mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
refactoring nla_solver
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
7fa4371d96
commit
9e82e6965c
11 changed files with 1309 additions and 1067 deletions
|
@ -25,7 +25,9 @@ z3_add_component(lp
|
|||
matrix.cpp
|
||||
mon_eq.cpp
|
||||
nla_basics_lemmas.cpp
|
||||
nla_common.cpp
|
||||
nla_core.cpp
|
||||
nla_order_lemmas.cpp
|
||||
nla_solver.cpp
|
||||
nra_solver.cpp
|
||||
permutation_matrix.cpp
|
||||
|
|
|
@ -21,11 +21,8 @@
|
|||
#include "util/lp/nla_core.h"
|
||||
#include "util/lp/factorization_factory_imp.h"
|
||||
namespace nla {
|
||||
template <typename T> rational basics::vvr(T const& t) const { return m_core->vvr(t); }
|
||||
rational basics::vvr(lpvar t) const { return m_core->vvr(t); }
|
||||
template <typename T> lpvar basics::var(T const& t) const { return m_core->var(t); }
|
||||
|
||||
basics::basics(core * c) : m_core(c) {}
|
||||
basics::basics(core * c) : common(c) {}
|
||||
// Monomials m and n vars have the same values, up to "sign"
|
||||
// Generate a lemma if values of m.var() and n.var() are not the same up to sign
|
||||
bool basics::basic_sign_lemma_on_two_monomials(const monomial& m, const monomial& n, const rational& sign) {
|
||||
|
@ -225,7 +222,6 @@ void basics::add_fixed_zero_lemma(const monomial& m, lpvar j) {
|
|||
c().mk_ineq(m.var(), llc::EQ);
|
||||
TRACE("nla_solver", c().print_lemma(tout););
|
||||
}
|
||||
void basics::add_empty_lemma() { c().add_empty_lemma(); }
|
||||
void basics::negate_strict_sign(lpvar j) {
|
||||
TRACE("nla_solver_details", c().print_var(j, tout););
|
||||
if (!vvr(j).is_zero()) {
|
||||
|
@ -845,11 +841,5 @@ void basics::basic_lemma_for_mon_non_zero_model_based(const rooted_mon& rm, cons
|
|||
basic_lemma_for_mon_non_zero_model_based_mf(f);
|
||||
}
|
||||
|
||||
bool basics::done() const { return c().done(); }
|
||||
|
||||
template <typename T> void basics::explain(const T& t) {
|
||||
c().explain(t, c().current_expl());
|
||||
}
|
||||
template void basics::explain<monomial>(const monomial& t);
|
||||
|
||||
}
|
||||
|
|
|
@ -21,11 +21,12 @@
|
|||
#include "util/lp/monomial.h"
|
||||
#include "util/lp/rooted_mons.h"
|
||||
#include "util/lp/factorization.h"
|
||||
#include "util/lp/nla_common.h"
|
||||
|
||||
|
||||
namespace nla {
|
||||
struct core;
|
||||
struct basics {
|
||||
struct basics: common {
|
||||
core* m_core;
|
||||
core& c() { return *m_core; }
|
||||
const core& c() const { return *m_core; }
|
||||
|
@ -85,9 +86,6 @@ struct basics {
|
|||
void basic_lemma_for_mon(const rooted_mon& rm, bool derived);
|
||||
// use basic multiplication properties to create a lemma
|
||||
bool basic_lemma(bool derived);
|
||||
template <typename T> rational vvr(T const& t) const;
|
||||
rational vvr(lpvar) const;
|
||||
template <typename T> lpvar var(T const& t) const;
|
||||
void generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign);
|
||||
void generate_zero_lemmas(const monomial& m);
|
||||
lpvar find_best_zero(const monomial& m, unsigned_vector & fixed_zeros) const;
|
||||
|
@ -97,14 +95,11 @@ struct basics {
|
|||
void generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j, int sign_of_zj);
|
||||
|
||||
void add_fixed_zero_lemma(const monomial& m, lpvar j);
|
||||
void add_empty_lemma();
|
||||
void negate_strict_sign(lpvar j);
|
||||
bool done() const;
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
void proportion_lemma_model_based(const rooted_mon& rm, const factorization& factorization);
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
bool proportion_lemma_derived(const rooted_mon& rm, const factorization& factorization);
|
||||
template <typename T> void explain(const T&);
|
||||
// if there are no zero factors then |m| >= |m[factor_index]|
|
||||
void generate_pl_on_mon(const monomial& m, unsigned factor_index);
|
||||
|
||||
|
|
127
src/util/lp/nla_common.cpp
Normal file
127
src/util/lp/nla_common.cpp
Normal file
|
@ -0,0 +1,127 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#include "util/lp/nla_common.h"
|
||||
#include "util/lp/nla_core.h"
|
||||
|
||||
namespace nla {
|
||||
bool common::done() const { return m_core->done(); }
|
||||
|
||||
template <typename T> void common::explain(const T& t) {
|
||||
c().explain(t, c().current_expl());
|
||||
}
|
||||
template void common::explain<monomial>(const monomial& t);
|
||||
template void common::explain<factor>(const factor& t);
|
||||
template void common::explain<rooted_mon>(const rooted_mon& t);
|
||||
template void common::explain<factorization>(const factorization& t);
|
||||
|
||||
void common::explain(lpvar j) { c().explain(j, c().current_expl()); }
|
||||
|
||||
template <typename T> rational common::vvr(T const& t) const { return m_core->vvr(t); }
|
||||
template rational common::vvr<monomial>(monomial const& t) const;
|
||||
template rational common::vvr<rooted_mon>(rooted_mon const& t) const;
|
||||
template rational common::vvr<factor>(factor const& t) const;
|
||||
rational common::vvr(lpvar t) const { return m_core->vvr(t); }
|
||||
template <typename T> lpvar common::var(T const& t) const { return m_core->var(t); }
|
||||
template lpvar common::var<factor>(factor const& t) const;
|
||||
template lpvar common::var<rooted_mon>(rooted_mon const& t) const;
|
||||
void common::add_empty_lemma() { c().add_empty_lemma(); }
|
||||
template <typename T> rational common::canonize_sign(const T& t) const {
|
||||
return c().canonize_sign(t);
|
||||
}
|
||||
template rational common::canonize_sign<rooted_mon>(const rooted_mon& t) const;
|
||||
template rational common::canonize_sign<factor>(const factor& t) const;
|
||||
rational common::canonize_sign(lpvar j) const {
|
||||
return c().canonize_sign_of_var(j);
|
||||
}
|
||||
void common::mk_ineq(lp::lar_term& t, llc cmp, const rational& rs){
|
||||
c().mk_ineq(t, cmp, rs);
|
||||
}
|
||||
void common::mk_ineq(const rational& a, lpvar j, const rational& b, lpvar k, llc cmp, const rational& rs){
|
||||
c().mk_ineq(a, j, b, j, cmp, rs);
|
||||
}
|
||||
|
||||
void common::mk_ineq(lpvar j, const rational& b, lpvar k, llc cmp, const rational& rs){
|
||||
c().mk_ineq(j, b, k, cmp, rs);
|
||||
}
|
||||
|
||||
