mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
optimizing solver performance in duality
This commit is contained in:
parent
c98b853917
commit
9e88691c69
|
@ -350,7 +350,7 @@ protected:
|
|||
proof_core = 0;
|
||||
}
|
||||
|
||||
~RPFP();
|
||||
virtual ~RPFP();
|
||||
|
||||
/** Symbolic representation of a relational transformer */
|
||||
class Transformer
|
||||
|
@ -962,6 +962,22 @@ protected:
|
|||
expr NegateLit(const expr &f);
|
||||
|
||||
expr GetEdgeFormula(Edge *e, int persist, bool with_children, bool underapprox);
|
||||
|
||||
virtual void slvr_add(const expr &e);
|
||||
|
||||
virtual void slvr_pop(int i);
|
||||
|
||||
virtual void slvr_push();
|
||||
|
||||
virtual check_result slvr_check(unsigned n = 0, expr * const assumptions = 0, unsigned *core_size = 0, expr *core = 0);
|
||||
|
||||
virtual lbool ls_interpolate_tree(TermTree *assumptions,
|
||||
TermTree *&interpolants,
|
||||
model &_model,
|
||||
TermTree *goals = 0,
|
||||
bool weak = false);
|
||||
|
||||
virtual bool proof_core_contains(const expr &e);
|
||||
};
|
||||
|
||||
|
||||
|
@ -1085,16 +1101,43 @@ namespace Duality {
|
|||
/** Construct a caching RPFP using a LogicSolver */
|
||||
RPFP_caching(LogicSolver *_ls) : RPFP(_ls) {}
|
||||
|
||||
/** Constraint an edge by its child's annotation. Return
|
||||
assumption lits. */
|
||||
void ConstrainParentCache(Edge *parent, Node *child, std::vector<Term> &lits);
|
||||
|
||||
virtual ~RPFP_caching(){}
|
||||
|
||||
protected:
|
||||
hash_map<ast,expr> AssumptionLits;
|
||||
hash_map<Node *, Node *> NodeCloneMap;
|
||||
hash_map<Edge *, Edge *> EdgeCloneMap;
|
||||
std::vector<expr> alit_stack;
|
||||
std::vector<unsigned> alit_stack_sizes;
|
||||
|
||||
void GetAssumptionLits(const expr &fmla, std::vector<expr> &lits, hash_map<ast,expr> *opt_map = 0);
|
||||
|
||||
void GreedyReduceCache(std::vector<expr> &assumps, std::vector<expr> &core);
|
||||
|
||||
void FilterCore(std::vector<expr> &core, std::vector<expr> &full_core);
|
||||
void ConstrainEdgeLocalizedCache(Edge *e, const Term &tl, std::vector<expr> &lits);
|
||||
|
||||
virtual void slvr_add(const expr &e);
|
||||
|
||||
virtual void slvr_pop(int i);
|
||||
|
||||
virtual void slvr_push();
|
||||
|
||||
virtual check_result slvr_check(unsigned n = 0, expr * const assumptions = 0, unsigned *core_size = 0, expr *core = 0);
|
||||
|
||||
virtual lbool ls_interpolate_tree(TermTree *assumptions,
|
||||
TermTree *&interpolants,
|
||||
model &_model,
|
||||
TermTree *goals = 0,
|
||||
bool weak = false);
|
||||
|
||||
virtual bool proof_core_contains(const expr &e);
|
||||
|
||||
void GetTermTreeAssertionLiterals(TermTree *assumptions);
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -732,9 +732,6 @@ namespace Duality {
|
|||
e->dual = ReducedDualEdge(e);
|
||||
timer_stop("ReducedDualEdge");
|
||||
timer_start("getting children");
|
||||
if(with_children)
|
||||
for(unsigned i = 0; i < e->Children.size(); i++)
|
||||
e->dual = e->dual && GetAnnotation(e->Children[i]);
|
||||
if(underapprox){
|
||||
std::vector<expr> cus(e->Children.size());
|
||||
for(unsigned i = 0; i < e->Children.size(); i++)
|
||||
|
@ -753,9 +750,6 @@ namespace Duality {
|
|||
//Console.WriteLine("{0}", cnst);
|
||||
}
|
||||
return e->dual;
|
||||
timer_start("solver add");
|
||||
slvr.add(e->dual);
|
||||
timer_stop("solver add");
|
||||
}
|
||||
|
||||
/** For incremental solving, asserts the constraint associated
|
||||
|
@ -781,8 +775,11 @@ namespace Duality {
|
|||
return;
|
||||
expr fmla = GetEdgeFormula(e, persist, with_children, underapprox);
|
||||
timer_start("solver add");
|
||||
slvr.add(e->dual);
|
||||
slvr_add(e->dual);
|
||||
timer_stop("solver add");
|
||||
if(with_children)
|
||||
for(unsigned i = 0; i < e->Children.size(); i++)
|
||||
ConstrainParent(e,e->Children[i]);
|
||||
}
|
||||
|
||||
// caching verion of above
