3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-18 02:16:40 +00:00

refactoring nla_solver

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-04-15 12:18:23 -07:00
parent 7fa4371d96
commit 9e82e6965c
11 changed files with 1309 additions and 1067 deletions

View file

@ -0,0 +1,333 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#include "util/lp/nla_order_lemmas.h"
#include "util/lp/nla_core.h"
#include "util/lp/nla_common.h"
#include "util/lp/factorization_factory_imp.h"
namespace nla {
// a >< b && c > 0 => ac >< bc
// a >< b && c < 0 => ac <> bc
// ac[k] plays the role of c
bool order::order_lemma_on_ac_and_bc(const rooted_mon& rm_ac,
const factorization& ac_f,
unsigned k,
const rooted_mon& rm_bd) {
TRACE("nla_solver", tout << "rm_ac = ";
c().print_rooted_monomial(rm_ac, tout);
tout << "\nrm_bd = ";
c().print_rooted_monomial(rm_bd, tout);
tout << "\nac_f[k] = ";
c().print_factor_with_vars(ac_f[k], tout););
factor b;
if (!c().divide(rm_bd, ac_f[k], b)){
return false;
}
return order_lemma_on_ac_and_bc_and_factors(rm_ac, ac_f[(k + 1) % 2], ac_f[k], rm_bd, b);
}
bool order::order_lemma_on_ac_explore(const rooted_mon& rm, const factorization& ac, unsigned k) {
const factor c = ac[k];
TRACE("nla_solver", tout << "c = "; _().print_factor_with_vars(c, tout); );
if (c.is_var()) {
TRACE("nla_solver", tout << "var(c) = " << var(c););
for (unsigned rm_bc : _().m_rm_table.var_map()[c.index()]) {
TRACE("nla_solver", );
if (order_lemma_on_ac_and_bc(rm ,ac, k, _().m_rm_table.rms()[rm_bc])) {
return true;
}
}
} else {
for (unsigned rm_bc : _().m_rm_table.proper_multiples()[c.index()]) {
if (order_lemma_on_ac_and_bc(rm , ac, k, _().m_rm_table.rms()[rm_bc])) {
return true;
}
}
}
return false;
}
void order::order_lemma_on_factorization(const rooted_mon& rm, const factorization& ab) {
const monomial& m = _().m_monomials[rm.orig_index()];
TRACE("nla_solver", tout << "orig_sign = " << rm.orig_sign() << "\n";);
rational sign = rm.orig_sign();
for(factor f: ab)
sign *= _().canonize_sign(f);
const rational & fv = vvr(ab[0]) * vvr(ab[1]);
const rational mv = sign * vvr(m);
TRACE("nla_solver",
tout << "ab.size()=" << ab.size() << "\n";
tout << "we should have sign*vvr(m):" << mv << "=(" << sign << ")*(" << vvr(m) <<") to be equal to " << " vvr(ab[0])*vvr(ab[1]):" << fv << "\n";);
if (mv == fv)
return;
bool gt = mv > fv;
TRACE("nla_solver_f", tout << "m="; _().print_monomial_with_vars(m, tout); tout << "\nfactorization="; _().print_factorization(ab, tout););
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
order_lemma_on_ab(m, sign, var(ab[k]), var(ab[j]), gt);
explain(ab); explain(m);
explain(rm);
TRACE("nla_solver", _().print_lemma(tout););
order_lemma_on_ac_explore(rm, ab, j);
}
}
// |c_sign| = 1, and c*c_sign > 0
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
void order::generate_ol(const rooted_mon& ac,
const factor& a,
int c_sign,
const factor& c,
const rooted_mon& bc,
const factor& b,
llc ab_cmp) {
add_empty_lemma();
rational rc_sign = rational(c_sign);
mk_ineq(rc_sign * canonize_sign(c), var(c), llc::LE);
mk_ineq(canonize_sign(ac), var(ac), -canonize_sign(bc), var(bc), ab_cmp);
mk_ineq(canonize_sign(a)*rc_sign, var(a), - canonize_sign(b)*rc_sign, var(b), negate(ab_cmp));
explain(ac);
explain(a);
explain(bc);
explain(b);
explain(c);
TRACE("nla_solver", _().print_lemma(tout););