void common::mk_ineq(lpvar j, const rational& b, lpvar k, llc cmp){
|
||||
c().mk_ineq(j, b, k, cmp);
|
||||
}
|
||||
|
||||
void common::mk_ineq(const rational& a, lpvar j, const rational& b, lpvar k, llc cmp) {
|
||||
c().mk_ineq(a, j, b, k, cmp);
|
||||
}
|
||||
|
||||
void common::mk_ineq(const rational& a ,lpvar j, lpvar k, llc cmp, const rational& rs) {
|
||||
c().mk_ineq(a, j, k, cmp, rs);
|
||||
}
|
||||
|
||||
void common::mk_ineq(lpvar j, lpvar k, llc cmp, const rational& rs) {
|
||||
c().mk_ineq(j, k, cmp, rs);}
|
||||
|
||||
void common::mk_ineq(lpvar j, llc cmp, const rational& rs){
|
||||
c().mk_ineq(j, cmp, rs);}
|
||||
|
||||
void common::mk_ineq(const rational& a, lpvar j, llc cmp, const rational& rs) {
|
||||
c().mk_ineq(a, j, cmp, rs);
|
||||
}
|
||||
void common::mk_ineq(const rational& a, lpvar j, llc cmp){
|
||||
c().mk_ineq(a, j, cmp);
|
||||
}
|
||||
|
||||
void common::mk_ineq(lpvar j, llc cmp){
|
||||
c().mk_ineq(j, cmp);
|
||||
}
|
||||
std::ostream& common::print_lemma(std::ostream& out) const {
|
||||
return c().print_lemma(out);
|
||||
}
|
||||
template <typename T>
|
||||
std::ostream& common::print_product(const T & m, std::ostream& out) const {
|
||||
return c().print_product(m, out);
|
||||
}
|
||||
template
|
||||
std::ostream& common::print_product<monomial>(const monomial & m, std::ostream& out) const;
|
||||
|
||||
template std::ostream& common::print_product<rooted_mon>(const rooted_mon & m, std::ostream& out) const;
|
||||
|
||||
|
||||
std::ostream& common::print_monomial(const monomial & m, std::ostream& out) const {
|
||||
return c().print_monomial(m, out);
|
||||
}
|
||||
std::ostream& common::print_rooted_monomial(const rooted_mon& rm, std::ostream& out) const {
|
||||
return c().print_rooted_monomial(rm, out);
|
||||
}
|
||||
std::ostream& common::print_rooted_monomial_with_vars(const rooted_mon& rm, std::ostream& out) const {
|
||||
return c().print_rooted_monomial_with_vars(rm, out);
|
||||
}
|
||||
std::ostream& common::print_factor(const factor & f, std::ostream& out) const {
|
||||
return c().print_factor(f, out);
|
||||
}
|
||||
|
||||
std::ostream& common::print_var(lpvar j, std::ostream& out) const {
|
||||
return c().print_var(j, out);
|
||||
}
|
||||
|
||||
bool common::check_monomial(const monomial& m) const {
|
||||
return c().check_monomial(m);
|
||||
}
|
||||
|
||||
}
|
||||
|
90
src/util/lp/nla_common.h
Normal file
90
src/util/lp/nla_common.h
Normal file
|
@ -0,0 +1,90 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/rational.h"
|
||||
#include "util/lp/nla_defs.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
#include "util/lp/monomial.h"
|
||||
#include "util/lp/factorization.h"
|
||||
#include "util/lp/rooted_mons.h"
|
||||
namespace nla {
|
||||
inline llc negate(llc cmp) {
|
||||
switch(cmp) {
|
||||
case llc::LE: return llc::GT;
|
||||
case llc::LT: return llc::GE;
|
||||
case llc::GE: return llc::LT;
|
||||
case llc::GT: return llc::LE;
|
||||
case llc::EQ: return llc::NE;
|
||||
case llc::NE: return llc::EQ;
|
||||
default: SASSERT(false);
|
||||
};
|
||||
return cmp; // not reachable
|
||||
}
|
||||
|
||||
struct core;
|
||||
struct common {
|
||||
core* m_core;
|
||||
common(core* c): m_core(c) {}
|
||||
core& c() { return *m_core; }
|
||||
const core& c() const { return *m_core; }
|
||||
template <typename T> rational vvr(T const& t) const;
|
||||
rational vvr(lpvar) const;
|
||||
template <typename T> lpvar var(T const& t) const;
|
||||
bool done() const;
|
||||
template <typename T> void explain(const T&);
|
||||
void explain(lpvar);
|
||||
void add_empty_lemma();
|
||||
template <typename T> rational canonize_sign(const T&) const;
|
||||
rational canonize_sign(lpvar) const;
|
||||
void mk_ineq(lp::lar_term& t, llc cmp, const rational& rs);
|
||||
void mk_ineq(const rational& a, lpvar j, const rational& b, lpvar k, llc cmp, const rational& rs);
|
||||
|
||||
void mk_ineq(lpvar j, const rational& b, lpvar k, llc cmp, const rational& rs);
|
||||
|
||||
void mk_ineq(lpvar j, const rational& b, lpvar k, llc cmp);
|
||||
|
||||
void mk_ineq(const rational& a, lpvar j, const rational& b, lpvar k, llc cmp);
|
||||
|
||||
void mk_ineq(const rational& a ,lpvar j, lpvar k, llc cmp, const rational& rs);
|
||||
|
||||
void mk_ineq(lpvar j, lpvar k, llc cmp, const rational& rs);
|
||||
|
||||
void mk_ineq(lpvar j, llc cmp, const rational& rs);
|
||||
|
||||
void mk_ineq(const rational& a, lpvar j, llc cmp, const rational& rs);
|
||||
void mk_ineq(const rational& a, lpvar j, llc cmp);
|
||||
|
||||
void mk_ineq(lpvar j, llc cmp);
|
||||
|
||||
std::ostream& print_lemma(std::ostream&) const;
|
||||
|
||||
template <typename T>
|
||||
std::ostream& print_product(const T & m, std::ostream& out) const;
|
||||
|
||||
std::ostream& print_factor(const factor &, std::ostream& out) const;
|
||||
std::ostream& print_var(lpvar, std::ostream& out) const;
|
||||
|
||||
std::ostream& print_monomial(const monomial & m, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial(const rooted_mon &, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial_with_vars(const rooted_mon&, std::ostream& out) const;
|
||||
bool check_monomial(const monomial&) const;
|
||||
|
||||
};
|
||||
}
|
|
@ -25,7 +25,8 @@ core::core(lp::lar_solver& s) :
|
|||
m_evars(),
|
||||
m_lar_solver(s),
|
||||
m_tangents(this),
|
||||
m_basics(this) {
|
||||
m_basics(this),
|
||||
m_order(this) {
|
||||
}
|
||||
|
||||
bool core::compare_holds(const rational& ls, llc cmp, const rational& rs) const {
|
||||
|
@ -190,6 +191,8 @@ std::ostream& core::print_product(const T & m, std::ostream& out) const {
|
|||
}
|
||||
return out;
|
||||
}
|
||||
template std::ostream& core::print_product<monomial>(const monomial & m, std::ostream& out) const;
|
||||
template std::ostream& core::print_product<rooted_mon>(const rooted_mon & m, std::ostream& out) const;
|
||||
|
||||
std::ostream & core::print_factor(const factor& f, std::ostream& out) const {
|
||||
if (f.is_var()) {
|
||||
|
@ -478,19 +481,6 @@ void core:: mk_ineq(const rational& a, lpvar j, llc cmp, const rational& rs) {
|
|||
mk_ineq(t, cmp, rs);
|
||||
}
|
||||
|
||||
llc negate(llc cmp) {
|
||||
switch(cmp) {
|