|
||||
|
@ -791,8 +788,97 @@ namespace Duality {
|
|||
return;
|
||||
expr fmla = GetEdgeFormula(e, 0, with_children, false);
|
||||
GetAssumptionLits(fmla,lits);
|
||||
if(with_children)
|
||||
for(unsigned i = 0; i < e->Children.size(); i++)
|
||||
ConstrainParentCache(e,e->Children[i],lits);
|
||||
}
|
||||
|
||||
void RPFP::slvr_add(const expr &e){
|
||||
slvr.add(e);
|
||||
}
|
||||
|
||||
void RPFP_caching::slvr_add(const expr &e){
|
||||
GetAssumptionLits(e,alit_stack);
|
||||
}
|
||||
|
||||
void RPFP::slvr_pop(int i){
|
||||
slvr.pop(i);
|
||||
}
|
||||
|
||||
void RPFP::slvr_push(){
|
||||
slvr.push();
|
||||
}
|
||||
|
||||
void RPFP_caching::slvr_pop(int i){
|
||||
for(int j = 0; j < i; j++){
|
||||
alit_stack.resize(alit_stack_sizes.back());
|
||||
alit_stack_sizes.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
void RPFP_caching::slvr_push(){
|
||||
alit_stack_sizes.push_back(alit_stack.size());
|
||||
}
|
||||
|
||||
check_result RPFP::slvr_check(unsigned n, expr * const assumptions, unsigned *core_size, expr *core){
|
||||
return slvr.check(n, assumptions, core_size, core);
|
||||
}
|
||||
|
||||
check_result RPFP_caching::slvr_check(unsigned n, expr * const assumptions, unsigned *core_size, expr *core){
|
||||
slvr_push();
|
||||
if(n && assumptions)
|
||||
std::copy(assumptions,assumptions+n,std::inserter(alit_stack,alit_stack.end()));
|
||||
check_result res;
|
||||
if(core_size && core){
|
||||
std::vector<expr> full_core(alit_stack.size()), core1(n);
|
||||
std::copy(assumptions,assumptions+n,core1.begin());
|
||||
res = slvr.check(alit_stack.size(), &alit_stack[0], core_size, &full_core[0]);
|
||||
full_core.resize(*core_size);
|
||||
if(res == unsat){
|
||||
FilterCore(core1,full_core);
|
||||
*core_size = core1.size();
|
||||
std::copy(core1.begin(),core1.end(),core);
|
||||
}
|
||||
}
|
||||
else
|
||||
res = slvr.check(alit_stack.size(), &alit_stack[0]);
|
||||
slvr_pop(1);
|
||||
return res;
|
||||
}
|
||||
|
||||
lbool RPFP::ls_interpolate_tree(TermTree *assumptions,
|
||||
TermTree *&interpolants,
|
||||
model &_model,
|
||||
TermTree *goals,
|
||||
bool weak){
|
||||
return ls->interpolate_tree(assumptions, interpolants, _model, goals, weak);
|
||||
}
|
||||
|
||||
lbool RPFP_caching::ls_interpolate_tree(TermTree *assumptions,
|
||||
TermTree *&interpolants,
|
||||
model &_model,
|
||||
TermTree *goals,
|
||||
bool weak){
|
||||
GetTermTreeAssertionLiterals(assumptions);
|
||||
return ls->interpolate_tree(assumptions, interpolants, _model, goals, weak);
|
||||
}
|
||||
|
||||
void RPFP_caching::GetTermTreeAssertionLiterals(TermTree *assumptions){
|
||||
std::vector<expr> alits;
|
||||
hash_map<ast,expr> map;
|
||||
GetAssumptionLits(assumptions->getTerm(),alits,&map);
|
||||
std::vector<expr> &ts = assumptions->getTerms();
|
||||
for(unsigned i = 0; i < ts.size(); i++)
|
||||
GetAssumptionLits(ts[i],alits,&map);
|
||||
assumptions->setTerm(ctx.bool_val(true));
|
||||
ts = alits;
|
||||
for(unsigned i = 0; i < alits.size(); i++)
|
||||
ts.push_back(ctx.make(Implies,alits[i],map[alits[i]]));
|
||||
for(unsigned i = 0; i < assumptions->getChildren().size(); i++)
|
||||
GetTermTreeAssertionLiterals(assumptions->getChildren()[i]);
|
||||
return;
|
||||
}
|
||||
|
||||
void RPFP_caching::GetAssumptionLits(const expr &fmla, std::vector<expr> &lits, hash_map<ast,expr> *opt_map){
|
||||
std::vector<expr> conjs;
|
||||
CollectConjuncts(fmla,conjs);
|
||||
|
@ -817,6 +903,10 @@ namespace Duality {
|
|||
ConstrainEdgeLocalized(parent,GetAnnotation(child));
|
||||
}
|
||||
|
||||
void RPFP_caching::ConstrainParentCache(Edge *parent, Node *child, std::vector<Term> &lits){
|
||||
ConstrainEdgeLocalizedCache(parent,GetAnnotation(child),lits);
|
||||
}
|
||||
|
||||
|
||||
/** For incremental solving, asserts the negation of the upper bound associated
|
||||
* with a node.
