3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 09:35:32 +00:00

re-organizing muz

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-08-28 21:49:53 -07:00
parent add96bc98f
commit 9e61820125
20 changed files with 73 additions and 42 deletions

View file

@ -0,0 +1,160 @@
#include"arith_bounds_tactic.h"
#include"arith_decl_plugin.h"
struct arith_bounds_tactic : public tactic {
ast_manager& m;
arith_util a;
volatile bool m_cancel;
arith_bounds_tactic(ast_manager& m):
m(m),
a(m),
m_cancel(false)
{
}
ast_manager& get_manager() { return m; }
void set_cancel(bool f) {
m_cancel = f;
}
virtual void cleanup() {
m_cancel = false;
}
virtual void operator()(/* in */ goal_ref const & in,
/* out */ goal_ref_buffer & result,
/* out */ model_converter_ref & mc,
/* out */ proof_converter_ref & pc,
/* out */ expr_dependency_ref & core) {
bounds_arith_subsumption(in, result);
}
virtual tactic* translate(ast_manager& m) {
return alloc(arith_bounds_tactic, m);
}
void checkpoint() {
if (m_cancel) {
throw tactic_exception(TACTIC_CANCELED_MSG);
}
}
struct info { rational r; unsigned idx; bool is_strict;};
/**
\brief Basic arithmetic subsumption simplification based on bounds.
*/
void mk_proof(proof_ref& pr, goal_ref const& s, unsigned i, unsigned j) {
if (s->proofs_enabled()) {
proof* th_lemma = m.mk_th_lemma(a.get_family_id(), m.mk_implies(s->form(i), s->form(j)), 0, 0);
pr = m.mk_modus_ponens(s->pr(i), th_lemma);
}
}
bool is_le_or_lt(expr* e, expr*& e1, expr*& e2, bool& is_strict) {
bool is_negated = m.is_not(e, e);
if ((!is_negated && (a.is_le(e, e1, e2) || a.is_ge(e, e2, e1))) ||
(is_negated && (a.is_lt(e, e2, e1) || a.is_gt(e, e1, e2)))) {
is_strict = false;
return true;
}
if ((!is_negated && (a.is_lt(e, e1, e2) || a.is_gt(e, e2, e1))) ||
(is_negated && (a.is_le(e, e2, e1) || a.is_ge(e, e1, e2)))) {
is_strict = true;
return true;
}
return false;
}
void bounds_arith_subsumption(goal_ref const& g, goal_ref_buffer& result) {
info inf;
rational r;
goal_ref s(g); // initialize result.
obj_map<expr, info> lower, upper;
expr* e1, *e2;
TRACE("arith_subsumption", s->display(tout); );
for (unsigned i = 0; i < s->size(); ++i) {
checkpoint();
expr* lemma = s->form(i);
bool is_strict = false;
bool is_lower = false;
if (!is_le_or_lt(lemma, e1, e2, is_strict)) {
continue;
}
// e1 <= e2 or e1 < e2
if (a.is_numeral(e2, r)) {
is_lower = true;
}
else if (a.is_numeral(e1, r)) {
is_lower = false;
}
else {
continue;
}
proof_ref new_pr(m);
if (is_lower && upper.find(e1, inf)) {
if (inf.r > r || (inf.r == r && is_strict && !inf.is_strict)) {
mk_proof(new_pr, s, i, inf.idx);
s->update(inf.idx, m.mk_true(), new_pr);
inf.r = r;
inf.is_strict = is_strict;
inf.idx = i;
upper.insert(e1, inf);
}
else {
mk_proof(new_pr, s, inf.idx, i);
s->update(i, m.mk_true(), new_pr);
}
}
else if (is_lower) {
inf.r = r;
inf.is_strict = is_strict;
inf.idx = i;
upper.insert(e1, inf);
}
else if (!is_lower && lower.find(e2, inf)) {
if (inf.r < r || (inf.r == r && is_strict && !inf.is_strict)) {
mk_proof(new_pr, s, i, inf.idx);
s->update(inf.idx, m.mk_true(), new_pr);
inf.r = r;
inf.is_strict = is_strict;
inf.idx = i;
lower.insert(e2, inf);
}
else {
mk_proof(new_pr, s, inf.idx, i);
s->update(i, m.mk_true());
}
}
else if (!is_lower) {
inf.r = r;
inf.is_strict = is_strict;
inf.idx = i;
lower.insert(e2, inf);
}
}
s->elim_true();
result.push_back(s.get());
TRACE("arith_subsumption", s->display(tout); );
}
};
tactic * mk_arith_bounds_tactic(ast_manager & m, params_ref const & p) {
return alloc(arith_bounds_tactic, m);
}

View file

@ -0,0 +1,37 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
arith_bounds_tactic.h
Abstract:
Fast/rudimentary arithmetic subsumption tactic.
Author:
Nikolaj Bjorner (nbjorner) 2012-9-6
Notes:
Background: The Farkas learner in PDR generates tons
of inequalities that contain redundancies.
It therefore needs a fast way to reduce these redundancies before
passing the results to routines that are more expensive.
The arith subsumption_strategy encapsulates a rudimentary
routine for simplifying inequalities. Additional simplification
routines can be added here or composed with this strategy.
Note: The bound_manager subsumes some of the collection methods used
for assembling bounds, but it does not have a way to check for
subsumption of atoms.
--*/
#ifndef _ARITH_BOUNDS_TACTIC_H_
#define _ARITH_BOUNDS_TACTIC_H_
#include "tactic.h"
tactic * mk_arith_bounds_tactic(ast_manager & m, params_ref const & p = params_ref());
#endif