||||
case llc::LE: return llc::GT;
|
||||
case llc::LT: return llc::GE;
|
||||
case llc::GE: return llc::LT;
|
||||
case llc::GT: return llc::LE;
|
||||
case llc::EQ: return llc::NE;
|
||||
case llc::NE: return llc::EQ;
|
||||
default: SASSERT(false);
|
||||
};
|
||||
return cmp; // not reachable
|
||||
}
|
||||
|
||||
llc apply_minus(llc cmp) {
|
||||
switch(cmp) {
|
||||
case llc::LE: return llc::GE;
|
||||
|
@ -632,84 +622,6 @@ bool core::zero_is_an_inner_point_of_bounds(lpvar j) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool core:: try_get_non_strict_sign_from_bounds(lpvar j, int& sign) const {
|
||||
SASSERT(sign);
|
||||
if (has_lower_bound(j) && get_lower_bound(j) >= rational(0))
|
||||
return true;
|
||||
if (has_upper_bound(j) && get_upper_bound(j) <= rational(0)) {
|
||||
sign = -sign;
|
||||
return true;
|
||||
}
|
||||
sign = 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
void core:: get_non_strict_sign(lpvar j, int& sign) const {
|
||||
const rational & v = vvr(j);
|
||||
if (v.is_zero()) {
|
||||
try_get_non_strict_sign_from_bounds(j, sign);
|
||||
} else {
|
||||
sign *= nla::rat_sign(v);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void core:: add_trival_zero_lemma(lpvar zero_j, const monomial& m) {
|
||||
add_empty_lemma();
|
||||
mk_ineq(zero_j, llc::NE);
|
||||
mk_ineq(m.var(), llc::EQ);
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
void core:: generate_zero_lemmas(const monomial& m) {
|
||||
SASSERT(!vvr(m).is_zero() && product_value(m).is_zero());
|
||||
int sign = nla::rat_sign(vvr(m));
|
||||
unsigned_vector fixed_zeros;
|
||||
lpvar zero_j = find_best_zero(m, fixed_zeros);
|
||||
SASSERT(is_set(zero_j));
|
||||
unsigned zero_power = 0;
|
||||
for (unsigned j : m){
|
||||
if (j == zero_j) {
|
||||
zero_power++;
|
||||
continue;
|
||||
}
|
||||
get_non_strict_sign(j, sign);
|
||||
if(sign == 0)
|
||||
break;
|
||||
}
|
||||
if (sign && is_even(zero_power))
|
||||
sign = 0;
|
||||
TRACE("nla_solver_details", tout << "zero_j = " << zero_j << ", sign = " << sign << "\n";);
|
||||
if (sign == 0) { // have to generate a non-convex lemma
|
||||
add_trival_zero_lemma(zero_j, m);
|
||||
} else {
|
||||
generate_strict_case_zero_lemma(m, zero_j, sign);
|
||||
}
|
||||
for (lpvar j : fixed_zeros)
|
||||
add_fixed_zero_lemma(m, j);
|
||||
}
|
||||
|
||||
void core:: add_fixed_zero_lemma(const monomial& m, lpvar j) {
|
||||
add_empty_lemma();
|
||||
explain_fixed_var(j);
|
||||
mk_ineq(m.var(), llc::EQ);
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
llc core::negate(llc cmp) {
|
||||
switch(cmp) {
|
||||
case llc::LE: return llc::GT;
|
||||
case llc::LT: return llc::GE;
|
||||
case llc::GE: return llc::LT;
|
||||
case llc::GT: return llc::LE;
|
||||
case llc::EQ: return llc::NE;
|
||||
case llc::NE: return llc::EQ;
|
||||
default: SASSERT(false);
|
||||
};
|
||||
return cmp; // not reachable
|
||||
}
|
||||
|
||||
int core::rat_sign(const monomial& m) const {
|
||||
int sign = 1;
|
||||
for (lpvar j : m) {
|
||||
|
@ -1890,54 +1802,6 @@ void core::negate_factor_relation(const rational& a_sign, const factor& a, const
|
|||
mk_ineq(a_fs*a_sign, var(a), - b_fs*b_sign, var(b), cmp);
|
||||
}
|
||||
|
||||
void core::negate_var_factor_relation(const rational& a_sign, lpvar a, const rational& b_sign, const factor& b) {
|
||||
rational b_fs = canonize_sign(b);
|
||||
llc cmp = a_sign*vvr(a) < b_sign*vvr(b)? llc::GE : llc::LE;
|
||||
mk_ineq(a_sign, a, - b_fs*b_sign, var(b), cmp);
|
||||
}
|
||||
|
||||
// |c_sign| = 1, and c*c_sign > 0
|
||||
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
|
||||
void core::generate_ol(const rooted_mon& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const rooted_mon& bc,
|
||||
const factor& b,
|
||||
llc ab_cmp) {
|
||||
add_empty_lemma();
|
||||
rational rc_sign = rational(c_sign);
|
||||
mk_ineq(rc_sign * canonize_sign(c), var(c), llc::LE);
|
||||
mk_ineq(canonize_sign(ac), var(ac), -canonize_sign(bc), var(bc), ab_cmp);
|
||||
mk_ineq(canonize_sign(a)*rc_sign, var(a), - canonize_sign(b)*rc_sign, var(b), negate(ab_cmp));
|
||||
explain(ac, current_expl());
|
||||
explain(a, current_expl());
|
||||
explain(bc, current_expl());
|
||||
explain(b, current_expl());
|
||||
explain(c, current_expl());
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
void core::generate_mon_ol(const monomial& ac,
|
||||
lpvar a,
|
||||
const rational& c_sign,
|
||||
lpvar c,
|
||||
const rooted_mon& bd,
|
||||
const factor& b,
|
||||
const rational& d_sign,
|
||||
lpvar d,
|
||||
llc ab_cmp) {
|
||||
add_empty_lemma();
|
||||
mk_ineq(c_sign, c, llc::LE);
|
||||
explain(c, current_expl()); // this explains c == +- d
|
||||
negate_var_factor_relation(c_sign, a, d_sign, b);
|
||||
mk_ineq(ac.var(), -canonize_sign(bd), var(bd), ab_cmp);
|
||||
explain(bd, current_expl());
|
||||
explain(b, current_expl());
|
||||
explain(d, current_expl());
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
std::unordered_set<lpvar> core::collect_vars(const lemma& l) const {
|
||||
std::unordered_set<lpvar> vars;
|
||||
for (const auto& i : current_lemma().ineqs()) {
|
||||
|
@ -1966,8 +1830,9 @@ std::unordered_set<lpvar> core::collect_vars(const lemma& l) const {
|
|||
return vars;
|
||||
}
|
||||
|
||||
void core::print_lemma(std::ostream& out) {
|
||||
std::ostream& core::print_lemma(std::ostream& out) const {
|
||||
print_specific_lemma(current_lemma(), out);
|
||||
return out;
|
||||
}
|
||||
|
||||
void core::print_specific_lemma(const lemma& l, std::ostream& out) const {
|
||||
|
@ -2001,51 +1866,6 @@ void core::trace_print_ol(const rooted_mon& ac,
|
|||
print_factor_with_vars(c, out);
|
||||
}
|
||||
|
||||
bool core:: order_lemma_on_ac_and_bc_and_factors(const rooted_mon& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const rooted_mon& bc,
|
||||
const factor& b) {
|
||||
auto cv = vvr(c);
|
||||
int c_sign = nla::rat_sign(cv);
|
||||
SASSERT(c_sign != 0);
|
||||
auto av_c_s = vvr(a)*rational(c_sign);
|
||||
auto bv_c_s = vvr(b)*rational(c_sign);
|
||||
auto acv = vvr(ac);
|
||||
auto bcv = vvr(bc);
|
||||
TRACE("nla_solver", trace_print_ol(ac, a, c, bc, b, tout););
|
||||
// Suppose ac >= bc, then ac/|c| >= bc/|c|.