}
void order::generate_mon_ol(const monomial& ac,
lpvar a,
const rational& c_sign,
lpvar c,
const rooted_mon& bd,
const factor& b,
const rational& d_sign,
lpvar d,
llc ab_cmp) {
add_empty_lemma();
mk_ineq(c_sign, c, llc::LE);
explain(c); // this explains c == +- d
negate_var_factor_relation(c_sign, a, d_sign, b);
mk_ineq(ac.var(), -canonize_sign(bd), var(bd), ab_cmp);
explain(bd);
explain(b);
explain(d);
TRACE("nla_solver", print_lemma(tout););
}
void order::negate_var_factor_relation(const rational& a_sign, lpvar a, const rational& b_sign, const factor& b) {
rational b_fs = canonize_sign(b);
llc cmp = a_sign*vvr(a) < b_sign*vvr(b)? llc::GE : llc::LE;
mk_ineq(a_sign, a, - b_fs*b_sign, var(b), cmp);
}
void order::order_lemma() {
TRACE("nla_solver", );
c().init_rm_to_refine();
const auto& rm_ref = c().m_rm_table.to_refine();
unsigned start = random() % rm_ref.size();
unsigned i = start;
do {
const rooted_mon& rm = c().m_rm_table.rms()[rm_ref[i]];
order_lemma_on_rmonomial(rm);
if (++i == rm_ref.size()) {
i = 0;
}
} while(i != start && !done());
}
bool order::order_lemma_on_ac_and_bc_and_factors(const rooted_mon& ac,
const factor& a,
const factor& c,
const rooted_mon& bc,
const factor& b) {
auto cv = vvr(c);
int c_sign = nla::rat_sign(cv);
SASSERT(c_sign != 0);
auto av_c_s = vvr(a)*rational(c_sign);
auto bv_c_s = vvr(b)*rational(c_sign);
auto acv = vvr(ac);
auto bcv = vvr(bc);
TRACE("nla_solver", _().trace_print_ol(ac, a, c, bc, b, tout););
// Suppose ac >= bc, then ac/|c| >= bc/|c|.
// Notice that ac/|c| = a*c_sign , and bc/|c| = b*c_sign, which are correspondingly av_c_s and bv_c_s
if (acv >= bcv && av_c_s < bv_c_s) {
generate_ol(ac, a, c_sign, c, bc, b, llc::LT);
return true;
} else if (acv <= bcv && av_c_s > bv_c_s) {
generate_ol(ac, a, c_sign, c, bc, b, llc::GT);
return true;
}
return false;
}
/**
\brief Add lemma:
a > 0 & b <= value(b) => sign*ab <= value(b)*a if value(a) > 0
a < 0 & b >= value(b) => sign*ab <= value(b)*a if value(a) < 0
*/
void order::order_lemma_on_ab_gt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
SASSERT(sign * vvr(m) > vvr(a) * vvr(b));
add_empty_lemma();
if (vvr(a).is_pos()) {
TRACE("nla_solver", tout << "a is pos\n";);
//negate a > 0
mk_ineq(a, llc::LE);
// negate b <= vvr(b)
mk_ineq(b, llc::GT, vvr(b));
// ab <= vvr(b)a
mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
} else {
TRACE("nla_solver", tout << "a is neg\n";);
SASSERT(vvr(a).is_neg());
//negate a < 0
mk_ineq(a, llc::GE);
// negate b >= vvr(b)
mk_ineq(b, llc::LT, vvr(b));
// ab <= vvr(b)a
mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
}
}
// we need to deduce ab >= vvr(b)*a
/**
\brief Add lemma:
a > 0 & b >= value(b) => sign*ab >= value(b)*a if value(a) > 0
a < 0 & b <= value(b) => sign*ab >= value(b)*a if value(a) < 0
*/
void order::order_lemma_on_ab_lt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
SASSERT(sign * vvr(m) < vvr(a) * vvr(b));
add_empty_lemma();
if (vvr(a).is_pos()) {
//negate a > 0
mk_ineq(a, llc::LE);
// negate b >= vvr(b)
mk_ineq(b, llc::LT, vvr(b));
// ab <= vvr(b)a
mk_ineq(sign, m.var(), -vvr(b), a, llc::GE);
} else {
SASSERT(vvr(a).is_neg());
//negate a < 0
mk_ineq(a, llc::GE);
// negate b <= vvr(b)
mk_ineq(b, llc::GT, vvr(b));
// ab >= vvr(b)a
mk_ineq(sign, m.var(), -vvr(b), a, llc::GE);
}
}
