3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-11 16:42:04 +00:00

Add comprehensive rewrite rules for finite set operations

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
copilot-swe-agent[bot] 2025-10-14 16:58:01 +00:00
parent 479fad091d
commit 9f285d8fdc
2 changed files with 126 additions and 10 deletions

View file

@ -31,55 +31,169 @@ br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, exp
case OP_FINITE_SET_SUBSET:
SASSERT(num_args == 2);
return mk_subset(args[0], args[1], result);
case OP_FINITE_SET_SINGLETON:
SASSERT(num_args == 1);
return mk_singleton(args[0], result);
case OP_FINITE_SET_IN:
SASSERT(num_args == 2);
return mk_in(args[0], args[1], result);
default:
return BR_FAILED;
}
}
br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, expr_ref & result) {
// Handle binary case - check if both arguments are the same
// set.union(x, x) -> x
// Idempotency: set.union(x, x) -> x
if (num_args == 2 && args[0] == args[1]) {
result = args[0];
return BR_DONE;
}
// Additional simplifications can be added here
// For example: set.union(x, empty) -> x
// But for now, we keep it minimal as per requirements
// Identity: set.union(x, empty) -> x or set.union(empty, x) -> x
if (num_args == 2) {
if (m_util.is_empty(args[0])) {
result = args[1];
return BR_DONE;
}
if (m_util.is_empty(args[1])) {
result = args[0];
return BR_DONE;
}
// Absorption: set.union(x, set.intersect(x, y)) -> x
expr* a1, *a2;
if (m_util.is_intersect(args[1], a1, a2)) {
if (args[0] == a1 || args[0] == a2) {
result = args[0];
return BR_DONE;
}
}
// Absorption: set.union(set.intersect(x, y), x) -> x
if (m_util.is_intersect(args[0], a1, a2)) {
if (args[1] == a1 || args[1] == a2) {
result = args[1];
return BR_DONE;
}
}
}
return BR_FAILED;
}
br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * args, expr_ref & result) {
// set.intersect(x, x) -> x
// Idempotency: set.intersect(x, x) -> x
if (num_args == 2 && args[0] == args[1]) {
result = args[0];
return BR_DONE;
}
// Annihilation: set.intersect(x, empty) -> empty or set.intersect(empty, x) -> empty
if (num_args == 2) {
if (m_util.is_empty(args[0])) {
result = args[0];
return BR_DONE;
}
if (m_util.is_empty(args[1])) {
result = args[1];
return BR_DONE;
}
// Absorption: set.intersect(x, set.union(x, y)) -> x
expr* a1, *a2;
if (m_util.is_union(args[1], a1, a2)) {
if (args[0] == a1 || args[0] == a2) {
result = args[0];
return BR_DONE;
}
}
// Absorption: set.intersect(set.union(x, y), x) -> x
if (m_util.is_union(args[0], a1, a2)) {
if (args[1] == a1 || args[1] == a2) {
result = args[1];
return BR_DONE;
}
}
}
return BR_FAILED;
}
br_status finite_set_rewriter::mk_difference(expr * arg1, expr * arg2, expr_ref & result) {
// set.difference(x, x) -> set.empty
if (arg1 == arg2) {
// Get the set sort directly from the argument
sort* set_sort = arg1->get_sort();
SASSERT(m_util.is_finite_set(set_sort));
// Call mk_empty with set_sort directly as suggested
result = m_util.mk_empty(set_sort);
return BR_DONE;
}
// Identity: set.difference(x, empty) -> x
if (m_util.is_empty(arg2)) {
result = arg1;
return BR_DONE;
}
// Annihilation: set.difference(empty, x) -> empty
if (m_util.is_empty(arg1)) {
result = arg1;
return BR_DONE;
}
return BR_FAILED;
}
br_status finite_set_rewriter::mk_subset(expr * arg1, expr * arg2, expr_ref & result) {
// set.subset(x, y) -> set.intersect(x, y) = x
// set.subset(x, x) -> true
if (arg1 == arg2) {
result = m().mk_true();
return BR_DONE;
}
// set.subset(empty, x) -> true
if (m_util.is_empty(arg1)) {
result = m().mk_true();
return BR_DONE;
}
// set.subset(x, empty) -> x = empty
if (m_util.is_empty(arg2)) {
result = m().mk_eq(arg1, arg2);
return BR_REWRITE1;
}
// General case: set.subset(x, y) -> set.intersect(x, y) = x
expr_ref intersect(m());
intersect = m_util.mk_intersect(arg1, arg2);
result = m().mk_eq(intersect, arg1);
return BR_REWRITE3;
}
br_status finite_set_rewriter::mk_singleton(expr * arg, expr_ref & result) {
// Singleton is already in normal form, no simplifications
return BR_FAILED;
}
br_status finite_set_rewriter::mk_in(expr * elem, expr * set, expr_ref & result) {
// set.in(x, singleton(y)) -> x = y
expr* singleton_elem;
if (m_util.is_singleton(set, singleton_elem)) {
result = m().mk_eq(elem, singleton_elem);
return BR_REWRITE1;
}
// set.in(x, empty) -> false
if (m_util.is_empty(set)) {
result = m().mk_false();
return BR_DONE;
}
// set.in(x, singleton(x)) -> true (when x is the same)
if (m_util.is_singleton(set, singleton_elem) && elem == singleton_elem) {
result = m().mk_true();
return BR_DONE;
}
return BR_FAILED;
}

View file

@ -39,6 +39,8 @@ class finite_set_rewriter {
br_status mk_intersect(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_difference(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_subset(expr * arg1, expr * arg2, expr_ref & result);
br_status mk_singleton(expr * arg, expr_ref & result);
br_status mk_in(expr * elem, expr * set, expr_ref & result);
public:
finite_set_rewriter(ast_manager & m, params_ref const & p = params_ref()):
m_util(m) {