|
||||
// Notice that ac/|c| = a*c_sign , and bc/|c| = b*c_sign, which are correspondingly av_c_s and bv_c_s
|
||||
if (acv >= bcv && av_c_s < bv_c_s) {
|
||||
generate_ol(ac, a, c_sign, c, bc, b, llc::LT);
|
||||
return true;
|
||||
} else if (acv <= bcv && av_c_s > bv_c_s) {
|
||||
generate_ol(ac, a, c_sign, c, bc, b, llc::GT);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// a >< b && c > 0 => ac >< bc
|
||||
// a >< b && c < 0 => ac <> bc
|
||||
// ac[k] plays the role of c
|
||||
bool core:: order_lemma_on_ac_and_bc(const rooted_mon& rm_ac,
|
||||
const factorization& ac_f,
|
||||
unsigned k,
|
||||
const rooted_mon& rm_bd) {
|
||||
TRACE("nla_solver", tout << "rm_ac = ";
|
||||
print_rooted_monomial(rm_ac, tout);
|
||||
tout << "\nrm_bd = ";
|
||||
print_rooted_monomial(rm_bd, tout);
|
||||
tout << "\nac_f[k] = ";
|
||||
print_factor_with_vars(ac_f[k], tout););
|
||||
factor b;
|
||||
if (!divide(rm_bd, ac_f[k], b)){
|
||||
return false;
|
||||
}
|
||||
|
||||
return order_lemma_on_ac_and_bc_and_factors(rm_ac, ac_f[(k + 1) % 2], ac_f[k], rm_bd, b);
|
||||
}
|
||||
void core::maybe_add_a_factor(lpvar i,
|
||||
const factor& c,
|
||||
std::unordered_set<lpvar>& found_vars,
|
||||
|
@ -2070,242 +1890,6 @@ void core::maybe_add_a_factor(lpvar i,
|
|||
}
|
||||
}
|
||||
|
||||
bool core:: order_lemma_on_ac_explore(const rooted_mon& rm, const factorization& ac, unsigned k) {
|
||||
const factor c = ac[k];
|
||||
TRACE("nla_solver", tout << "c = "; print_factor_with_vars(c, tout); );
|
||||
if (c.is_var()) {
|
||||
TRACE("nla_solver", tout << "var(c) = " << var(c););
|
||||
for (unsigned rm_bc : m_rm_table.var_map()[c.index()]) {
|
||||
TRACE("nla_solver", );
|
||||
if (order_lemma_on_ac_and_bc(rm ,ac, k, m_rm_table.rms()[rm_bc])) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned rm_bc : m_rm_table.proper_multiples()[c.index()]) {
|
||||
if (order_lemma_on_ac_and_bc(rm , ac, k, m_rm_table.rms()[rm_bc])) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void core::order_lemma_on_factorization(const rooted_mon& rm, const factorization& ab) {
|
||||
const monomial& m = m_monomials[rm.orig_index()];
|
||||
TRACE("nla_solver", tout << "orig_sign = " << rm.orig_sign() << "\n";);
|
||||
rational sign = rm.orig_sign();
|
||||
for(factor f: ab)
|
||||
sign *= canonize_sign(f);
|
||||
const rational & fv = vvr(ab[0]) * vvr(ab[1]);
|
||||
const rational mv = sign * vvr(m);
|
||||
TRACE("nla_solver",
|
||||
tout << "ab.size()=" << ab.size() << "\n";
|
||||
tout << "we should have sign*vvr(m):" << mv << "=(" << sign << ")*(" << vvr(m) <<") to be equal to " << " vvr(ab[0])*vvr(ab[1]):" << fv << "\n";);
|
||||
if (mv == fv)
|
||||
return;
|
||||
bool gt = mv > fv;
|
||||
TRACE("nla_solver_f", tout << "m="; print_monomial_with_vars(m, tout); tout << "\nfactorization="; print_factorization(ab, tout););
|
||||
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
|
||||
order_lemma_on_ab(m, sign, var(ab[k]), var(ab[j]), gt);
|
||||
explain(ab, current_expl()); explain(m, current_expl());
|
||||
explain(rm, current_expl());
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
order_lemma_on_ac_explore(rm, ab, j);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b <= value(b) => sign*ab <= value(b)*a if value(a) > 0
|
||||
a < 0 & b >= value(b) => sign*ab <= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void core::order_lemma_on_ab_gt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
|
||||
SASSERT(sign * vvr(m) > vvr(a) * vvr(b));
|
||||
add_empty_lemma();
|
||||
if (vvr(a).is_pos()) {
|
||||
TRACE("nla_solver", tout << "a is pos\n";);
|
||||
//negate a > 0
|
||||
mk_ineq(a, llc::LE);
|
||||
// negate b <= vvr(b)
|
||||
mk_ineq(b, llc::GT, vvr(b));
|
||||
// ab <= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
|
||||
} else {
|
||||
TRACE("nla_solver", tout << "a is neg\n";);
|
||||
SASSERT(vvr(a).is_neg());
|
||||
//negate a < 0
|
||||
mk_ineq(a, llc::GE);
|
||||
// negate b >= vvr(b)
|
||||
mk_ineq(b, llc::LT, vvr(b));
|
||||
// ab <= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
|
||||
}
|
||||
}
|
||||
// we need to deduce ab >= vvr(b)*a
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b >= value(b) => sign*ab >= value(b)*a if value(a) > 0
|
||||
a < 0 & b <= value(b) => sign*ab >= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void core::order_lemma_on_ab_lt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
|
||||
SASSERT(sign * vvr(m) < vvr(a) * vvr(b));
|
||||
add_empty_lemma();
|
||||
if (vvr(a).is_pos()) {
|
||||
//negate a > 0
|
||||
mk_ineq(a, llc::LE);
|
||||
// negate b >= vvr(b)
|
||||
mk_ineq(b, llc::LT, vvr(b));
|
||||
// ab <= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::GE);
|
||||
} else {
|
||||
SASSERT(vvr(a).is_neg());
|
||||
//negate a < 0
|
||||
mk_ineq(a, llc::GE);
|
||||
// negate b <= vvr(b)
|
||||
mk_ineq(b, llc::GT, vvr(b));
|
||||
// ab >= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::GE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void core::order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt) {
|
||||
if (gt)
|
||||
order_lemma_on_ab_gt(m, sign, a, b);
|
||||
else
|
||||
order_lemma_on_ab_lt(m, sign, a, b);
|
||||
}
|
||||
|
||||
// void core::order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt) {
|
||||
// add_empty_lemma();
|
||||
// if (gt) {
|
||||
// if (vvr(a).is_pos()) {
|
||||
// //negate a > 0
|
||||