|
||||
|
@ -828,7 +918,7 @@ namespace Duality {
|
|||
{
|
||||
n->dual = GetUpperBound(n);
|
||||
stack.back().nodes.push_back(n);
|
||||
slvr.add(n->dual);
|
||||
slvr_add(n->dual);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -892,9 +982,15 @@ namespace Duality {
|
|||
{
|
||||
e->constraints.push_back(tl);
|
||||
stack.back().constraints.push_back(std::pair<Edge *,Term>(e,tl));
|
||||
slvr.add(tl);
|
||||
slvr_add(tl);
|
||||
}
|
||||
|
||||
void RPFP_caching::ConstrainEdgeLocalizedCache(Edge *e, const Term &tl, std::vector<expr> &lits)
|
||||
{
|
||||
e->constraints.push_back(tl);
|
||||
stack.back().constraints.push_back(std::pair<Edge *,Term>(e,tl));
|
||||
GetAssumptionLits(tl,lits);
|
||||
}
|
||||
|
||||
|
||||
/** Declare a constant in the background theory. */
|
||||
|
@ -971,7 +1067,7 @@ namespace Duality {
|
|||
// if (dualLabels != null) dualLabels.Dispose();
|
||||
|
||||
timer_start("interpolate_tree");
|
||||
lbool res = ls->interpolate_tree(tree, interpolant, dualModel,goals,true);
|
||||
lbool res = ls_interpolate_tree(tree, interpolant, dualModel,goals,true);
|
||||
timer_stop("interpolate_tree");
|
||||
if (res == l_false)
|
||||
{
|
||||
|
@ -1017,7 +1113,7 @@ namespace Duality {
|
|||
ClearProofCore();
|
||||
|
||||
timer_start("interpolate_tree");
|
||||
lbool res = ls->interpolate_tree(tree, interpolant, dualModel,0,true);
|
||||
lbool res = ls_interpolate_tree(tree, interpolant, dualModel,0,true);
|
||||
timer_stop("interpolate_tree");
|
||||
if (res == l_false)
|
||||
{
|
||||
|
@ -1068,22 +1164,22 @@ namespace Duality {
|
|||
// if (dualModel != null) dualModel.Dispose();
|
||||
check_result res;
|
||||
if(!underapproxes.size())
|
||||
res = slvr.check();
|
||||
res = slvr_check();
|
||||
else {
|
||||
std::vector<expr> us(underapproxes.size());
|
||||
for(unsigned i = 0; i < underapproxes.size(); i++)
|
||||
us[i] = UnderapproxFlag(underapproxes[i]);
|
||||
slvr.check(); // TODO: no idea why I need to do this
|
||||
slvr_check(); // TODO: no idea why I need to do this
|
||||
if(underapprox_core){
|
||||
std::vector<expr> unsat_core(us.size());
|
||||
unsigned core_size = 0;
|
||||
res = slvr.check(us.size(),&us[0],&core_size,&unsat_core[0]);
|
||||
res = slvr_check(us.size(),&us[0],&core_size,&unsat_core[0]);
|
||||
underapprox_core->resize(core_size);
|
||||
for(unsigned i = 0; i < core_size; i++)
|
||||
(*underapprox_core)[i] = UnderapproxFlagRev(unsat_core[i]);
|
||||
}
|
||||
else {
|
||||
res = slvr.check(us.size(),&us[0]);
|
||||
res = slvr_check(us.size(),&us[0]);
|
||||
bool dump = false;
|
||||
if(dump){
|
||||
std::vector<expr> cnsts;
|
||||
|
@ -1093,7 +1189,7 @@ namespace Duality {
|
|||
ls->write_interpolation_problem("temp.smt",cnsts,std::vector<expr>());
|
||||
}
|
||||
}
|
||||
// check_result temp = slvr.check();
|
||||
// check_result temp = slvr_check();
|
||||
}
|
||||
dualModel = slvr.get_model();
|
||||
timer_stop("Check");
|
||||
|
@ -1101,10 +1197,12 @@ namespace Duality {
|
|||
}
|
||||
|
||||
check_result RPFP::CheckUpdateModel(Node *root, std::vector<expr> assumps){
|
||||
// check_result temp1 = slvr.check(); // no idea why I need to do this
|
||||
// check_result temp1 = slvr_check(); // no idea why I need to do this
|
||||
ClearProofCore();
|
||||
