3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-20 07:24:40 +00:00

add cancel to hnf_cutter

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

exit earlier on a large matrix in hnf_cutter

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

call hnf only for the boundary points

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

fix a bug in hnf_cutter initialization

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

initialize has_bounds in lar_solver::get_equality_for_term_on_corrent_x

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

initialize has_bounds in lar_solver::get_equality_for_term_on_corrent_x

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

initialize has_bounds in lar_solver::get_equality_for_term_on_corrent_x

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

initialize has_bounds in lar_solver::get_equality_for_term_on_corrent_x

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

fixes in determinant_of_rectangular_matrix calculations

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

changes in debug code

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

init m_hnf_cut_period from globals settings

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

fix some warnings

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

Lev2 (#66)

* log quantifiers only if present

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* merge and fix some warnings

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

remove a comment

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

simplify gomory cut return's logic

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

simplify uniformly int_solver::check()

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

making new arith solver default for LIA (#67)

* log quantifiers only if present

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* merge and fix some warnings

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* set new arith as default for LIA

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

remove chase_cut_solver

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

remove integer_domain

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

restore call for find_cube()

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

remove a method

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

remove some debug code

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2018-05-23 15:23:34 -07:00
parent 82eb80de6d
commit 9be49ff6ff
17 changed files with 300 additions and 4144 deletions