// mk_ineq(a, llc::LE);
|
||||
// // negate b >= vvr(b)
|
||||
// mk_ineq(b, llc::LT, vvr(b));
|
||||
// // ab <= vvr(b)a
|
||||
// mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
|
||||
// } else {
|
||||
// SASSERT(vvr(a).is_neg());
|
||||
// //negate a < 0
|
||||
// mk_ineq(a, llc::GE);
|
||||
// // negate b <= vvr(b)
|
||||
// mk_ineq(b, llc::GT, vvr(b));
|
||||
// // ab < vvr(b)a
|
||||
// mk_ineq(sign, m.var(), -vvr(b), a, llc::LE); }
|
||||
// }
|
||||
// }
|
||||
|
||||
void core::order_lemma_on_factor_binomial_explore(const monomial& m, unsigned k) {
|
||||
SASSERT(m.size() == 2);
|
||||
lpvar c = m[k];
|
||||
lpvar d = m_evars.find(c).var();
|
||||
auto it = m_rm_table.var_map().find(d);
|
||||
SASSERT(it != m_rm_table.var_map().end());
|
||||
for (unsigned bd_i : it->second) {
|
||||
order_lemma_on_factor_binomial_rm(m, k, m_rm_table.rms()[bd_i]);
|
||||
if (done())
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void core::order_lemma_on_factor_binomial_rm(const monomial& ac, unsigned k, const rooted_mon& rm_bd) {
|
||||
factor d(m_evars.find(ac[k]).var(), factor_type::VAR);
|
||||
factor b;
|
||||
if (!divide(rm_bd, d, b))
|
||||
return;
|
||||
order_lemma_on_binomial_ac_bd(ac, k, rm_bd, b, d.index());
|
||||
}
|
||||
|
||||
void core::order_lemma_on_binomial_ac_bd(const monomial& ac, unsigned k, const rooted_mon& bd, const factor& b, lpvar d) {
|
||||
TRACE("nla_solver", print_monomial(ac, tout << "ac=");
|
||||
print_rooted_monomial(bd, tout << "\nrm=");
|
||||
print_factor(b, tout << ", b="); print_var(d, tout << ", d=") << "\n";);
|
||||
int p = (k + 1) % 2;
|
||||
lpvar a = ac[p];
|
||||
lpvar c = ac[k];
|
||||
SASSERT(m_evars.find(c).var() == d);
|
||||
rational acv = vvr(ac);
|
||||
rational av = vvr(a);
|
||||
rational c_sign = rrat_sign(vvr(c));
|
||||
rational d_sign = rrat_sign(vvr(d));
|
||||
rational bdv = vvr(bd);
|
||||
rational bv = vvr(b);
|
||||
auto av_c_s = av*c_sign; auto bv_d_s = bv*d_sign;
|
||||
|
||||
// suppose ac >= bd, then ac/|c| >= bd/|d|.
|
||||
// Notice that ac/|c| = a*c_sign , and bd/|d| = b*d_sign
|
||||
if (acv >= bdv && av_c_s < bv_d_s)
|
||||
generate_mon_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::LT);
|
||||
else if (acv <= bdv && av_c_s > bv_d_s)
|
||||
generate_mon_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::GT);
|
||||
|
||||
}
|
||||
|
||||
void core::order_lemma_on_binomial_k(const monomial& m, lpvar k, bool gt) {
|
||||
SASSERT(gt == (vvr(m) > vvr(m[0]) * vvr(m[1])));
|
||||
unsigned p = (k + 1) % 2;
|
||||
order_lemma_on_binomial_sign(m, m[k], m[p], gt? 1: -1);
|
||||
}
|
||||
// sign it the sign of vvr(m) - vvr(m[0]) * vvr(m[1])
|
||||
// m = xy
|
||||
// and val(m) != val(x)*val(y)
|
||||
// y > 0 and x = a, then xy >= ay
|
||||
void core::order_lemma_on_binomial_sign(const monomial& ac, lpvar x, lpvar y, int sign) {
|
||||
SASSERT(!mon_has_zero(ac));
|
||||
int sy = rat_sign(y);
|
||||
add_empty_lemma();
|
||||
mk_ineq(y, sy == 1? llc::LE : llc::GE); // negate sy
|
||||
mk_ineq(x, sy*sign == 1? llc::GT:llc::LT , vvr(x)); // assert x <= vvr(x) if x > 0
|
||||
mk_ineq(ac.var(), - vvr(x), y, sign == 1?llc::LE:llc::GE);
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
void core::order_lemma_on_binomial(const monomial& ac) {
|
||||
TRACE("nla_solver", print_monomial(ac, tout););
|
||||
SASSERT(!check_monomial(ac) && ac.size() == 2);
|
||||
const rational & mult_val = vvr(ac[0]) * vvr(ac[1]);
|
||||
const rational acv = vvr(ac);
|
||||
bool gt = acv > mult_val;
|
||||
for (unsigned k = 0; k < 2; k++) {
|
||||
order_lemma_on_binomial_k(ac, k, gt);
|
||||
order_lemma_on_factor_binomial_explore(ac, k);
|
||||
}
|
||||
}
|
||||
// a > b && c > 0 => ac > bc
|
||||
void core::order_lemma_on_rmonomial(const rooted_mon& rm) {
|
||||
TRACE("nla_solver_details",
|
||||
tout << "rm = "; print_product(rm, tout);
|
||||
tout << ", orig = "; print_monomial(m_monomials[rm.orig_index()], tout);
|
||||
);
|
||||
for (auto ac : factorization_factory_imp(rm, *this)) {
|
||||
if (ac.size() != 2)
|
||||
continue;
|
||||
if (ac.is_mon())
|
||||
order_lemma_on_binomial(*ac.mon());
|
||||
else
|
||||
order_lemma_on_factorization(rm, ac);
|
||||
if (done())
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void core::order_lemma() {
|
||||
TRACE("nla_solver", );
|
||||
init_rm_to_refine();
|
||||
const auto& rm_ref = m_rm_table.to_refine();
|
||||
unsigned start = random() % rm_ref.size();
|
||||
unsigned i = start;
|
||||
do {
|
||||
const rooted_mon& rm = m_rm_table.rms()[rm_ref[i]];
|
||||
order_lemma_on_rmonomial(rm);
|
||||
if (++i == rm_ref.size()) {
|
||||
i = 0;
|
||||
}
|
||||
} while(i != start && !done());
|
||||
}
|
||||
|
||||
std::vector<rational> core::get_sorted_key(const rooted_mon& rm) const {
|
||||
std::vector<rational> r;
|
||||
|
@ -2964,7 +2548,7 @@ lbool core:: inner_check(bool derived) {
|
|||
if (derived) continue;
|
||||
TRACE("nla_solver", tout << "passed derived and basic lemmas\n";);
|
||||
if (search_level == 1) {
|
||||
order_lemma();
|
||||
m_order.order_lemma();
|
||||
} else { // search_level == 2
|
||||
monotonicity_lemma();
|
||||
tangent_lemma();
|
||||
|
|
File diff suppressed because it is too large
Load diff
333
src/util/lp/nla_order_lemmas.cpp
Normal file
333
src/util/lp/nla_order_lemmas.cpp
Normal file
|
@ -0,0 +1,333 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
|
||||
#include "util/lp/nla_order_lemmas.h"