check_result res = slvr.check_keep_model(assumps.size(),&assumps[0]);
|
||||
dualModel = slvr.get_model();
|
||||
check_result res = slvr_check(assumps.size(),&assumps[0]);
|
||||
model mod = slvr.get_model();
|
||||
if(!mod.null())
|
||||
dualModel = mod;;
|
||||
return res;
|
||||
}
|
||||
|
||||
|
@ -1117,8 +1215,6 @@ namespace Duality {
|
|||
return dualModel.eval(tl);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Returns true if the given node is empty in the primal solution. For proecudure summaries,
|
||||
this means that the procedure is not called in the current counter-model. */
|
||||
|
||||
|
@ -2609,14 +2705,14 @@ namespace Duality {
|
|||
void RPFP::Push()
|
||||
{
|
||||
stack.push_back(stack_entry());
|
||||
slvr.push();
|
||||
slvr_push();
|
||||
}
|
||||
|
||||
/** Pop a scope (see Push). Note, you cannot pop axioms. */
|
||||
|
||||
void RPFP::Pop(int num_scopes)
|
||||
{
|
||||
slvr.pop(num_scopes);
|
||||
slvr_pop(num_scopes);
|
||||
for (int i = 0; i < num_scopes; i++)
|
||||
{
|
||||
stack_entry &back = stack.back();
|
||||
|
@ -2634,15 +2730,15 @@ namespace Duality {
|
|||
all the popped constraints */
|
||||
|
||||
void RPFP::PopPush(){
|
||||
slvr.pop(1);
|
||||
slvr.push();
|
||||
slvr_pop(1);
|
||||
slvr_push();
|
||||
stack_entry &back = stack.back();
|
||||
for(std::list<Edge *>::iterator it = back.edges.begin(), en = back.edges.end(); it != en; ++it)
|
||||
slvr.add((*it)->dual);
|
||||
slvr_add((*it)->dual);
|
||||
for(std::list<Node *>::iterator it = back.nodes.begin(), en = back.nodes.end(); it != en; ++it)
|
||||
slvr.add((*it)->dual);
|
||||
slvr_add((*it)->dual);
|
||||
for(std::list<std::pair<Edge *,Term> >::iterator it = back.constraints.begin(), en = back.constraints.end(); it != en; ++it)
|
||||
slvr.add((*it).second);
|
||||
slvr_add((*it).second);
|
||||
}
|
||||
|
||||
|
||||
|
@ -3121,12 +3217,25 @@ namespace Duality {
|
|||
}
|
||||
}
|
||||
|
||||
bool RPFP::proof_core_contains(const expr &e){
|
||||
return proof_core->find(e) != proof_core->end();
|
||||
}
|
||||
|
||||
bool RPFP_caching::proof_core_contains(const expr &e){
|
||||
std::vector<expr> foo;
|
||||
GetAssumptionLits(e,foo);
|
||||
for(unsigned i = 0; i < foo.size(); i++)
|
||||
if(proof_core->find(foo[i]) != proof_core->end())
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool RPFP::EdgeUsedInProof(Edge *edge){
|
||||
ComputeProofCore();
|
||||
if(!edge->dual.null() && proof_core->find(edge->dual) != proof_core->end())
|
||||
if(!edge->dual.null() && proof_core_contains(edge->dual))
|
||||
return true;
|
||||
for(unsigned i = 0; i < edge->constraints.size(); i++)
|
||||
if(proof_core->find(edge->constraints[i]) != proof_core->end())
|
||||
if(proof_core_contains(edge->constraints[i]))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -37,7 +37,7 @@ Revision History:
|
|||
#define MINIMIZE_CANDIDATES
|
||||
// #define MINIMIZE_CANDIDATES_HARDER
|
||||
#define BOUNDED
|
||||
#define CHECK_CANDS_FROM_IND_SET
|
||||
// #define CHECK_CANDS_FROM_IND_SET
|
||||
#define UNDERAPPROX_NODES
|
||||
#define NEW_EXPAND
|
||||
#define EARLY_EXPAND
|
||||
|
@ -45,6 +45,10 @@ Revision History:
|
|||
// #define EFFORT_BOUNDED_STRAT
|
||||
#define SKIP_UNDERAPPROX_NODES
|
||||
#define USE_RPFP_CLONE
|
||||