void order::order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt) {
if (gt)
order_lemma_on_ab_gt(m, sign, a, b);
else
order_lemma_on_ab_lt(m, sign, a, b);
}
// a > b && c > 0 => ac > bc
void order::order_lemma_on_rmonomial(const rooted_mon& rm) {
TRACE("nla_solver_details",
tout << "rm = "; print_product(rm, tout);
tout << ", orig = "; print_monomial(c().m_monomials[rm.orig_index()], tout);
);
for (auto ac : factorization_factory_imp(rm, c())) {
if (ac.size() != 2)
continue;
if (ac.is_mon())
order_lemma_on_binomial(*ac.mon());
else
order_lemma_on_factorization(rm, ac);
if (done())
break;
}
}
void order::order_lemma_on_binomial_k(const monomial& m, lpvar k, bool gt) {
SASSERT(gt == (vvr(m) > vvr(m[0]) * vvr(m[1])));
unsigned p = (k + 1) % 2;
order_lemma_on_binomial_sign(m, m[k], m[p], gt? 1: -1);
}
// sign it the sign of vvr(m) - vvr(m[0]) * vvr(m[1])
// m = xy
// and val(m) != val(x)*val(y)
// y > 0 and x = a, then xy >= ay
void order::order_lemma_on_binomial_sign(const monomial& ac, lpvar x, lpvar y, int sign) {
SASSERT(!_().mon_has_zero(ac));
int sy = rat_sign(vvr(y));
add_empty_lemma();
mk_ineq(y, sy == 1? llc::LE : llc::GE); // negate sy
mk_ineq(x, sy*sign == 1? llc::GT:llc::LT , vvr(x)); // assert x <= vvr(x) if x > 0
mk_ineq(ac.var(), - vvr(x), y, sign == 1?llc::LE:llc::GE);
TRACE("nla_solver", print_lemma(tout););
}
void order::order_lemma_on_factor_binomial_rm(const monomial& ac, unsigned k, const rooted_mon& rm_bd) {
factor d(_().m_evars.find(ac[k]).var(), factor_type::VAR);
factor b;
if (!_().divide(rm_bd, d, b))
return;
order_lemma_on_binomial_ac_bd(ac, k, rm_bd, b, d.index());
}
void order::order_lemma_on_binomial_ac_bd(const monomial& ac, unsigned k, const rooted_mon& bd, const factor& b, lpvar d) {
TRACE("nla_solver", print_monomial(ac, tout << "ac=");
print_rooted_monomial(bd, tout << "\nrm=");
print_factor(b, tout << ", b="); print_var(d, tout << ", d=") << "\n";);
int p = (k + 1) % 2;
lpvar a = ac[p];
lpvar c = ac[k];
SASSERT(_().m_evars.find(c).var() == d);
rational acv = vvr(ac);
rational av = vvr(a);
rational c_sign = rrat_sign(vvr(c));
rational d_sign = rrat_sign(vvr(d));
rational bdv = vvr(bd);
rational bv = vvr(b);
auto av_c_s = av*c_sign; auto bv_d_s = bv*d_sign;
// suppose ac >= bd, then ac/|c| >= bd/|d|.
// Notice that ac/|c| = a*c_sign , and bd/|d| = b*d_sign
if (acv >= bdv && av_c_s < bv_d_s)
generate_mon_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::LT);
else if (acv <= bdv && av_c_s > bv_d_s)
generate_mon_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::GT);
}
void order::order_lemma_on_factor_binomial_explore(const monomial& m, unsigned k) {
SASSERT(m.size() == 2);
lpvar c = m[k];
lpvar d = _().m_evars.find(c).var();
auto it = _().m_rm_table.var_map().find(d);
SASSERT(it != _().m_rm_table.var_map().end());
for (unsigned bd_i : it->second) {
order_lemma_on_factor_binomial_rm(m, k, _().m_rm_table.rms()[bd_i]);
if (done())
break;
}
}
void order::order_lemma_on_binomial(const monomial& ac) {
TRACE("nla_solver", print_monomial(ac, tout););
SASSERT(!check_monomial(ac) && ac.size() == 2);
const rational & mult_val = vvr(ac[0]) * vvr(ac[1]);
const rational acv = vvr(ac);
bool gt = acv > mult_val;
for (unsigned k = 0; k < 2; k++) {
order_lemma_on_binomial_k(ac, k, gt);
order_lemma_on_factor_binomial_explore(ac, k);
}
}
} // end of namespace nla