|
||||
#include "util/lp/nla_core.h"
|
||||
#include "util/lp/nla_common.h"
|
||||
#include "util/lp/factorization_factory_imp.h"
|
||||
|
||||
namespace nla {
|
||||
|
||||
// a >< b && c > 0 => ac >< bc
|
||||
// a >< b && c < 0 => ac <> bc
|
||||
// ac[k] plays the role of c
|
||||
|
||||
bool order::order_lemma_on_ac_and_bc(const rooted_mon& rm_ac,
|
||||
const factorization& ac_f,
|
||||
unsigned k,
|
||||
const rooted_mon& rm_bd) {
|
||||
TRACE("nla_solver", tout << "rm_ac = ";
|
||||
c().print_rooted_monomial(rm_ac, tout);
|
||||
tout << "\nrm_bd = ";
|
||||
c().print_rooted_monomial(rm_bd, tout);
|
||||
tout << "\nac_f[k] = ";
|
||||
c().print_factor_with_vars(ac_f[k], tout););
|
||||
factor b;
|
||||
if (!c().divide(rm_bd, ac_f[k], b)){
|
||||
return false;
|
||||
}
|
||||
|
||||
return order_lemma_on_ac_and_bc_and_factors(rm_ac, ac_f[(k + 1) % 2], ac_f[k], rm_bd, b);
|
||||
}
|
||||
|
||||
bool order::order_lemma_on_ac_explore(const rooted_mon& rm, const factorization& ac, unsigned k) {
|
||||
const factor c = ac[k];
|
||||
TRACE("nla_solver", tout << "c = "; _().print_factor_with_vars(c, tout); );
|
||||
if (c.is_var()) {
|
||||
TRACE("nla_solver", tout << "var(c) = " << var(c););
|
||||
for (unsigned rm_bc : _().m_rm_table.var_map()[c.index()]) {
|
||||
TRACE("nla_solver", );
|
||||
if (order_lemma_on_ac_and_bc(rm ,ac, k, _().m_rm_table.rms()[rm_bc])) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned rm_bc : _().m_rm_table.proper_multiples()[c.index()]) {
|
||||
if (order_lemma_on_ac_and_bc(rm , ac, k, _().m_rm_table.rms()[rm_bc])) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void order::order_lemma_on_factorization(const rooted_mon& rm, const factorization& ab) {
|
||||
const monomial& m = _().m_monomials[rm.orig_index()];
|
||||
TRACE("nla_solver", tout << "orig_sign = " << rm.orig_sign() << "\n";);
|
||||
rational sign = rm.orig_sign();
|
||||
for(factor f: ab)
|
||||
sign *= _().canonize_sign(f);
|
||||
const rational & fv = vvr(ab[0]) * vvr(ab[1]);
|
||||
const rational mv = sign * vvr(m);
|
||||
TRACE("nla_solver",
|
||||
tout << "ab.size()=" << ab.size() << "\n";
|
||||
tout << "we should have sign*vvr(m):" << mv << "=(" << sign << ")*(" << vvr(m) <<") to be equal to " << " vvr(ab[0])*vvr(ab[1]):" << fv << "\n";);
|
||||
if (mv == fv)
|
||||
return;
|
||||
bool gt = mv > fv;
|
||||
TRACE("nla_solver_f", tout << "m="; _().print_monomial_with_vars(m, tout); tout << "\nfactorization="; _().print_factorization(ab, tout););
|
||||
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
|
||||
order_lemma_on_ab(m, sign, var(ab[k]), var(ab[j]), gt);
|
||||
explain(ab); explain(m);
|
||||
explain(rm);
|
||||
TRACE("nla_solver", _().print_lemma(tout););
|
||||
order_lemma_on_ac_explore(rm, ab, j);
|
||||
}
|
||||
}
|
||||
// |c_sign| = 1, and c*c_sign > 0
|
||||
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
|
||||
void order::generate_ol(const rooted_mon& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const rooted_mon& bc,
|
||||
const factor& b,
|
||||
llc ab_cmp) {
|
||||
add_empty_lemma();
|
||||
rational rc_sign = rational(c_sign);
|
||||
mk_ineq(rc_sign * canonize_sign(c), var(c), llc::LE);
|
||||
mk_ineq(canonize_sign(ac), var(ac), -canonize_sign(bc), var(bc), ab_cmp);
|
||||
mk_ineq(canonize_sign(a)*rc_sign, var(a), - canonize_sign(b)*rc_sign, var(b), negate(ab_cmp));
|
||||
explain(ac);
|
||||
explain(a);
|
||||
explain(bc);
|
||||
explain(b);
|
||||
explain(c);
|
||||
TRACE("nla_solver", _().print_lemma(tout););
|
||||
}
|
||||
|
||||
void order::generate_mon_ol(const monomial& ac,
|
||||
lpvar a,
|
||||
const rational& c_sign,
|
||||
lpvar c,
|
||||
const rooted_mon& bd,
|
||||
const factor& b,
|
||||
const rational& d_sign,
|
||||
lpvar d,
|
||||
llc ab_cmp) {
|
||||
add_empty_lemma();
|
||||
mk_ineq(c_sign, c, llc::LE);
|
||||
explain(c); // this explains c == +- d
|
||||
negate_var_factor_relation(c_sign, a, d_sign, b);
|
||||
mk_ineq(ac.var(), -canonize_sign(bd), var(bd), ab_cmp);
|
||||
explain(bd);
|
||||
explain(b);
|
||||
explain(d);
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
void order::negate_var_factor_relation(const rational& a_sign, lpvar a, const rational& b_sign, const factor& b) {
|
||||
rational b_fs = canonize_sign(b);
|
||||
llc cmp = a_sign*vvr(a) < b_sign*vvr(b)? llc::GE : llc::LE;
|
||||
mk_ineq(a_sign, a, - b_fs*b_sign, var(b), cmp);
|
||||
}
|
||||
|
||||
void order::order_lemma() {
|
||||
TRACE("nla_solver", );
|
||||
c().init_rm_to_refine();
|
||||
const auto& rm_ref = c().m_rm_table.to_refine();
|
||||
unsigned start = random() % rm_ref.size();
|
||||
unsigned i = start;
|
||||
do {
|
||||
const rooted_mon& rm = c().m_rm_table.rms()[rm_ref[i]];
|
||||
order_lemma_on_rmonomial(rm);
|
||||
if (++i == rm_ref.size()) {
|
||||
i = 0;
|
||||
}
|
||||
} while(i != start && !done());
|
||||
}
|
||||
|
||||
bool order::order_lemma_on_ac_and_bc_and_factors(const rooted_mon& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const rooted_mon& bc,
|
||||
const factor& b) {
|
||||
auto cv = vvr(c);
|
||||
int c_sign = nla::rat_sign(cv);
|
||||
SASSERT(c_sign != 0);
|
||||
auto av_c_s = vvr(a)*rational(c_sign);
|
||||
auto bv_c_s = vvr(b)*rational(c_sign);
|
||||
auto acv = vvr(ac);
|
||||
auto bcv = vvr(bc);
|
||||
TRACE("nla_solver", _().trace_print_ol(ac, a, c, bc, b, tout););
|
||||
// Suppose ac >= bc, then ac/|c| >= bc/|c|.