View file

@ -5,9 +5,9 @@
#include "util/lp/int_solver.h"
#include "util/lp/lar_solver.h"
#include "util/lp/chase_cut_solver.h"
#include "util/lp/lp_utils.h"
#include <utility>
#include "util/lp/monomial.h"
namespace lp {
@ -32,22 +32,15 @@ void int_solver::trace_inf_rows() const {
);
}
bool int_solver::all_columns_are_bounded() const {
for (unsigned j = 0; j < m_lar_solver->column_count(); j++)
if (m_lar_solver->column_is_bounded(j) == false)
return false;
return true;
}
bool int_solver::has_inf_int() const {
return m_lar_solver->has_inf_int();
}
int int_solver::find_inf_int_base_column() {
unsigned inf_int_count;
unsigned inf_int_count = 0;
int j = find_inf_int_boxed_base_column_with_smallest_range(inf_int_count);
if (j != -1)
return j;
if (j != -1)
return j;
if (inf_int_count == 0)
return -1;
unsigned k = random() % inf_int_count;
@ -55,22 +48,17 @@ int int_solver::find_inf_int_base_column() {
}
int int_solver::get_kth_inf_int(unsigned k) const {
unsigned inf_int_count = 0;
for (unsigned j : m_lar_solver->r_basis()) {
if (! column_is_int_inf(j) )
continue;
if (inf_int_count++ == k)
for (unsigned j : m_lar_solver->r_basis())
if (column_is_int_inf(j) && k-- == 0)
return j;
}
lp_assert(false);
return -1;
}
int int_solver::find_inf_int_nbasis_column() const {
for (unsigned j : m_lar_solver->r_nbasis())
if (! column_is_int_inf(j) )
return j;
if (!column_is_int_inf(j))
return j;
return -1;
}
@ -80,7 +68,7 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range(unsigned & in
mpq range;
mpq new_range;
mpq small_range_thresold(1024);
unsigned n;
unsigned n = 0;
lar_core_solver & lcs = m_lar_solver->m_mpq_lar_core_solver;
for (unsigned j : m_lar_solver->r_basis()) {
@ -93,24 +81,14 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range(unsigned & in
new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_lower_bounds()[j].x;
if (new_range > small_range_thresold)
continue;
if (result == -1) {
if (result == -1 || new_range < range) {
result = j;
range = new_range;
n = 1;
continue;
}
if (new_range < range) {
n = 1;
else if (new_range == range && settings().random_next() % (++n) == 0) {
lp_assert(n > 1);
result = j;
range = new_range;
continue;
}
if (new_range == range) {
lp_assert(n >= 1);
if (settings().random_next() % (++n) == 0) {
result = j;
continue;
}
}
}
return result;
@ -272,18 +250,10 @@ void int_solver::gomory_cut_adjust_t_and_k(vector<std::pair<mpq, unsigned>> & po
bool int_solver::current_solution_is_inf_on_cut() const {
const auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x;
impq v = m_t->apply(x);
mpq sign = !(*m_upper) ? one_of_type<mpq>() : -one_of_type<mpq>();
TRACE("current_solution_is_inf_on_cut",
if (is_pos(sign)) {
tout << "v = " << v << " k = " << (*m_k) << std::endl;
if (v <=(*m_k)) {
tout << "v <= k - it should not happen!\n";
}
} else {
if (v >= (*m_k)) {
tout << "v > k - it should not happen!\n";
}
}
mpq sign = *m_upper ? one_of_type<mpq>() : -one_of_type<mpq>();
CTRACE("current_solution_is_inf_on_cut", v * sign <= (*m_k) * sign,
tout << "m_upper = " << *m_upper << std::endl;
tout << "v = " << v << ", k = " << (*m_k) << std::endl;
);
return v * sign > (*m_k) * sign;
}
@ -362,8 +332,7 @@ lia_move int_solver::mk_gomory_cut( unsigned inf_col, const row_strip<mpq> & row
a.neg();
if (is_real(x_j))
real_case_in_gomory_cut(a, x_j, f_0, one_min_f_0);
else {
if (a.is_int()) continue; // f_j will be zero and no monomial will be added
else if (!a.is_int()) { // f_j will be zero and no monomial will be added
some_int_columns = true;
int_case_in_gomory_cut(a, x_j, lcm_den, f_0, one_min_f_0);
}
@ -392,14 +361,14 @@ int int_solver::find_free_var_in_gomory_row(const row_strip<mpq>& row) {
lia_move int_solver::proceed_with_gomory_cut(unsigned j) {
const row_strip<mpq>& row = m_lar_solver->get_row(row_of_basic_column(j));
int free_j = find_free_var_in_gomory_row(row);
if (free_j != -1)
return lia_move::undef;
if (!is_gomory_cut_target(row)) {
return lia_move::undef;
}
*m_upper = false;