#define KEEP_EXPANSIONS
|
||||
#define USE_CACHING_RPFP
|
||||
// #define PROPAGATE_BEFORE_CHECK
|
||||
#define USE_NEW_GEN_CANDS
|
||||
|
||||
namespace Duality {
|
||||
|
||||
|
@ -115,11 +119,19 @@ namespace Duality {
|
|||
Report = false;
|
||||
StratifiedInlining = false;
|
||||
RecursionBound = -1;
|
||||
{
|
||||
scoped_no_proof no_proofs_please(ctx.m());
|
||||
#ifdef USE_RPFP_CLONE
|
||||
clone_ls = new RPFP::iZ3LogicSolver(ctx);
|
||||
clone_rpfp = new RPFP_caching(clone_ls);
|
||||
clone_rpfp->Clone(rpfp);
|
||||
#endif
|
||||
#ifdef USE_NEW_GEN_CANDS
|
||||
gen_cands_ls = new RPFP::iZ3LogicSolver(ctx);
|
||||
gen_cands_rpfp = new RPFP_caching(gen_cands_ls);
|
||||
gen_cands_rpfp->Clone(rpfp);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
~Duality(){
|
||||
|
@ -127,12 +139,21 @@ namespace Duality {
|
|||
delete clone_rpfp;
|
||||
delete clone_ls;
|
||||
#endif
|
||||
#ifdef USE_NEW_GEN_CANDS
|
||||
delete gen_cands_rpfp;
|
||||
delete gen_cands_ls;
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef USE_RPFP_CLONE
|
||||
RPFP::LogicSolver *clone_ls;
|
||||
RPFP_caching *clone_rpfp;
|
||||
#endif
|
||||
#ifdef USE_NEW_GEN_CANDS
|
||||
RPFP::LogicSolver *gen_cands_ls;
|
||||
RPFP_caching *gen_cands_rpfp;
|
||||
#endif
|
||||
|
||||
|
||||
typedef RPFP::Node Node;
|
||||
typedef RPFP::Edge Edge;
|
||||
|
@ -1102,7 +1123,8 @@ namespace Duality {
|
|||
void ExtractCandidateFromCex(Edge *edge, RPFP *checker, Node *root, Candidate &candidate){
|
||||
candidate.edge = edge;
|
||||
for(unsigned j = 0; j < edge->Children.size(); j++){
|
||||
Edge *lb = root->Outgoing->Children[j]->Outgoing;
|
||||
Node *node = root->Outgoing->Children[j];
|
||||
Edge *lb = node->Outgoing;
|
||||
std::vector<Node *> &insts = insts_of_node[edge->Children[j]];
|
||||
#ifndef MINIMIZE_CANDIDATES
|
||||
for(int k = insts.size()-1; k >= 0; k--)
|
||||
|
@ -1112,8 +1134,8 @@ namespace Duality {
|
|||
{
|
||||
Node *inst = insts[k];
|
||||
if(indset->Contains(inst)){
|
||||
if(checker->Empty(lb->Parent) ||
|
||||
eq(checker->Eval(lb,NodeMarker(inst)),ctx.bool_val(true))){
|
||||
if(checker->Empty(node) ||
|
||||
eq(lb ? checker->Eval(lb,NodeMarker(inst)) : checker->dualModel.eval(NodeMarker(inst)),ctx.bool_val(true))){
|
||||
candidate.Children.push_back(inst);
|
||||
goto next_child;
|
||||
}
|
||||
|
@ -1183,6 +1205,25 @@ namespace Duality {
|
|||
#endif
|
||||
|
||||
|
||||
Node *CheckerForEdgeClone(Edge *edge, RPFP_caching *checker){
|
||||
Edge *gen_cands_edge = gen_cands_rpfp->GetEdgeClone(edge);
|
||||
Node *root = gen_cands_edge->Parent;
|
||||
root->Outgoing = gen_cands_edge;
|
||||
GenNodeSolutionFromIndSet(edge->Parent, root->Bound);
|
||||
#if 0
|
||||
if(root->Bound.IsFull())
|
||||
return = 0;
|
||||
#endif
|
||||
checker->AssertNode(root);
|
||||
for(unsigned j = 0; j < edge->Children.size(); j++){
|
||||
Node *oc = edge->Children[j];
|
||||
Node *nc = gen_cands_edge->Children[j];
|
||||
GenNodeSolutionWithMarkers(oc,nc->Annotation,true);
|
||||
}
|
||||
checker->AssertEdge(gen_cands_edge,1,true);
|
||||
return root;
|
||||
}
|
||||
|
||||
/** If the current proposed solution is not inductive,
|
||||
use the induction failure to generate candidates for extension. */
|
||||
void GenCandidatesFromInductionFailure(bool full_scan = false){