|
||||
// Notice that ac/|c| = a*c_sign , and bc/|c| = b*c_sign, which are correspondingly av_c_s and bv_c_s
|
||||
if (acv >= bcv && av_c_s < bv_c_s) {
|
||||
generate_ol(ac, a, c_sign, c, bc, b, llc::LT);
|
||||
return true;
|
||||
} else if (acv <= bcv && av_c_s > bv_c_s) {
|
||||
generate_ol(ac, a, c_sign, c, bc, b, llc::GT);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b <= value(b) => sign*ab <= value(b)*a if value(a) > 0
|
||||
a < 0 & b >= value(b) => sign*ab <= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order::order_lemma_on_ab_gt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
|
||||
SASSERT(sign * vvr(m) > vvr(a) * vvr(b));
|
||||
add_empty_lemma();
|
||||
if (vvr(a).is_pos()) {
|
||||
TRACE("nla_solver", tout << "a is pos\n";);
|
||||
//negate a > 0
|
||||
mk_ineq(a, llc::LE);
|
||||
// negate b <= vvr(b)
|
||||
mk_ineq(b, llc::GT, vvr(b));
|
||||
// ab <= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
|
||||
} else {
|
||||
TRACE("nla_solver", tout << "a is neg\n";);
|
||||
SASSERT(vvr(a).is_neg());
|
||||
//negate a < 0
|
||||
mk_ineq(a, llc::GE);
|
||||
// negate b >= vvr(b)
|
||||
mk_ineq(b, llc::LT, vvr(b));
|
||||
// ab <= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::LE);
|
||||
}
|
||||
}
|
||||
// we need to deduce ab >= vvr(b)*a
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b >= value(b) => sign*ab >= value(b)*a if value(a) > 0
|
||||
a < 0 & b <= value(b) => sign*ab >= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order::order_lemma_on_ab_lt(const monomial& m, const rational& sign, lpvar a, lpvar b) {
|
||||
SASSERT(sign * vvr(m) < vvr(a) * vvr(b));
|
||||
add_empty_lemma();
|
||||
if (vvr(a).is_pos()) {
|
||||
//negate a > 0
|
||||
mk_ineq(a, llc::LE);
|
||||
// negate b >= vvr(b)
|
||||
mk_ineq(b, llc::LT, vvr(b));
|
||||
// ab <= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::GE);
|
||||
} else {
|
||||
SASSERT(vvr(a).is_neg());
|
||||
//negate a < 0
|
||||
mk_ineq(a, llc::GE);
|
||||
// negate b <= vvr(b)
|
||||
mk_ineq(b, llc::GT, vvr(b));
|
||||
// ab >= vvr(b)a
|
||||
mk_ineq(sign, m.var(), -vvr(b), a, llc::GE);
|
||||
}
|
||||
}
|
||||
|
||||
void order::order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt) {
|
||||
if (gt)
|
||||
order_lemma_on_ab_gt(m, sign, a, b);
|
||||
else
|
||||
order_lemma_on_ab_lt(m, sign, a, b);
|
||||
}
|
||||
// a > b && c > 0 => ac > bc
|
||||
void order::order_lemma_on_rmonomial(const rooted_mon& rm) {
|
||||
TRACE("nla_solver_details",
|
||||
tout << "rm = "; print_product(rm, tout);
|
||||
tout << ", orig = "; print_monomial(c().m_monomials[rm.orig_index()], tout);
|
||||
);
|
||||
for (auto ac : factorization_factory_imp(rm, c())) {
|
||||
if (ac.size() != 2)
|
||||
continue;
|
||||
if (ac.is_mon())
|
||||
order_lemma_on_binomial(*ac.mon());
|
||||
else
|
||||
order_lemma_on_factorization(rm, ac);
|
||||
if (done())
|
||||
break;
|
||||
}
|
||||
}
|
||||
void order::order_lemma_on_binomial_k(const monomial& m, lpvar k, bool gt) {
|
||||
SASSERT(gt == (vvr(m) > vvr(m[0]) * vvr(m[1])));
|
||||
unsigned p = (k + 1) % 2;
|
||||
order_lemma_on_binomial_sign(m, m[k], m[p], gt? 1: -1);
|
||||
}
|
||||
// sign it the sign of vvr(m) - vvr(m[0]) * vvr(m[1])
|
||||
// m = xy
|
||||
// and val(m) != val(x)*val(y)
|
||||
// y > 0 and x = a, then xy >= ay
|
||||
void order::order_lemma_on_binomial_sign(const monomial& ac, lpvar x, lpvar y, int sign) {
|
||||
SASSERT(!_().mon_has_zero(ac));
|
||||
int sy = rat_sign(vvr(y));
|
||||
add_empty_lemma();
|
||||
mk_ineq(y, sy == 1? llc::LE : llc::GE); // negate sy
|
||||
mk_ineq(x, sy*sign == 1? llc::GT:llc::LT , vvr(x)); // assert x <= vvr(x) if x > 0
|
||||
mk_ineq(ac.var(), - vvr(x), y, sign == 1?llc::LE:llc::GE);
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
void order::order_lemma_on_factor_binomial_rm(const monomial& ac, unsigned k, const rooted_mon& rm_bd) {
|
||||
factor d(_().m_evars.find(ac[k]).var(), factor_type::VAR);
|
||||
factor b;
|
||||
if (!_().divide(rm_bd, d, b))
|
||||
return;
|
||||
order_lemma_on_binomial_ac_bd(ac, k, rm_bd, b, d.index());
|
||||
}
|
||||
|
||||
void order::order_lemma_on_binomial_ac_bd(const monomial& ac, unsigned k, const rooted_mon& bd, const factor& b, lpvar d) {
|
||||
TRACE("nla_solver", print_monomial(ac, tout << "ac=");
|
||||
print_rooted_monomial(bd, tout << "\nrm=");
|
||||
print_factor(b, tout << ", b="); print_var(d, tout << ", d=") << "\n";);
|
||||
int p = (k + 1) % 2;
|
||||
lpvar a = ac[p];
|
||||
lpvar c = ac[k];
|
||||
SASSERT(_().m_evars.find(c).var() == d);
|
||||
rational acv = vvr(ac);
|
||||
rational av = vvr(a);
|
||||
rational c_sign = rrat_sign(vvr(c));
|
||||
rational d_sign = rrat_sign(vvr(d));
|
||||
rational bdv = vvr(bd);
|
||||
rational bv = vvr(b);
|
||||
auto av_c_s = av*c_sign; auto bv_d_s = bv*d_sign;
|
||||
|
||||
// suppose ac >= bd, then ac/|c| >= bd/|d|.