if (-1 != find_free_var_in_gomory_row(row))
return lia_move::undef;
if (!is_gomory_cut_target(row))
return lia_move::undef;
*m_upper = true;
return mk_gomory_cut(j, row);
}
@ -420,29 +389,7 @@ unsigned int_solver::row_of_basic_column(unsigned j) const {
// }
typedef chase_cut_solver::monomial mono;
// it produces an inequality coeff*x <= rs
template <typename T>
void int_solver::get_int_coeffs_from_constraint(const lar_base_constraint* c,
vector<mono>& coeffs, T & rs) {
lp_assert(c->m_kind != EQ); // it is not implemented, we need to create two inequalities in this case
int sign = ((int)c->m_kind > 0) ? -1 : 1;
vector<std::pair<T, var_index>> lhs = c->get_left_side_coefficients();
T den = denominator(c->m_right_side);
for (auto & kv : lhs) {
lp_assert(!is_term(kv.second));
lp_assert(is_int(kv.second)); // not implemented for real vars!
den = lcm(den, denominator(kv.first));
}
lp_assert(den > 0);
for (auto& kv : lhs) {
coeffs.push_back(mono(den * kv.first * sign, kv.second));
}
rs = den * c->m_right_side * sign;
if (kind_is_strict(c->m_kind))
rs--;
}
typedef monomial mono;
// this will allow to enable and disable tracking of the pivot rows
@ -462,36 +409,6 @@ struct pivoted_rows_tracking_control {
}
};
void int_solver::copy_explanations_from_chase_cut_solver() {
TRACE("propagate_and_backjump_step_int",
for (unsigned j: m_chase_cut_solver.m_explanation)
m_lar_solver->print_constraint(m_lar_solver->constraints()[j], tout););
for (unsigned j : m_chase_cut_solver.m_explanation) {
m_ex->push_justification(j);
}
m_chase_cut_solver.m_explanation.clear();
}
void int_solver::copy_values_from_chase_cut_solver() {
for (unsigned j = 0; j < m_lar_solver->A_r().column_count() && j < m_chase_cut_solver.number_of_vars(); j++) {
if (!m_chase_cut_solver.var_is_active(j))
continue;
if (!is_int(j)) {
continue;
}
m_lar_solver->m_mpq_lar_core_solver.m_r_x[j] = m_chase_cut_solver.var_value(j);
lp_assert(m_lar_solver->column_value_is_int(j));
}
}
void int_solver::catch_up_in_adding_constraints_to_chase_cut_solver() {
lp_assert(m_chase_cut_solver.number_of_asserts() <= m_lar_solver->constraints().size());
for (unsigned j = m_chase_cut_solver.number_of_asserts(); j < m_lar_solver->constraints().size(); j++) {
add_constraint_to_chase_cut_solver(j, m_lar_solver->constraints()[j]);
}
}
impq int_solver::get_cube_delta_for_term(const lar_term& t) const {
if (t.size() == 2) {
bool seen_minus = false;
@ -541,9 +458,9 @@ bool int_solver::tighten_terms_for_cube() {
return true;
}
bool int_solver::find_cube() {
lia_move int_solver::find_cube() {
if (m_branch_cut_counter % settings().m_int_find_cube_period != 0)
return false;
return lia_move::undef;
settings().st().m_cube_calls++;
TRACE("cube",
@ -551,26 +468,25 @@ bool int_solver::find_cube() {
display_column(tout, j);
m_lar_solver->print_terms(tout);
);
m_lar_solver->push();
if(!tighten_terms_for_cube()) {
m_lar_solver->pop();
return false;
lar_solver::scoped_push _sp(*m_lar_solver);
if (!tighten_terms_for_cube()) {
return lia_move::undef;
}
lp_status st = m_lar_solver->find_feasible_solution();
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
TRACE("cube", tout << "cannot find a feasiblie solution";);
m_lar_solver->pop();
_sp.pop();
move_non_basic_columns_to_bounds();
find_feasible_solution();
lp_assert(m_chase_cut_solver.cancel() || is_feasible());
// it can happen that we found an integer solution here
return !m_lar_solver->r_basis_has_inf_int();
return !m_lar_solver->r_basis_has_inf_int()? lia_move::sat: lia_move::undef;
}
m_lar_solver->pop();
_sp.pop();
m_lar_solver->round_to_integer_solution();
lp_assert(m_chase_cut_solver.cancel() || is_feasible());
return true;
settings().st().m_cube_success++;
return lia_move::sat;
}
void int_solver::find_feasible_solution() {
@ -589,55 +505,26 @@ lia_move int_solver::run_gcd_test() {
return lia_move::undef;
}
lia_move int_solver::call_chase_cut_solver() {
if ((m_branch_cut_counter) % settings().m_int_chase_cut_solver_period != 0 || !all_columns_are_bounded())
return lia_move::undef;
TRACE("check_main_int", tout<<"chase_cut_solver";);
catch_up_in_adding_constraints_to_chase_cut_solver();
auto check_res = m_chase_cut_solver.check();
settings().st().m_chase_cut_solver_calls++;
switch (check_res) {
case chase_cut_solver::lbool::l_false:
copy_explanations_from_chase_cut_solver();
settings().st().m_chase_cut_solver_false++;
return lia_move::conflict;
case chase_cut_solver::lbool::l_true:
settings().st().m_chase_cut_solver_true++;
copy_values_from_chase_cut_solver();
lp_assert(m_lar_solver->all_constraints_hold());
return lia_move::sat;
case chase_cut_solver::lbool::l_undef:
settings().st().m_chase_cut_solver_undef++;
if (m_chase_cut_solver.try_getting_cut(*m_t, *m_k, m_lar_solver->m_mpq_lar_core_solver.m_r_x)) {
m_lar_solver->subs_term_columns(*m_t);
TRACE("chase_cut_solver_cuts",
tout<<"precut from chase_cut_solver:"; m_lar_solver->print_term(*m_t, tout); tout << " <= " << *m_k << std::endl;);
return lia_move::cut;
}
default:
return lia_move::undef;
}
}
lia_move int_solver::gomory_cut() {
TRACE("check_main_int", tout << "gomory";);
if ((m_branch_cut_counter) % settings().m_int_gomory_cut_period != 0)
return lia_move::undef;
if (move_non_basic_columns_to_bounds()) {
lp_status st = m_lar_solver->find_feasible_solution();
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
TRACE("arith_int", tout << "give_up\n";);
return lia_move::undef;
}
#if Z3DEBUG
lp_status st =
#endif
m_lar_solver->find_feasible_solution();
#if Z3DEBUG
lp_assert(st == lp_status::FEASIBLE || st == lp_status::OPTIMAL);
#endif
}
int j = find_inf_int_base_column();
if (j == -1) {
j = find_inf_int_nbasis_column();
return j == -1? lia_move::sat : create_branch_on_column(j);
}
lia_move r = proceed_with_gomory_cut(j);
if (r != lia_move::undef)
return r;
return create_branch_on_column(j);
return proceed_with_gomory_cut(j);
}
@ -645,39 +532,49 @@ bool int_solver::try_add_term_to_A_for_hnf(unsigned i) {
mpq rs;
const lar_term* t = m_lar_solver->terms()[i];
for (const auto & p : *t) {
if (!is_int(p.var()))
if (!is_int(p.var())) {
lp_assert(false);
return false; // todo : the mix case!
}
}
if (m_lar_solver->get_equality_for_term_on_corrent_x(i, rs)) {
bool has_bounds;
if (m_lar_solver->get_equality_and_right_side_for_term_on_corrent_x(i, rs, has_bounds)) {
m_hnf_cutter.add_term(t, rs);
return true;
} else {
return false;
}
return !has_bounds;
}
bool int_solver::hnf_matrix_is_empty() const { return true; }
bool int_solver::prepare_matrix_A_for_hnf_cut() {
bool int_solver::init_terms_for_hnf_cut() {
m_hnf_cutter.clear();
for (unsigned i = 0; i < m_lar_solver->terms().size(); i++) {
bool r = try_add_term_to_A_for_hnf(i);
if (!r && settings().hnf_cutter_exit_if_x_is_not_on_bound_or_mixed )
return false;
try_add_term_to_A_for_hnf(i);
}
return true;
return m_hnf_cutter.row_count() < settings().limit_on_rows_for_hnf_cutter;
}
lia_move int_solver::make_hnf_cut() {
if (!prepare_matrix_A_for_hnf_cut()) {
if (!init_terms_for_hnf_cut()) {
return lia_move::undef;
}
settings().st().m_hnf_cutter_calls++;
lia_move r = m_hnf_cutter.create_cut(*m_t, *m_k, *m_ex, *m_upper);
TRACE("hnf_cut", tout << "settings().st().m_hnf_cutter_calls = " << settings().st().m_hnf_cutter_calls;);
#ifdef Z3DEBUG
vector<mpq> x0 = m_hnf_cutter.transform_to_local_columns(m_lar_solver->m_mpq_lar_core_solver.m_r_x);
#endif
lia_move r = m_hnf_cutter.create_cut(*m_t, *m_k, *m_ex, *m_upper
#ifdef Z3DEBUG
, x0
#endif
);
CTRACE("hnf_cut", r == lia_move::cut, tout<< "cut:"; m_lar_solver->print_term(*m_t, tout); tout << " <= " << *m_k << std::endl;);
if (r == lia_move::cut)
if (r == lia_move::cut) {
lp_assert(current_solution_is_inf_on_cut());
settings().st().m_hnf_cuts++;
}
return r;
}
@ -689,43 +586,42 @@ lia_move int_solver::hnf_cut() {
}
lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex, bool & upper) {
if (!has_inf_int())
return lia_move::sat;
if (!has_inf_int()) return lia_move::sat;
m_t = &t; m_k = &k; m_ex = &ex; m_upper = &upper;
if (run_gcd_test() == lia_move::conflict)
return lia_move::conflict;
lia_move r = run_gcd_test();
if (r != lia_move::undef) return r;
pivoted_rows_tracking_control pc(m_lar_solver);
if(settings().m_int_pivot_fixed_vars_from_basis)
m_lar_solver->pivot_fixed_vars_from_basis();
if (patch_nbasic_columns() == lia_move::sat)
return lia_move::sat;
r = patch_nbasic_columns();
if (r != lia_move::undef) return r;
++m_branch_cut_counter;
if (find_cube()){
settings().st().m_cube_success++;
return lia_move::sat;
}
lia_move r = call_chase_cut_solver();
if (r != lia_move::undef)
return r;
r = hnf_cut();
if (r != lia_move::undef)
return r;
r = find_cube();
if (r != lia_move::undef) return r;
if ((m_branch_cut_counter) % settings().m_int_gomory_cut_period == 0) {
return gomory_cut();
}
int j = find_inf_int_base_column();
if (j == -1) {
j = find_inf_int_nbasis_column();
if (j == -1)
return lia_move::sat;
}
return create_branch_on_column(j);
r = hnf_cut();
if (r != lia_move::undef) return r;
r = gomory_cut();
return (r == lia_move::undef)? branch_or_sat() : r;
}
lia_move int_solver::branch_or_sat() {
int j = find_any_inf_int_column_basis_first();
return j == -1? lia_move::sat : create_branch_on_column(j);
}
int int_solver::find_any_inf_int_column_basis_first() {
int j = find_inf_int_base_column();
if (j != -1)
return j;
return find_inf_int_nbasis_column();
}
bool int_solver::move_non_basic_column_to_bounds(unsigned j) {
@ -751,7 +647,7 @@ bool int_solver::move_non_basic_column_to_bounds(unsigned j) {
if (val != lcs.m_r_upper_bounds()[j]) {
set_value_for_nbasic_column(j, lcs.m_r_upper_bounds()[j]);
return true;
}
}
break;
default:
if (is_int(j) && !val.is_int()) {
@ -845,6 +741,7 @@ void int_solver::patch_nbasic_column(unsigned j) {
tout << "patching with 0\n";);
}
}
lia_move int_solver::patch_nbasic_columns() {
settings().st().m_patches++;
lp_assert(is_feasible());
@ -931,6 +828,7 @@ bool int_solver::gcd_test_for_row(static_matrix<mpq, numeric_pair<mpq>> & A, uns
return true;
}
void int_solver::add_to_explanation_from_fixed_or_boxed_column(unsigned j) {
constraint_index lc, uc;
m_lar_solver->get_bound_constraint_witnesses_for_column(j, lc, uc);
@ -948,10 +846,8 @@ void int_solver::fill_explanation_from_fixed_columns(const row_strip<mpq> & row)
bool int_solver::gcd_test() {
auto & A = m_lar_solver->A_r(); // getting the matrix
for (unsigned i = 0; i < A.row_count(); i++)
if (!gcd_test_for_row(A, i)) {
return false;
}
if (!gcd_test_for_row(A, i))
return false;
return true;
}
@ -1022,19 +918,15 @@ linear_combination_iterator<mpq> * int_solver::get_column_iterator(unsigned j) {
}
*/
int_solver::int_solver(lar_solver* lar_slv) :
m_lar_solver(lar_slv),
m_branch_cut_counter(0),
m_chase_cut_solver([this](unsigned j) {return m_lar_solver->get_column_name(j);},
[this](unsigned j, std::ostream &o) {m_lar_solver->print_constraint(j, o);},
[this]() {return m_lar_solver->A_r().column_count();},
[this](unsigned j) {return get_value(j);},
settings()),
m_hnf_cutter([this](){ return settings().random_next(); })
{
m_hnf_cutter(settings()) {
m_lar_solver->set_int_solver(this);
}
bool int_solver::has_low(unsigned j) const {
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
case column_type::fixed:
@ -1067,6 +959,7 @@ void set_lower(impq & l,
}
}
void set_upper(impq & u,
bool & inf_u,
impq const & v) {
@ -1386,22 +1279,6 @@ bool int_solver::is_term(unsigned j) const {
return m_lar_solver->column_corresponds_to_term(j);
}
void int_solver::add_constraint_to_chase_cut_solver(unsigned ci, const lar_base_constraint * c) {
vector<mono> coeffs;
mpq rs;
get_int_coeffs_from_constraint<mpq>(c, coeffs, rs);
m_chase_cut_solver.add_ineq(coeffs, -rs, ci);
}
void int_solver::pop(unsigned k) {
m_chase_cut_solver.pop_trail(k);
while (m_chase_cut_solver.number_of_asserts() > m_lar_solver->constraints().size())
m_chase_cut_solver.pop_last_assert();
m_chase_cut_solver.pop_constraints();
}
void int_solver::push() { m_chase_cut_solver.push(); }
unsigned int_solver::column_count() const { return m_lar_solver->column_count(); }
}