|
||||
|
@ -1192,6 +1233,7 @@ namespace Duality {
|
|||
Edge *edge = edges[i];
|
||||
if(!full_scan && updated_nodes.find(edge->Parent) == updated_nodes.end())
|
||||
continue;
|
||||
#ifndef USE_RPFP_CLONE
|
||||
slvr.push();
|
||||
RPFP *checker = new RPFP(rpfp->ls);
|
||||
Node *root = CheckerForEdge(edge,checker);
|
||||
|
@ -1203,6 +1245,17 @@ namespace Duality {
|
|||
}
|
||||
slvr.pop(1);
|
||||
delete checker;
|
||||
#else
|
||||
clone_rpfp->Push();
|
||||
Node *root = CheckerForEdgeClone(edge,clone_rpfp);
|
||||
if(clone_rpfp->Check(root) != unsat){
|
||||
Candidate candidate;
|
||||
ExtractCandidateFromCex(edge,clone_rpfp,root,candidate);
|
||||
reporter->InductionFailure(edge,candidate.Children);
|
||||
candidates.push_back(candidate);
|
||||
}
|
||||
clone_rpfp->Pop(1);
|
||||
#endif
|
||||
}
|
||||
updated_nodes.clear();
|
||||
timer_stop("GenCandIndFail");
|
||||
|
@ -1326,7 +1379,9 @@ namespace Duality {
|
|||
node. */
|
||||
bool SatisfyUpperBound(Node *node){
|
||||
if(node->Bound.IsFull()) return true;
|
||||
#ifdef PROPAGATE_BEFORE_CHECK
|
||||
Propagate();
|
||||
#endif
|
||||
reporter->Bound(node);
|
||||
int start_decs = rpfp->CumulativeDecisions();
|
||||
DerivationTree *dtp = new DerivationTreeSlow(this,unwinding,reporter,heuristic,FullExpand);
|
||||
|
@ -1544,7 +1599,13 @@ namespace Duality {
|
|||
constrained = _constrained;
|
||||
false_approx = true;
|
||||
timer_start("Derive");
|
||||
#ifndef USE_CACHING_RPFP
|
||||
tree = _tree ? _tree : new RPFP(rpfp->ls);
|
||||
#else
|
||||
RPFP::LogicSolver *cache_ls = new RPFP::iZ3LogicSolver(ctx);
|
||||
cache_ls->slvr->push();
|
||||
tree = _tree ? _tree : new RPFP_caching(cache_ls);
|
||||
#endif
|
||||
tree->HornClauses = rpfp->HornClauses;
|
||||
tree->Push(); // so we can clear out the solver later when finished
|
||||
top = CreateApproximatedInstance(root);
|
||||
|
@ -1556,19 +1617,27 @@ namespace Duality {
|
|||
timer_start("Pop");
|
||||
tree->Pop(1);
|
||||
timer_stop("Pop");
|
||||
#ifdef USE_CACHING_RPFP
|
||||
cache_ls->slvr->pop(1);
|
||||
delete cache_ls;
|
||||
#endif
|
||||
timer_stop("Derive");
|
||||
return res;
|
||||
}
|
||||
|
||||
#define WITH_CHILDREN
|
||||
|
||||
Node *CreateApproximatedInstance(RPFP::Node *from){
|
||||
Node *to = tree->CloneNode(from);
|
||||
to->Annotation = from->Annotation;
|
||||
void InitializeApproximatedInstance(RPFP::Node *to){
|
||||
to->Annotation = to->map->Annotation;
|
||||
#ifndef WITH_CHILDREN
|
||||
tree->CreateLowerBoundEdge(to);
|
||||
#endif
|
||||
leaves.push_back(to);
|
||||
}
|
||||
|
||||
Node *CreateApproximatedInstance(RPFP::Node *from){
|
||||
Node *to = tree->CloneNode(from);
|
||||
InitializeApproximatedInstance(to);
|
||||
return to;
|
||||
}
|
||||
|
||||
|
@ -1637,13 +1706,23 @@ namespace Duality {
|
|||
|
||||
virtual void ExpandNode(RPFP::Node *p){
|
||||
// tree->RemoveEdge(p->Outgoing);
|
||||
Edge *edge = duality->GetNodeOutgoing(p->map,last_decs);
|
||||
std::vector<RPFP::Node *> &cs = edge->Children;
|
||||
std::vector<RPFP::Node *> children(cs.size());
|
||||
for(unsigned i = 0; i < cs.size(); i++)
|
||||
children[i] = CreateApproximatedInstance(cs[i]);
|
||||
Edge *ne = tree->CreateEdge(p, p->map->Outgoing->F, children);
|
||||
ne->map = p->map->Outgoing->map;
|
||||
Edge *ne = p->Outgoing;
|
||||
if(ne) {
|
||||
reporter->Message("Recycling edge...");
|
||||
std::vector<RPFP::Node *> &cs = ne->Children;
|
||||
for(unsigned i = 0; i < cs.size(); i++)
|
||||
InitializeApproximatedInstance(cs[i]);
|
||||
// ne->dual = expr();
|
||||
}
|
||||
else {
|
||||
Edge *edge = duality->GetNodeOutgoing(p->map,last_decs);
|
||||
std::vector<RPFP::Node *> &cs = edge->Children;
|
||||
std::vector<RPFP::Node *> children(cs.size());
|
||||
for(unsigned i = 0; i < cs.size(); i++)
|
||||
children[i] = CreateApproximatedInstance(cs[i]);
|
||||
ne = tree->CreateEdge(p, p->map->Outgoing->F, children);
|
||||
ne->map = p->map->Outgoing->map;
|
||||
}
|
||||
#ifndef WITH_CHILDREN
|
||||
tree->AssertEdge(ne); // assert the edge in the solver
|
||||
#else
|
||||
|
@ -1785,12 +1864,25 @@ namespace Duality {
|
|||
void RemoveExpansion(RPFP::Node *p){
|
||||
Edge *edge = p->Outgoing;
|
||||
Node *parent = edge->Parent;
|
||||
#ifndef KEEP_EXPANSIONS
|
||||
std::vector<RPFP::Node *> cs = edge->Children;
|
||||
tree->DeleteEdge(edge);
|
||||
for(unsigned i = 0; i < cs.size(); i++)
|
||||
tree->DeleteNode(cs[i]);
|
||||
#endif
|
||||
leaves.push_back(parent);
|
||||
}
|
||||
|
||||
// remove all the descendants of tree root (but not root itself)
|
||||
void RemoveTree(RPFP *tree, RPFP::Node *root){
|
||||
Edge *edge = root->Outgoing;
|
||||
std::vector<RPFP::Node *> cs = edge->Children;
|
||||
tree->DeleteEdge(edge);
|
||||
for(unsigned i = 0; i < cs.size(); i++){
|
||||
RemoveTree(tree,cs[i]);
|
||||
tree->DeleteNode(cs[i]);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class DerivationTreeSlow : public DerivationTree {
|
||||
|
@ -1852,6 +1944,7 @@ namespace Duality {
|
|||
}
|
||||
}
|
||||
tree->ComputeProofCore(); // need to compute the proof core before popping solver
|
||||
bool propagated = false;
|
||||
while(1) {
|
||||
std::vector<Node *> &expansions = stack.back().expansions;
|
||||
bool prev_level_used = LevelUsedInProof(stack.size()-2); // need to compute this before pop
|
||||
|
@ -1881,16 +1974,21 @@ namespace Duality {
|
|||
if(!Propagate(node)) break;
|
||||
if(!RecordUpdate(node)) break; // shouldn't happen!
|
||||
RemoveUpdateNodesAtCurrentLevel(); // this level is about to be deleted -- remove its children from update list
|
||||
propagated = true;
|
||||
continue;
|
||||
}
|
||||
if(propagated) break; // propagation invalidates the proof core, so disable non-chron backtrack
|
||||
RemoveUpdateNodesAtCurrentLevel(); // this level is about to be deleted -- remove its children from update list
|
||||
std::vector<Node *> &unused_ex = stack.back().expansions;
|
||||
for(unsigned i = 0; i < unused_ex.size(); i++)
|
||||
heuristic->Update(unused_ex[i]->map); // make it less likely to expand this node in future
|
||||
}
|
||||
HandleUpdatedNodes();
|
||||
if(stack.size() == 1)
|
||||
if(stack.size() == 1){
|
||||
if(top->Outgoing)
|
||||
tree->DeleteEdge(top->Outgoing); // in case we kept the tree
|
||||
return false;
|
||||
}
|
||||
was_sat = false;
|
||||
}
|
||||
else {
|
||||
|
|
|
@ -44,6 +44,7 @@ namespace Duality {
|
|||
m_solver = (*sf)(m(), p, true, true, true, ::symbol::null);
|
||||
m_solver->updt_params(p); // why do we have to do this?