|
||||
// Notice that ac/|c| = a*c_sign , and bd/|d| = b*d_sign
|
||||
if (acv >= bdv && av_c_s < bv_d_s)
|
||||
generate_mon_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::LT);
|
||||
else if (acv <= bdv && av_c_s > bv_d_s)
|
||||
generate_mon_ol(ac, a, c_sign, c, bd, b, d_sign, d, llc::GT);
|
||||
|
||||
}
|
||||
|
||||
void order::order_lemma_on_factor_binomial_explore(const monomial& m, unsigned k) {
|
||||
SASSERT(m.size() == 2);
|
||||
lpvar c = m[k];
|
||||
lpvar d = _().m_evars.find(c).var();
|
||||
auto it = _().m_rm_table.var_map().find(d);
|
||||
SASSERT(it != _().m_rm_table.var_map().end());
|
||||
for (unsigned bd_i : it->second) {
|
||||
order_lemma_on_factor_binomial_rm(m, k, _().m_rm_table.rms()[bd_i]);
|
||||
if (done())
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void order::order_lemma_on_binomial(const monomial& ac) {
|
||||
TRACE("nla_solver", print_monomial(ac, tout););
|
||||
SASSERT(!check_monomial(ac) && ac.size() == 2);
|
||||
const rational & mult_val = vvr(ac[0]) * vvr(ac[1]);
|
||||
const rational acv = vvr(ac);
|
||||
bool gt = acv > mult_val;
|
||||
for (unsigned k = 0; k < 2; k++) {
|
||||
order_lemma_on_binomial_k(ac, k, gt);
|
||||
order_lemma_on_factor_binomial_explore(ac, k);
|
||||
}
|
||||
}
|
||||
} // end of namespace nla
|
98
src/util/lp/nla_order_lemmas.h
Normal file
98
src/util/lp/nla_order_lemmas.h
Normal file
|
@ -0,0 +1,98 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/lp/rooted_mons.h"
|
||||
#include "util/lp/factorization.h"
|
||||
#include "util/lp/nla_common.h"
|
||||
|
||||
namespace nla {
|
||||
struct core;
|
||||
struct order: common {
|
||||
|
||||
// fields
|
||||
core * m_core;
|
||||
core& _() { return *m_core; }
|
||||
const core& _() const { return *m_core; }
|
||||
core& c() { return *m_core; }
|
||||
const core& c() const { return *m_core; }
|
||||
//constructor
|
||||
order(core *c) : common(c) {}
|
||||
bool order_lemma_on_ac_and_bc_and_factors(const rooted_mon& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const rooted_mon& bc,
|
||||
const factor& b);
|
||||
|
||||
// a >< b && c > 0 => ac >< bc
|
||||
// a >< b && c < 0 => ac <> bc
|
||||
// ac[k] plays the role of c
|
||||
bool order_lemma_on_ac_and_bc(const rooted_mon& rm_ac,
|
||||
const factorization& ac_f,
|
||||
unsigned k,
|
||||
const rooted_mon& rm_bd);
|
||||
|
||||
bool order_lemma_on_ac_explore(const rooted_mon& rm, const factorization& ac, unsigned k);
|
||||
|
||||
void order_lemma_on_factorization(const rooted_mon& rm, const factorization& ab);
|
||||
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b <= value(b) => sign*ab <= value(b)*a if value(a) > 0
|
||||
a < 0 & b >= value(b) => sign*ab <= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order_lemma_on_ab_gt(const monomial& m, const rational& sign, lpvar a, lpvar b);
|
||||
// we need to deduce ab >= vvr(b)*a
|
||||
/**
|
||||
\brief Add lemma:
|
||||
a > 0 & b >= value(b) => sign*ab >= value(b)*a if value(a) > 0
|
||||
a < 0 & b <= value(b) => sign*ab >= value(b)*a if value(a) < 0
|
||||
*/
|
||||
void order_lemma_on_ab_lt(const monomial& m, const rational& sign, lpvar a, lpvar b);
|
||||
void order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt);
|
||||
void order_lemma_on_factor_binomial_explore(const monomial& m, unsigned k);
|
||||
void order_lemma_on_factor_binomial_rm(const monomial& ac, unsigned k, const rooted_mon& rm_bd);
|
||||
void order_lemma_on_binomial_ac_bd(const monomial& ac, unsigned k, const rooted_mon& bd, const factor& b, lpvar d);
|
||||
void order_lemma_on_binomial_k(const monomial& m, lpvar k, bool gt);
|
||||
void order_lemma_on_binomial_sign(const monomial& ac, lpvar x, lpvar y, int sign);
|
||||
void order_lemma_on_binomial(const monomial& ac);
|
||||
void order_lemma_on_rmonomial(const rooted_mon& rm);
|
||||
void order_lemma();
|
||||
// |c_sign| = 1, and c*c_sign > 0
|
||||
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
|
||||
void generate_ol(const rooted_mon& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const rooted_mon& bc,
|
||||
const factor& b,
|
||||
llc ab_cmp);
|
||||
|
||||
void generate_mon_ol(const monomial& ac,
|
||||
lpvar a,
|
||||
const rational& c_sign,
|
||||
lpvar c,
|
||||
const rooted_mon& bd,
|
||||
const factor& b,
|
||||
const rational& d_sign,
|
||||
lpvar d,
|
||||
llc ab_cmp);
|
||||
void negate_var_factor_relation(const rational& a_sign, lpvar a, const rational& b_sign, const factor& b);
|
||||
};
|
||||
}
|
|
@ -23,9 +23,8 @@
|
|||
namespace nla {
|
||||
template <typename T> rational tangents::vvr(T const& t) const { return m_core->vvr(t); }
|
||||
template <typename T> lpvar tangents::var(T const& t) const { return m_core->var(t); }
|
||||
void tangents::add_empty_lemma() { c().add_empty_lemma(); }
|
||||
|
||||
tangents::tangents(core * c) : m_core(c) {}
|
||||
tangents::tangents(core * c) : common(c) {}
|
||||
std::ostream& tangents::print_point(const point &a, std::ostream& out) const {
|
||||
out << "(" << a.x << ", " << a.y << ")";
|
||||
return out;
|
||||
|
|
84
src/util/lp/nla_tangent_lemmas.h
Normal file
84
src/util/lp/nla_tangent_lemmas.h
Normal file
|
@ -0,0 +1,84 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
<name>
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
#include "util/rational.h"
|
||||
#include "util/lp/rooted_mons.h"
|
||||
#include "util/lp/factorization.h"
|
||||
#include "util/lp/nla_common.h"
|
||||
|
||||
namespace nla {
|
||||
struct core;
|
||||
struct tangents: common {
|
||||
struct point {
|
||||
rational x;
|
||||
rational y;
|
||||
point(const rational& a, const rational& b): x(a), y(b) {}
|
||||
point() {}
|
||||
inline point& operator*=(rational a) {
|
||||
x *= a;
|
||||
y *= a;
|
||||
return *this;
|
||||
}
|
||||
inline point operator+(const point& b) const {
|
||||
return point(x + b.x, y + b.y);
|
||||
}
|
||||
|
||||
inline point operator-(const point& b) const {
|
||||
return point(x - b.x, y - b.y);
|
||||
}
|
||||
};
|
||||
|
||||
core* m_core;
|
||||
core& c() { return *m_core; }
|
||||
const core& c() const { return *m_core; }
|
||||
tangents(core *core);
|
||||
|
||||
void generate_simple_tangent_lemma(const rooted_mon* rm);
|
||||
|
||||
void tangent_lemma();
|
||||
|
||||
void generate_explanations_of_tang_lemma(const rooted_mon& rm, const bfc& bf, lp::explanation& exp);
|
||||
|
||||
void tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const rooted_mon* rm);
|
||||
void generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j, const rational& j_sign);
|
||||
|
||||
void generate_two_tang_lines(const bfc & bf, const point& xy, const rational& sign, lpvar j);
|
||||
// Get two planes tangent to surface z = xy, one at point a, and another at point b.
|
||||
// One can show that these planes still create a cut.
|
||||
void get_initial_tang_points(point &a, point &b, const point& xy, bool below) const;
|
||||
|
||||
void push_tang_point(point &a, const point& xy, bool below, const rational& correct_val, const rational& val) const;
|
||||
|
||||
void push_tang_points(point &a, point &b, const point& xy, bool below, const rational& correct_val, const rational& val) const;
|
||||
|
||||
rational tang_plane(const point& a, const point& x) const;
|
||||
void get_tang_points(point &a, point &b, bool below, const rational& val, const point& xy) const;
|
||||
std::ostream& print_point(const point &a, std::ostream& out) const;
|
||||
std::ostream& print_tangent_domain(const point &a, const point &b, std::ostream& out) const;
|
||||
// "below" means that the val is below the surface xy
|
||||
bool plane_is_correct_cut(const point& plane,
|
||||
const point& xy,
|
||||
const rational & correct_val,
|
||||
const rational & val,
|
||||
bool below) const;
|
||||
template <typename T> rational vvr(T const& t) const;
|
||||
template <typename T> lpvar var(T const& t) const;
|
||||
}; // end of tangents
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue