;
for (unsigned i = 0; i < m_soft.size(); ++i) {
mdl->eval(m_soft[i].get(), tmp);
if (!m.is_true(tmp)) {
w += m_weights[i];
}
}
if (w < m_weight || !m_model.get()) {
m_model = mdl;
m_weight = w;
}
}
rational get_best_model(model_ref& mdl) {
mdl = m_model;
return m_weight;
}
lbool qx(unsigned_vector& mus) {
uint_set core, support;
for (unsigned i = 0; i < m_cls2expr.size(); ++i) {
core.insert(i);
}
lbool is_sat = qx(core, support, false);
if (is_sat == l_true) {
uint_set::iterator it = core.begin(), end = core.end();
mus.reset();
for (; it != end; ++it) {
mus.push_back(*it);
}
}
return is_sat;
}
lbool qx(uint_set& assignment, uint_set& support, bool has_support) {
lbool is_sat = l_true;
#if 0
if (s.m_config.m_minimize_core_partial && s.m_stats.m_restart - m_restart > m_max_restarts) {
IF_VERBOSE(1, verbose_stream() << "(sat restart budget exceeded)\n";);
return l_true;
}
#endif
if (has_support) {
expr_ref_vector asms(m);
scoped_append _sa(*this, asms, support);
is_sat = m_s.check_sat(asms);
switch (is_sat) {
case l_false: {
uint_set core;
get_core(core);
support &= core;
assignment.reset();
return l_true;
}
case l_undef:
return l_undef;
case l_true:
update_model();
break;
default:
break;
}
}
if (assignment.num_elems() == 1) {
return l_true;
}
uint_set assign2;
split(assignment, assign2);
support |= assignment;
is_sat = qx(assign2, support, !assignment.empty());
unsplit(support, assignment);
if (is_sat != l_true) return is_sat;
support |= assign2;
is_sat = qx(assignment, support, !assign2.empty());
assignment |= assign2;
unsplit(support, assign2);
return is_sat;
}
void get_core(uint_set& core) {
ptr_vector<expr> core_exprs;
m_s.get_unsat_core(core_exprs);
for (unsigned i = 0; i < core_exprs.size(); ++i) {
expr* cls = core_exprs[i];
core.insert(m_expr2cls.find(cls));
}
}
void unsplit(uint_set& A, uint_set& B) {
uint_set A1, B1;
uint_set::iterator it = A.begin(), end = A.end();
for (; it != end; ++it) {
if (B.contains(*it)) {
B1.insert(*it);
}
else {
A1.insert(*it);
}
}
A = A1;
B = B1;
}
void split(uint_set& lits1, uint_set& lits2) {
unsigned half = lits1.num_elems()/2;
uint_set lits3;
uint_set::iterator it = lits1.begin(), end = lits1.end();
for (unsigned i = 0; it != end; ++it, ++i) {
if (i < half) {
lits3.insert(*it);
}
else {
lits2.insert(*it);
}
}
lits1 = lits3;
}
};
mus::mus(solver& s) {
m_imp = alloc(imp, s);
}
mus::~mus() {
dealloc(m_imp);
}
unsigned mus::add_soft(expr* cls) {
return m_imp->add_soft(cls);
}
lbool mus::get_mus(unsigned_vector& mus) {
return m_imp->get_mus(mus);
}
void mus::reset() {
m_imp->reset();
}
void mus::set_soft(unsigned sz, expr* const* soft, rational const* weights) {
m_imp->set_soft(sz, soft, weights);
}
rational mus::get_best_model(model_ref& mdl) {
return m_imp->get_best_model(mdl);
}

54
src/solver/mus.h Normal file
View file

@ -0,0 +1,54 @@
/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
mus.h
Abstract:
Basic MUS extraction
Author:
Nikolaj Bjorner (nbjorner) 2014-20-7
Notes:
--*/
#ifndef MUS_H_
#define MUS_H_
class mus {
struct imp;
imp * m_imp;
public:
mus(solver& s);
~mus();
/**
Add soft constraint.
Assume that the solver context enforces that
cls is equivalent to a disjunction of args.
Assume also that cls is a literal.
*/
unsigned add_soft(expr* cls);
lbool get_mus(unsigned_vector& mus);
void reset();
/**
Instrument MUS extraction to also provide the minimal
penalty model, if any is found.
The minimal penalty model has the least weight for the
supplied soft constraints.
*/
void set_soft(unsigned sz, expr* const* soft, rational const* weights);
rational get_best_model(model_ref& mdl);
};
#endif

View file

@ -108,6 +108,10 @@ public:
*/
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions) = 0;
lbool check_sat(expr_ref_vector const& asms) { return check_sat(asms.size(), asms.c_ptr()); }
lbool check_sat(app_ref_vector const& asms) { return check_sat(asms.size(), (expr* const*)asms.c_ptr()); }
/**
\brief Set a progress callback procedure that is invoked by this solver during check_sat.