|
||||
canceled = false;
|
||||
m_mode = m().proof_mode();
|
||||
}
|
||||
|
||||
expr context::constant(const std::string &name, const sort &ty){
|
||||
|
|
|
@ -50,6 +50,7 @@ Revision History:
|
|||
#include"scoped_ctrl_c.h"
|
||||
#include"cancel_eh.h"
|
||||
#include"scoped_timer.h"
|
||||
#include"scoped_proof.h"
|
||||
|
||||
namespace Duality {
|
||||
|
||||
|
@ -718,6 +719,7 @@ namespace Duality {
|
|||
m_model = s;
|
||||
return *this;
|
||||
}
|
||||
bool null() const {return !m_model;}
|
||||
|
||||
expr eval(expr const & n, bool model_completion=true) const {
|
||||
::model * _m = m_model.get();
|
||||
|
@ -811,6 +813,7 @@ namespace Duality {
|
|||
::solver *m_solver;
|
||||
model the_model;
|
||||
bool canceled;
|
||||
proof_gen_mode m_mode;
|
||||
public:
|
||||
solver(context & c, bool extensional = false);
|
||||
solver(context & c, ::solver *s):object(c),the_model(c) { m_solver = s; canceled = false;}
|
||||
|
@ -824,6 +827,7 @@ namespace Duality {
|
|||
m_ctx = s.m_ctx;
|
||||
m_solver = s.m_solver;
|
||||
the_model = s.the_model;
|
||||
m_mode = s.m_mode;
|
||||
return *this;
|
||||
}
|
||||
struct cancel_exception {};
|
||||
|
@ -832,11 +836,12 @@ namespace Duality {
|
|||
throw(cancel_exception());
|
||||
}
|
||||
// void set(params const & p) { Z3_solver_set_params(ctx(), m_solver, p); check_error(); }
|
||||
void push() { m_solver->push(); }
|
||||
void pop(unsigned n = 1) { m_solver->pop(n); }
|
||||
void push() { scoped_proof_mode spm(m(),m_mode); m_solver->push(); }
|
||||
void pop(unsigned n = 1) { scoped_proof_mode spm(m(),m_mode); m_solver->pop(n); }
|
||||
// void reset() { Z3_solver_reset(ctx(), m_solver); check_error(); }
|
||||
void add(expr const & e) { m_solver->assert_expr(e); }
|
||||
void add(expr const & e) { scoped_proof_mode spm(m(),m_mode); m_solver->assert_expr(e); }
|
||||
check_result check() {
|
||||
scoped_proof_mode spm(m(),m_mode);
|
||||
checkpoint();
|
||||
lbool r = m_solver->check_sat(0,0);
|
||||
model_ref m;
|
||||
|
@ -845,6 +850,7 @@ namespace Duality {
|
|||
return to_check_result(r);
|
||||
}
|
||||
check_result check_keep_model(unsigned n, expr * const assumptions, unsigned *core_size = 0, expr *core = 0) {
|
||||
scoped_proof_mode spm(m(),m_mode);
|
||||
model old_model(the_model);
|
||||
check_result res = check(n,assumptions,core_size,core);
|
||||
if(the_model == 0)
|
||||
|
@ -852,6 +858,7 @@ namespace Duality {
|
|||
return res;
|
||||
}
|
||||
check_result check(unsigned n, expr * const assumptions, unsigned *core_size = 0, expr *core = 0) {
|
||||
scoped_proof_mode spm(m(),m_mode);
|
||||
checkpoint();
|
||||
std::vector< ::expr *> _assumptions(n);
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
|
@ -876,6 +883,7 @@ namespace Duality {
|
|||
}
|
||||
#if 0
|
||||
check_result check(expr_vector assumptions) {
|
||||
scoped_proof_mode spm(m(),m_mode);
|
||||
unsigned n = assumptions.size();
|
||||
z3array<Z3_ast> _assumptions(n);
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
|
@ -900,17 +908,19 @@ namespace Duality {
|
|||
int get_num_decisions();
|
||||
|
||||
void cancel(){
|
||||
scoped_proof_mode spm(m(),m_mode);
|
||||
canceled = true;
|
||||
if(m_solver)
|
||||
m_solver->cancel();
|
||||
}
|
||||
|
||||
unsigned get_scope_level(){return m_solver->get_scope_level();}
|
||||
unsigned get_scope_level(){ scoped_proof_mode spm(m(),m_mode); return m_solver->get_scope_level();}
|
||||
|
||||
void show();
|
||||
void show_assertion_ids();
|
||||
|
||||
proof get_proof(){
|
||||
scoped_proof_mode spm(m(),m_mode);
|
||||
return proof(ctx(),m_solver->get_proof());
|
||||
}
|
||||
|
||||
|
|
|
@ -35,7 +35,6 @@ Revision History:
|
|||
#include "model_smt2_pp.h"
|
||||
#include "model_v2_pp.h"
|
||||
#include "fixedpoint_params.hpp"
|
||||
#include "scoped_proof.h"
|
||||
|
||||
// template class symbol_table<family_id>;
|
||||
|
||||
|
|
Loading…
Reference in a new issue